1
|
Gao X, Li A, Zhou C. l-Arginine and l-lysine improve the emulsifying and dissolution properties of pale, soft, exudative-like chicken myofibrillar proteins by modifying their conformations. Food Chem 2025; 463:141136. [PMID: 39255701 DOI: 10.1016/j.foodchem.2024.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Herein, we investigated the effect and potential mechanisms of l-arginine (Arg) and l-lysine (Lys) on the emulsifying and dissolution properties of pale, soft, exudative (PSE)-like chicken myofibrillar proteins (MPs). The findings revealed that Arg/Lys effectively enhanced the emulsion activity and emulsion stability indexes of PSE-like MPs, resulting in smaller and more uniform PSE-like MP-soybean oil emulsions. Arg/Lys increased the solubility, absolute potential, hydrophobicity, fluorescence intensity, and β-sheet content and decreased the turbidity, particle size, and β-turn and random coil content of PSE-like MPs. Additionally, Arg/Lys did not significantly affect the Schiff base, carbonyl group, and total sulfhydryl contents, but caused a red shift of the band near 299 nm, indicating conformational rather than primary structural changes. Altogether, these findings indicate that Arg/Lys improves the emulsifying and dissolution performances of PSE-like MPs by adjusting conformation and contributes to a better understanding of how Arg/Lys enhances the physicochemical properties of PSE-like sausages.
Collapse
Affiliation(s)
- Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Axiang Li
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
2
|
Mao R, Xiong G, Zheng H, Qi J, Zhang C. Effect of ultrasound on the functional properties and structural changes of chicken liver insoluble proteins isolated by isoelectric solubilization/precipitation. ULTRASONICS SONOCHEMISTRY 2025; 112:107165. [PMID: 39612756 PMCID: PMC11634992 DOI: 10.1016/j.ultsonch.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The studies investigated the effects of different ultrasonic powers (180, 360 and 540 W) on the functional properties and structural changes of chicken liver insoluble proteins (CLIPs) isolated by isoelectric solubilization/precipitation (ISP) (with alkaline solubilization at pH 11.0 and pH 12.0 respectively, and acid precipitation at pH 5.5). Results indicated that ultrasonic significantly increased the solubility of ISP-isolated CLIPs, and narrowed the particle size distribution of D3,2 and D4,3 (P < 0.05). The highest solubility was observed at pH 11.0 and 360 W ultrasound treatment, reaching 77.26 %. The ultrasonic with 360 W exhibited higher shear stress and apparent viscosity. Spectroscopy revealed that compared to without ultrasonic treatment, there was an increase in β-sheet and random curling content accompanied by a decrease in β-turn and α-helix structure when ultrasonication. Ultrasound altered the tyrosine hydrophobic residues to be exposed to the surface of the ISP-isolated CLIPs, thus improving the hydrophilicity. Overall, ultrasound combined with ISP treatment effectively improved the functional properties of CLIPs, and it might be a potential, safe and efficient method for improving the processing properties and broadening the application of insoluble animal-derived proteins.
Collapse
Affiliation(s)
- Rongrong Mao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoyuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China.
| | - Haibo Zheng
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Yao XN, Dong RL, Li YC, Lv AJ, Zeng LT, Li XQ, Lin Z, Qi J, Zhang CH, Xiong GY, Zhang QY. pH-shifting treatment improved the emulsifying ability of gelatin under low-energy emulsification. Int J Biol Macromol 2024; 282:136979. [PMID: 39490473 DOI: 10.1016/j.ijbiomac.2024.136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The effects of pH-shifting treatments (pH 3, 5, 7, 9, and 11) on the stability of gelatin emulsions made by low-energy stirring were investigated. pH-shifting treatments significantly enhanced the ESI and EAI of the emulsion (P < 0.05) and reduced its particle size (P < 0.05) under low-energy emulsifying conditions. The pH11-7 shifting treatment significantly increased the degree of depolymerization and the level of ordered structure of gelatin (P < 0.05). These transformations resulted in a significant increase in the exposure of hydrophobic and negatively charged residues (P < 0.05) on the surface of gelatin, facilitating a faster adsorption rate of gelatin onto the oil-water interface as well as an increase in the amount of gelatin adsorbed at the interface. Moreover, the alkali-shifting treatment promoted the formation of a thin viscoelastic interfacial film, which contributed to the enhanced stability of the emulsion.
