1
|
Yu M, Zhang S, Tang P, Meng L, Cheng W, Gao C, Wu D, Feng X, Wang Z, Tang X. Effects of fatty acids and glycerides on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles. Food Res Int 2024; 191:114713. [PMID: 39059913 DOI: 10.1016/j.foodres.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This study aimed to explore the effects of various lipids on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles (EBNs) with and without 20% high-amylose corn starch (HACS). Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction revealed that lauric acid bound more strongly to starch than did stearic acid and oleic acid, and the binding capacity of fatty acids with starch was stronger than that of glycerides. The presence of HACS during extrusion facilitated increased formation of starch-lipid complexes. Evaluations of cooking quality and digestion characteristics showed that EBNs containing 20% HACS and 0.5% glycerol monooleate demonstrated the lowest cooking loss (7.28%), and that with 20% HACS and 0.5% oleic acid displayed the lowest predicted glycemic index (pGI) (63.54) and highest resistant starch (RS) content (51.64%). However, excessive starch-lipid complexes were detrimental to EBNs cooking quality and the resistance of starch to digestive enzymes because of the damage to the continuity of the starch gel network. This study establishes a fundamental basis for the development of EBNs with superior cooking quality and a relatively lower GI.
Collapse
Affiliation(s)
- Menglan Yu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Shuyi Zhang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peiqi Tang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
2
|
Torres-Pérez R, Martínez-García E, Siguero-Tudela MM, García-Segovia P, Martínez-Monzó J, Igual M. Enhancing Gluten-Free Bread Production: Impact of Hydroxypropyl Methylcellulose, Psyllium Husk Fiber, and Xanthan Gum on Dough Characteristics and Bread Quality. Foods 2024; 13:1691. [PMID: 38890919 PMCID: PMC11172051 DOI: 10.3390/foods13111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
The demand for gluten-free products has increased due to improved diagnoses and awareness of gluten-related issues. This study investigated the effect of HPMC, psyllium, and xanthan gum in gluten-free bread formulations. Three tests were conducted, varying the amount of these ingredients: in the first formulation, the amount of HPMC was increased to 4.4 g/100 g of flour and starch; in the second, psyllium husk fiber was increased to 13.2 g/100 g of flour and starch; and in the third formulation, xanthan gum was removed. Differences were observed among the formulations: increasing HPMC reduced extrusion force without affecting bread quality; adding psyllium increased dough elasticity but also crumb gumminess and crust hardness. Eliminating xanthan gum altered dough rheology, resulting in a softer and less gummy crumb, and a less reddish color in the final bread.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta Igual
- i-Food, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (R.T.-P.); (E.M.-G.); (M.M.S.-T.); (P.G.-S.); (J.M.-M.)
| |
Collapse
|
3
|
Pereira CL, Sousa I, Lourenço VM, Sampaio P, Gárzon R, Rosell CM, Brites C. Relationship between Physicochemical and Cooking Quality Parameters with Estimated Glycaemic Index of Rice Varieties. Foods 2023; 13:135. [PMID: 38201163 PMCID: PMC10778676 DOI: 10.3390/foods13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Rice is a significant staple food in the basic diet of the global population that is considered to have a high glycaemic index. The study of the physical and chemical parameters in rice that are related to the starch digestion process, which allows us to quickly predict the glycaemic index of varieties, is a major challenge, particularly in the classification and selection process. In this context, and with the goal of establishing a relationship between physicochemical properties and starch digestibility rates, thus shedding light on the connections between quality indicators and their glycaemic impact, we evaluated various commercial rice types based on their basic chemical composition, physicochemical properties, cooking parameters, and the correlations with digestibility rates. The resistant starch, the gelatinization temperature and the retrogradation (setback) emerge as potent predictors of rice starch digestibility and estimated glycaemic index, exhibiting robust correlations of r = -0.90, r = -0.90, and r = -0.70 (p ≤ 0.05), respectively. Among the rice types, Long B and Basmati stand out with the lowest estimated glycaemic index values (68.44 and 68.10), elevated levels of resistant starch, gelatinization temperature, and setback values. Furthermore, the Long B showcases the highest amylose, while the Basmati with intermediate, revealing intriguingly strong grain integrity during cooking, setting it apart from other rice varieties.