Collapse
Affiliation(s)
- Xiu-Ning Yao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Rui-Ling Dong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Yu-Cong Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Ao-Jing Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Li-Ting Zeng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Xue-Qing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Zhou Lin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China.
| | - Chun-Hui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guo-Yuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qing-Yong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China
| |
Collapse
|
4
|
Zhu B, Yang J, Dou J, Ning Y, Qi B, Li Y. Comparison of the physical stability, microstructure and protein-lipid co-oxidation of O/W emulsions stabilized by l-arginine/l-lysine-modified soy protein hydrolysate. Food Chem 2024; 447:138901. [PMID: 38458131 DOI: 10.1016/j.foodchem.2024.138901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
This work investigated the physical stability, microstructure, and oxidative stability of the emulsions prepared by soy protein hydrolysate (SPH) after modification with different concentrations of l-arginine and l-lysine. l-Arginine and l-lysine significantly increased the absolute zeta potential values, and decreased droplet sizes of the emulsions, thereby improving the physical stability of the emulsions. Meanwhile, l-arginine and l-lysine markedly decreased the apparent viscosity of the emulsions. The measurement of interfacial protein adsorption percentage showed that l-arginine (≤0.5 %) promoted the adsorption of SPH at the oil-water interface, whereas l-lysine (≤1%) reduced the adsorption of SPH at the oil-water interface. In addition, l-arginine and l-lysine (≤0.5 %) could retard lipid and protein oxidation. Correlation analysis indicated that the improvement in the physical stability of the emulsions by l-arginine and l-lysine also enhanced the oxidative stability of the emulsions. In summary, l-arginine and l-lysine could be effective modifiers for the protein-based emulsion systems.
Collapse
Affiliation(s)
- Bin Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jinjie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjing Dou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yijie Ning
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
5
|
Yang K, Chi R, Jiang J, Ma J, Zhang Y, Sun W, Zhou Y. Insight into the mechanisms of combining direct current magnetic field with phosphate in promoting emulsifying properties of myofibrillar protein. Food Chem 2024; 447:138990. [PMID: 38492306 DOI: 10.1016/j.foodchem.2024.138990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
This study investigated the combined effects of direct-current magnetic field (DC-MF, 9.5 mT) and tetrasodium-pyrophosphate (TSPP, 1-5 g/L) on emulsified gel properties of porcine myofibrillar protein (MP). Results showed that MP at DC-MF and 3 g/L TSPP had decreased spectrum intensity of UV and fluorescence compared to that without DC-MF, owing to the changes of MP tertiary structure caused by DC-MF, especially tryptophan and tyrosine. The emulsion treated with DC-MF behaved better emulsifying activity and stability than that without DC-MF under such condition. And emulsion had lower creaming index and better storage stability. Gels prepared by this MP emulsion had low porosity and stable structure, accompanying with smaller size and more uniform distribution of oil droplets. Microstructure images showed that gels were covered with microporous structure, which was conducive to the good WHC of the emulsified gels (97.12%). These results showed the feasibility of DC-MF and TSPP in improving MP emulsion/emulsified gel.
Collapse
Affiliation(s)
- Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rongshuo Chi
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| | - Yuanhua Zhou
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
6
|
Zhang Y, Lyu H, Cao J, Wang J, Teng W, Wang Y. Constructing myosin/high-density lipoprotein composite emulsions: Roles of pH on emulsification stability, rheological and structural properties. Food Res Int 2024; 188:114440. [PMID: 38823857 DOI: 10.1016/j.foodres.2024.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.
Collapse
Affiliation(s)
- Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Hangbin Lyu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Pharmaceutical Sciences, Ningbo University, 315211 Ningbo, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
7
|
Xu J, Zhang H, Deng M, Guo H, Cui L, Liu Z, Xu J. Formation mechanism of quinoa protein hydrolysate-EGCG complexes at different pH conditions and its effect on the protein hydrolysate-lipid co-oxidation in emulsions. Food Res Int 2024; 186:114365. [PMID: 38729700 DOI: 10.1016/j.foodres.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hezhen Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengyu Deng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotong Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lifan Cui
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhengqin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Zhang H, Zhang W, Xu X, Zhao X. Aggregate Size Modulates the Oil/Water Interfacial Behavior of Myofibrillar Proteins: Toward the Thicker Interface Film and Disulfide Bond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17782-17797. [PMID: 38033267 DOI: 10.1021/acs.langmuir.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Myofibrillar protein (MP) aggregate models have been established to elucidate the correlation between their aggregate sizes and interfacial properties. The interfacial layer thickness was measured by the polystyrene latex method and quartz crystal microbalance with dissipation measurement. Interfacial conformations were then characterized in situ (front-surface fluorescence spectroscopy) and ex situ (reactive sulfhydryl group and secondary structure measurement following MP displacement). The viscoelasticity of the interfacial film and its resistance to surfactant-induced competitive displacement were reflected by the dilatational rheology and dynamic interfacial tension with the bulk phase exchange. Finally, we compared the findings of competitive displacement before/after adding a sulfhydryl-blocking agent, N-ethylmaleimide, to highlight the role of S-S linkage on interfacial film formation and stability. We substantiated that the aggregate size of the MP governed their interfacial properties. Small-sized aggregates exhibited more ordered secondary structures on the oil-water interface, which was conducive to the adsorption ratio of the protein and the adsorption dynamics. Although larger aggregates lowered the diffusion rate during interfacial film formation, they allowed the thicker and more viscoelastic interfacial film to be constructed afterward through more disulfide bond formation, resulting in greater resistance to surfactant-induced competitive displacement.
Collapse
Affiliation(s)
- Haozhen Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Weiyi Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
9
|
Li R, Fan X, Gao X, Zhou C. Injection of l-arginine or l-lysine before freezing delays the emulsifying and gelling properties deterioration of myofibrillar proteins of frozen porcine Longissimus lumborum muscle. Food Chem 2023; 427:136736. [PMID: 37393633 DOI: 10.1016/j.foodchem.2023.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the effects of injecting l-arginine and l-lysine solution before freezing and after thawing on the emulsifying and gelling properties of myofibrillar proteins (MPs) of frozen porcine longissimus dorsi. The results showed that the pre-freezing injections were more effective in alleviating the decrease in emulsifying properties of MPs compared with the post-thawing injections, as evidenced by higher emulsion creaming index, oil droplet size, interfacial absorptive protein amount, and viscoelasticity. Additionally, the pre-freezing injections could effectively mitigate the damage to the gelling properties of MPs, as evidenced by the formation of a homogeneous and compact gel network with stronger water retention, strength and chemical forces, as well as a higher proportion of non-flowing water, whereas the post-thawing injections could not. These results demonstrated that the injection of l-arginine and l-lysine solution before freezing could delay freezing-induced damage to the emulsifying and gelling properties of MPs, keeping the processing characteristics of frozen porcine.
Collapse
Affiliation(s)
- Rui Li
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xiaokang Fan
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
10
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
11
|
Heat treatment in the presence of arginine increases the emulsifying properties of soy proteins. Food Chem X 2023; 17:100567. [PMID: 36845474 PMCID: PMC9945471 DOI: 10.1016/j.fochx.2023.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
This study aimed to improve the emulsifying properties of commercial soy protein isolates (CSPIs). CSPIs were thermally denatured without additives (CSPI_H) and with arginine (CSPI_A), urea (CSPI_U), and guanidine hydrochloride (CSPI_G), which improve protein solubility to prevent aggregation. These additives were removed by dialysis, and the samples were lyophilized. CSPI_A resulted in high emulsifying properties. FT-IR analysis showed that the β-sheet content in CSPI_A was reduced compared to that of untreated CSPI (CSPI_F). Fluorescence analysis showed that the tryptophan-derived emission peak of CSPI_A shifted between CSPI_F and CSPI_H which was exposed to hydrophobic amino acid chains with aggregation. As a result, the structure of CSPI_A became moderately unfolded and exposed the hydrophobic amino acid chains without aggregation. The CSPI_A solution had a more reduced oil-water interface tension than other CSPIs. These results support that CSPI_A attaches efficiently to the oil-water interface and produces small, less flocculated emulsions.