Collapse
Affiliation(s)
- Cristiana L. Pereira
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Department of Earth Sciences, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês Sousa
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Vanda M. Lourenço
- Center for Mathematics and Applications (NOVA Math) and Department of Mathematics, NOVA SST, 2829-516 Caparica, Portugal
| | - Pedro Sampaio
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Computação e Cognição Centrada nas Pessoas, BioRG—Biomedical Research Group, Lusófona University, Campo Grande, 376, 1749-019 Lisboa, Portugal
| | - Raquel Gárzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain
- Food and Human Nutritional Department, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
4
|
Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Redistribution of surplus bread particles into the food supply chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Impact of fortificants on the powder properties of a gluten-free porous starch matrix of puffed rice flour. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Zhang J, You Y, Li C, Ban X, Gu Z, Li Z. The modulatory roles and regulatory strategy of starch in the textural and rehydration attributes of dried noodle products. Crit Rev Food Sci Nutr 2022; 64:5551-5567. [PMID: 36524398 DOI: 10.1080/10408398.2022.2155797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noodles are popular staple foods globally, and dried noodle products (DNPs) have gained increasing attention due to recent changes in consumer diet behavior. Rapid rehydration and excellent texture quality are the two major demands consumers make of dried noodle products. Unfortunately, these two qualities conflict with each other: the rapid rehydration of DNPs generally requires a loose structure, which is disadvantageous for good texture qualities. This contradiction limits further development of the noodle industry, and overcoming this limitation remains challenging. Starch is the major component of noodles, and it has two main roles in DNPs. It serves as a skeleton for the noodle in gel networks form or acts as a noodle network filler in granule form. In this review, we comprehensively investigate the different roles of starch in DNPs, and propose strategies for balancing the conflicts between texture and rehydration qualities of DNPs by regulating the gel network and granule structure of starch. Current strategies in regulating the gel network mainly focused on the hydrogen bond strength, the orientation degree, and the porosity; while regulating granule structure was generally performed by adjusting the integrity and the gelatinization degree of starch. This review assists in the production of instant dried noodle products with desired qualities, and provides insights into promising enhancements in the quality of starch-based products by manipulating starch structure.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuxian You
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
8
|
Zhao F, Li Y, Li C, Ban X, Gu Z, Li Z. Exo-type, endo-type and debranching amylolytic enzymes regulate breadmaking and storage qualities of gluten-free bread. Carbohydr Polym 2022; 298:120124. [DOI: 10.1016/j.carbpol.2022.120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
|
9
|
Sharanagat VS, Singh L, Nema PK. Approaches for development of functional and low gluten bread from sorghum: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijay Singh Sharanagat
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat Haryana India
| | - Lochan Singh
- Contract research organization National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat Haryana India
| | - Prabhat K. Nema
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat Haryana India
| |
Collapse
|
10
|
Qin W, Xi H, Wang A, Gong X, Chen Z, He Y, Wang L, Liu L, Wang F, Tong L. Ultrasound Treatment Enhanced Semidry-Milled Rice Flour Properties and Gluten-Free Rice Bread Quality. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175403. [PMID: 36080172 PMCID: PMC9457677 DOI: 10.3390/molecules27175403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022]
Abstract
The structural and functional properties of physical modified rice flour, including ultrasound treated rice flour (US), microwave treated rice flour (MW) and hydrothermal treated rice flour (HT) were investigated with wet-milled rice flour (WF) used as a positive control. The results showed the presence of small dents and pores on the rice flour granules of US and MW while more fragments and cracks were showed in HT. XRD and FTIR revealed that moderate ultrasonic treatment promoted the orderly arrangement of starch while hydrothermal treatment destroyed the crystalline structure of rice flour. In addition, the significant decrease of gelatinization enthalpy and the narrowing gelatinization temperature were observed in US. Compared to that of SF, adding physical modified rice flour led to a batter with higher viscoelasticity and lower tan δ. However, the batter added HT exhibited highest G' and G″ values and lowest tan δ, which led to a harder texture of bread. Texture analysis demonstrated that physical modified rice flour (except HT) reduced the hardness, cohesion, and gumminess of rice bread. Especially, the specific volume of bread with US increased by 15.6% and the hardness decreased by 17.6%. This study suggested that ultrasound treatment of rice flour could improve texture properties and appearance of rice bread.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengzhong Wang
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| | - Litao Tong
- Correspondence: (F.W.); (L.T.); Tel./Fax: +86-10-6281-7417 (L.T.)