Collapse
|
12
|
Injection of l-arginine or l-lysine alleviates freezing-induced deterioration of porcine Longissimus lumborum muscle. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Hu Y, Wang Y, Pan D, Li Y, Li R, Xu B, Zhou C. Individual effects of rosemary extract and green tea polyphenols on the physicochemical properties of soybean oil–myosin emulsion with l-arginine or l-lysine. Food Chem 2022; 395:133582. [DOI: 10.1016/j.foodchem.2022.133582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
|
14
|
Mechanism of low-salt surimi gelation induced by microwave heating combined with l-arginine and transglutaminase: On the basis of molecular docking between l-arginine and myosin heavy chain. Food Chem 2022; 391:133184. [DOI: 10.1016/j.foodchem.2022.133184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
15
|
Effects of High-Intensity Ultrasound Treatments on the Physicochemical and Structural Characteristics of Sodium Caseinate (SC) and the Stability of SC-Coated Oil-in-Water (O/W) Emulsions. Foods 2022; 11:foods11182817. [PMID: 36140961 PMCID: PMC9498016 DOI: 10.3390/foods11182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of high-intensity ultrasound treatment (0, 3, 6, 9 min) on physicochemical and structural characteristics of SC and the storage, thermal and freeze–thaw stability of SC O/W emulsions were investigated. The results showed that ultrasound treatment reduced the particle size of SC, although there were no obvious changes in zeta potential, profiles and weights. Ultrasound treatment improved surface hydrophobicity and fluorescence intensity of SC and changed ultraviolet–visible (UV–Vis) spectroscopy but had no influence on the secondary structure of SC. This indicates that ultrasounds might destroy the tertiary structure but leave most of the integral secondary structure. A scanning electron microscope (SEM) also showed that ultrasound-treated SC presented small aggregates and a loose structure. The physicochemical and structural changes of SC benefited the ability of protein adsorbing oil droplets and emulsion stability. Under stresses such as storage, thermal and freeze–thawing, the oil droplets of treated emulsions were still uniform and stable, especially at 6 min and 9 min. Overall, the high-intensity ultrasounds made the SC present small aggregates and a loose structure improving the SC O/W emulsions stability under storage, thermal and freeze–thawing environment and have great potential to stabilize the SC prepared O/W emulsions.
Collapse
|
16
|
Song T, Liu H, Monto AR, Shi T, Yuan L, Gao R. Improvement of Storage Stability of Zein-Based Pickering Emulsions by the Combination of Konjac Glucomannan and L-Lysine. Front Nutr 2022; 9:955272. [PMID: 35898718 PMCID: PMC9309815 DOI: 10.3389/fnut.2022.955272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, L-lysine (Lys) was employed together with konjac glucomannan (KGM) to fabricate zein colloidal particles (ZCPs) aimed at enhancing the storage stability of Pickering emulsions. With the addition of Lys, zein-Lys colloidal particles (ZLCPs) and zein-Lys-KGM (ZLKCPs) exhibited smaller particle size (133.64 ± 1.43, 162.54 ± 3.51 nm), polydispersity index (PDI) (0.10 ± 0.029, 0.13 ± 0.022), π value, and more adsorbed protein. Meanwhile, KGM underwent deamidation in an alkaline solution, so the emulsions stabilized by ZLKCPs exhibited a solid gel-like structure with higher storage modulus (G′) and loss modulus (G′′), leading to lower fluidity and better stability. The synergistic effects of Lys and KGM improved the stability of the emulsion. Hydrophobic interactions and hydrogen bonds were the main driving forces forming colloidal particles, which were determined by driving force analysis.