| |
Collapse
|
11
|
Starch structure and exchangeable protons contribute to reduced aging of high-amylose wheat bread. Food Chem 2022; 385:132673. [DOI: 10.1016/j.foodchem.2022.132673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022]
|
12
|
Zhao F, Li Y, Li C, Ban X, Gu Z, Li Z. Glycosyltransferases improve breadmaking quality by altering multiscale structure in gluten-free bread. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Renzetti S, Heetesonne I, Ngadze RT, Linnemann AR. Dry Heating of Cowpea Flour below Biopolymer Melting Temperatures Improves the Physical Properties of Bread Made from Climate-Resilient Crops. Foods 2022; 11:foods11111554. [PMID: 35681304 PMCID: PMC9180669 DOI: 10.3390/foods11111554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/16/2023] Open
Abstract
Improving the technological functionality of climate-resilient crops (CRCs) to promote their use in staple foods, such as bread, is relevant to addressing food and nutrition security in Africa. Dry heating of cowpea flour (CPF) was studied as a simple technology to modulate CPF physicochemical properties in relation to bread applications. For this purpose, the melting behavior of cowpea starch and proteins in CPF was first studied and modeled using Flory–Huggins theory for polymer melting. Next, dry-heating conditions were investigated based on the predicted biopolymer melting transitions in CPF to be well below starch and protein melting. The pasting properties (i.e., peak viscosity, final viscosity, breakdown and setback) of CPF could be selectively modulated depending on temperature-time combinations without altering the thermal behavior (i.e., melting enthalpies) of CPF. Water-binding capacity and soluble solids decreased with the increased severity of the temperature-time combinations. Dry-heated CPF added to CRC-based bread significantly improved crumb texture. In particular, dry heating at 100 °C for 2 h provided bread with the highest crumb softness, cohesiveness and resilience. The positive effects on the crumb texture could be largely related to enhanced starch integrity, as indicated by a reduction in breakdown viscosity after treatment. Overall, dry heating of CPF under defined conditions is a promising technology for promoting the use of CPF as a techno-functional and protein-rich ingredient in bread-type products.
Collapse
Affiliation(s)
- Stefano Renzetti
- Wageningen Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Correspondence:
| | - Ine Heetesonne
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (I.H.); (R.T.N.); (A.R.L.)
| | - Ruth T. Ngadze
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (I.H.); (R.T.N.); (A.R.L.)
| | - Anita R. Linnemann
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (I.H.); (R.T.N.); (A.R.L.)
| |
Collapse
|
14
|
Gómez M. Gluten-free bakery products: Ingredients and processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:189-238. [PMID: 35595394 DOI: 10.1016/bs.afnr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing demand for gluten-free products around the world because certain groups of people, which have increased in the last decades, need to eliminate gluten from their diet. A growing number of people consider gluten-free products to be healthier. However, making gluten-free products such as bread is a technological challenge due to the important role of the gluten network in their development. However, other products, such as cakes and cookies usually made with wheat flour, can easily be made with gluten-free starches or flours since gluten does not play an essential role in their production. To replace wheat flour in these elaborations it is necessary to resort to gluten-free starches and/or flours and to gluten substitutes. Additionally, it can be convenient to incorporate other ingredients such as proteins, fibers, sugars or oils, as well as to modify their quantities in wheat flour formulations. Regarding gluten-free flours, it will also be necessary to know the parameters that influence their functionality in order to obtain regular products. These problems have originated a lower availability of gluten-free products which have a worse texture and are less tasty and more expensive than their homologues with gluten. These problems have been partially solved thanks to research on these types of products, their ingredients and their production methods. In recent years, studies about the nutritional improvement of these products have increased. This chapter delves into the main ingredients used in the production of gluten-free products, the processes for making gluten-free breads, cakes and cookies, and the nutritional quality of these products.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain.
| |
Collapse
|
15
|
Study on the Pasting Properties of Indica and Japonica Waxy Rice. Foods 2022; 11:foods11081132. [PMID: 35454720 PMCID: PMC9031608 DOI: 10.3390/foods11081132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
In this study, the physicochemical properties of indica (IWR) and japonica (JWR) waxy rice were investigated to find the critical factor that differentiates the pasting behaviors among the two cultivars. The results showed that the peak viscosity of 5 IWR flours was in the range of 1242 to 1371 cP, which was significantly higher than 4 JWR flours (667 to 904 cP). Correlation analysis indicated that all pasting parameters were not correlated (p < 0.05) with physicochemical properties of rice flours and the fine structure of isolated starches. The pasting profiles of IWRs were still significantly higher than those of JWRs after removing lipid, while there were no significant differences between the two cultivars after removing protein sequentially. Meanwhile, the addition of extracted protein from JWR to the isolated starch significantly decreased the viscosity compared to the addition of protein extracted from IWR. The protein composition results found that the IWR protein contained about 18% globulin and 64% glutelin, while the JWR protein contained 11% globulin and 73% glutelin. The addition of glutelin to isolated starch significantly decreased viscosity compared to the addition of globulin. Therefore, the differences in the content of globulin and glutelin might be the main reasons that differentiate the pasting behaviors of the two cultivars.