Collapse
Affiliation(s)
- Teng Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Hui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Li Yuan,
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Ruichang Gao,
| |
Collapse
|
17
|
Zhang W, Xu X, Zhao X, Zhou G. Insight into the oil polarity impact on interfacial properties of myofibrillar protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Lu J, Zhang W, Zhao X, Xu X. Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chem 2022; 380:131734. [PMID: 35034802 DOI: 10.1016/j.foodchem.2021.131734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
The emulsion abilities of pale, soft, exudative (PSE)-like chicken breast protein are unsatisfied, which are urgently needed to be ameliorated. This study evaluated the improvement of pH-shifting (11.0-, 11.5- and 12.0-7.0) on emulsion properties of the PSE-like chicken breast myofibrillar proteins (MPs) and the underlined structure-driven interfacial mechanism. It was found pH-shifting promoted the exposure of buried hydrophobic groups and free sulfhydryl groups, and changed secondary structures. Emulsions stabilized by refolded MPs exhibited more uniform and dispersed distributions with more adsorbed proteins at the interface. Electrophorogram showed both disulfide and non-disulfide covalent bonds were involved during interfacial protein-protein interaction. The results from circular dichroism and front-surface fluorescence spectroscopy revealed interfacial MPs were exposed to a more hydrophobic environment and increased β-sheets enhanced their molecular interactions. In addition, interfacial proteins after pH-shifting was less likely to be replaced by Tween 20.
Collapse
Affiliation(s)
- Junmeng Lu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiyi Zhang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Zhao
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Animal Products Processing, MOA; Key Lab of Meat Processing and Quality Control, MOE; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
19
|
Role of partial replacement of NaCl by KCl combined with other components on structure and gel properties of porcine myofibrillar protein. Meat Sci 2022; 190:108832. [DOI: 10.1016/j.meatsci.2022.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
20
|
An optimized approach to recovering O/W interfacial myofibrillar protein: Emphasizing on interface-induced structural changes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cao Y, Li Z, Fan X, Liu M, Han X, Huang J, Xiong YL. Multifaceted functionality of L-arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food Funct 2022; 13:1336-1347. [PMID: 35040853 DOI: 10.1039/d1fo03372g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of L-arginine (Arg) at different concentrations (0%, 0.05%, 0.1%, 0.2%, 0.5% and 1.0%) on the antioxidant activity, structure and emulsifying properties of pea protein isolate (PPI) were explored. The intrinsic mechanisms of the reactions at different concentrations were specifically examined. With an increase in Arg concentration, the scavenging activities of ABTS+˙ and ˙OH and the Fe2+ chelating activity of PPI increased significantly (P < 0.05). The addition of Arg (0%-0.2%) significantly modified the PPI structure, causing an increase in protein solubility (from 66.2% to 79.0%) and a decrease in protein particle size (from 682 nm to 361 nm) (P < 0.05). In addition, treatment with Arg (0%-0.2%) effectively improved the emulsifying activity of PPI (by 28%), decreased the droplet size and viscosity of the emulsion, and enhanced the physical and oxidation stabilities of the emulsion. The increase in interfacial protein content and the absolute value of ζ-potential, and the microscopy images also showed that 0%-0.2% Arg treatment helped in forming a uniform and stable microemulsion. In contrast, a high concentration (0.5%-1.0%) of Arg diminished its positive effect on the emulsifying properties of PPI. Therefore, treatment with an appropriate concentration of Arg can significantly improve the emulsifying activity of PPI and enhance the stability of the emulsions.
Collapse
Affiliation(s)
- Yungang Cao
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhaorui Li
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xin Fan
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Miaomiao Liu
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xinrui Han
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Junrong Huang
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
22
|
Filamentous myosin in low-ionic strength meat protein processing media: Assembly mechanism, impact on protein functionality, and inhibition strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Zhang D, Zhang Y, Huang Y, Chen L, Bao P, Fang H, Zhou C. l-Arginine and l-Lysine Alleviate Myosin from Oxidation: Their Role in Maintaining Myosin's Emulsifying Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3189-3198. [PMID: 33496584 DOI: 10.1021/acs.jafc.0c06095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the alleviative effects of l-arginine and l-lysine on the emulsifying properties and structural changes of myosin under hydroxyl radical (·OH) stress. The results showed that ·OH decreased the emulsifying activity index and emulsifying stability index but increased the creaming index and droplet size of a soybean oil-myosin emulsion (SOME). Confocal laser scanning microscopy demonstrated that ·OH caused larger and more inhomogeneous SOME droplets. l-Arginine and l-lysine effectively alleviated ·OH-induced destructive effects on the emulsifying properties of myosin. In addition, ·OH increased the extent of protein carbonylation and dityrosine formation, surface hydrophobicity, and β-sheet content, but decreased the tryptophan fluorescence intensity, solubility, total sulfhydryl, and α-helix content of myosin. Although l-lysine increased dityrosine fluorescence intensity, l-arginine and l-lysine effectively alleviated the aforementioned structural changes of myosin. Therefore, l-arginine and l-lysine could mitigate ·OH-induced structural changes of myosin, which enabled myosin to maintain its emulsifying capacity under oxidative stress.
Collapse
Affiliation(s)
- Daojing Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yinyin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Huang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
24
|
Huang Y, Zhang D, Zhang Y, Fang H, Zhou C. Role of ultrasound and l-lysine/l-argnine in improving the physical stability of myosin-soybean oil emulsion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Combination effects of ultrasonic and basic amino acid treatments on physicochemical properties of emulsion sausage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00800-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Yawei Z, Xiuyun G, Jamali MA, Rui F, Zengqi P. Influence of l-histidine and l-lysine on the phosphorylation of myofibrillar and sarcoplasmic proteins from chicken breast in response to salting. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Shi T, Liu H, Song T, Xiong Z, Yuan L, McClements DJ, Jin W, Sun Q, Gao R. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chem 2020; 342:128314. [PMID: 33051101 DOI: 10.1016/j.foodchem.2020.128314] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
The effects of l-arginine (Arg)-assisted ultrasonic treatment on the molecular and interfacial characteristics of myosin and emulsifying properties of the emulsion were evaluated to ascertain the underlying mechanism in improving the emulsion stability. Ultrasonication induced the exposure of residues of native myosin, which was increased by the addition of Arg (40 mM). Furthermore, in terms of emulsions containing Arg, the higher the ultrasonication intensity was, the greater the increase in adsorbed protein (from 15.43 ± 0.28% to 50.49 ± 1.65%) and π value, and the decrease in droplet sizes (from 4098 nm to 2324 nm) (P < 0.05). Moreover, the increase in the ordered structures of interfacial myosin induced by Arg and ultrasonication favoured the formation of a protein gelation network. In summary, Arg-assisted ultrasonic treatment improved the stability of the emulsion by inducing the exposure of native myosin and facilitating the formation of ordered structures of interfacial myosin.
Collapse
Affiliation(s)
- Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Teng Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong 723001, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
28
|
Effects of basic amino acid on the tenderness, water binding capacity and texture of cooked marinated chicken breast. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zhang Y, Zhang D, Huang Y, Chen L, Bao P, Fang H, Zhou C. L-arginine and L-lysine degrade troponin-T, and L-arginine dissociates actomyosin: Their roles in improving the tenderness of chicken breast. Food Chem 2020; 318:126516. [PMID: 32146313 DOI: 10.1016/j.foodchem.2020.126516] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 01/12/2023]
Abstract
This work investigated the effects of L-arginine (Arg) and L-lysine (Lys) on the tenderness of chicken breast and explored the possible mechanisms underlying this effect for the first time. The results showed that both Arg and Lys decreased the shear force and increased the pH value, sarcomere length and myofibrillar fragmentation index as well as degraded the troponin-T by keeping calpain activity in chicken breast. In addition, Arg effectively reduced Ca2+/Mg2+-ATPase activities and promoted actomyosin dissociation. These results indicated that both Arg and Lys could enhance the tenderness of chicken breast, and it could also explain why Arg was more effective than Lys in improving the tenderness of chicken breast. These results will help facilitate the development of industrial-scale methods for improving the tenderness of meat products.
Collapse
Affiliation(s)
- Yinyin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Daojing Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yajun Huang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|