Collapse
|
16
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
17
|
Effect of starch molecular structure on precision and texture properties of 3D printed products. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Kian-Pour N, Akdeniz E, Toker OS. Influence of coating-blanching in starch solutions, on the drying kinetics, transport properties, quality parameters, and microstructure of celery root chips. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Gallego C, Belorio M, Guerra‐Oliveira P, Gómez M. Effects of adding chickpea and chestnut flours to layer cakes. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristina Gallego
- Food Technology Area College of Agricultural Engineering University of Valladolid Palencia 34071 Spain
| | - Mayara Belorio
- Food Technology Area College of Agricultural Engineering University of Valladolid Palencia 34071 Spain
| | - Priscila Guerra‐Oliveira
- Food Technology Area College of Agricultural Engineering University of Valladolid Palencia 34071 Spain
| | - Manuel Gómez
- Food Technology Area College of Agricultural Engineering University of Valladolid Palencia 34071 Spain
| |
Collapse
|
20
|
Gui Y, Chen G, Tian W, Yang S, Chen J, Wang F, Li Y. Normal rice flours perform better in gluten-free bread than glutinous rice flours. J Food Sci 2022; 87:554-566. [PMID: 34997932 DOI: 10.1111/1750-3841.16018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
This study aims to determine gluten-free bread-making potential of different types of rice, particularly comparing normal rice versus glutinous rice flours. Proximate and chemical compositions, hydration, and dough mixing and pasting properties of ten rice cultivars (i.e., seven types of normal rice and three types of glutinous rice), and quality parameters (specific volume, texture profile, and crumb structure) of gluten-free bread from these flours were assessed. Significant differences were observed in flour properties among different types of rice. Significant correlations were observed between bread specific volume and rice amylose content (r = 0.91, p < 0.01), as well as pasting peak time (r = 0.86, p < 0.01) and final viscosity (r = 0.77, p < 0.01). Further, strong correlations were observed between bread resilience and properties of rice flour, such as amylose content (r = 0.91, p < 0.01), pasting peak viscosity (r = 0.83, p < 0.01), and final viscosity (r = 0.93, p < 0.01). In conclusion, the normal rice types exhibited much better gluten-free bread-making performances than glutinous flour. Important parameters of rice flour determining its gluten-free bread-making properties include amylose content, water retention capacity, and pasting properties. PRACTICAL APPLICATION: Compared with glutenous rice flour, normal rice flour leads to more viscous paste and gluten-free breads with larger volume, evener texture, and better resilience. This study provides guidance for practical uses of rice flours in improving gluten-free dough and bread quality.
Collapse
Affiliation(s)
- Yijie Gui
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.,Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Gengjun Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Wenfei Tian
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Shaohua Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jianmin Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Feng Wang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
21
|
Low requirement imaging enables sensitive and robust rice adulteration quantification via transfer learning. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Differences in starch structural and physicochemical properties and texture characteristics of cooked rice between the main crop and ratoon rice. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Effects of the pre-frying process on the cooking quality of rice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
|
25
|
Martinez MM. Starch nutritional quality: beyond intraluminal digestion in response to current trends. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
The molecular structure of starch from different Musa genotypes: Higher branching density of amylose chains seems to promote enzyme-resistant structures. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Rachman A, Brennan MA, Morton J, Brennan CS. Starch Pasting Properties, and the Effects of Banana Flour and Cassava Flour Addition to Semolina Flour on Starch and Amino Acid Digestion. STARCH-STARKE 2020. [DOI: 10.1002/star.202000137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Adetiya Rachman
- Department of Wine, Food and Molecular Biosciences Lincoln University P.O. Box 85084 Lincoln 7647 New Zealand
- Riddet Institute (PN 445) Massey University Private Bag 11222 Palmerston North 4442 New Zealand
- Indonesia Institute for Agricultural Research and Development Jl. Raya Ragunan No 29 Pasar Minggu Jakarta 12540 Indonesia
| | - Margaret A. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University P.O. Box 85084 Lincoln 7647 New Zealand
- Riddet Institute (PN 445) Massey University Private Bag 11222 Palmerston North 4442 New Zealand
| | - James Morton
- Department of Wine, Food and Molecular Biosciences Lincoln University P.O. Box 85084 Lincoln 7647 New Zealand
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University P.O. Box 85084 Lincoln 7647 New Zealand
| |
Collapse
|
28
|
Roman L, Reguilon MP, Martinez MM, Gomez M. The effects of starch cross-linking, stabilization and pre-gelatinization at reducing gluten-free bread staling. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
de Souza BL, Magalhães-Guedes KT, Lemos PVF, Maciel LF, Dias DR, Druzian JI, Schwan RF. Development of arrowroot flour fermented by kefir grains. J Food Sci 2020; 85:3722-3730. [PMID: 32990365 DOI: 10.1111/1750-3841.15472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 09/05/2020] [Indexed: 11/26/2022]
Abstract
The present study aims to produce arrowroot flour fermented by kefir grains, in addition to assessing the physicochemical, nutritional, and microbiological characteristics. Fermented arrowroot flour was produced at room temperature (approximately 25 to 28 °C). Fermentation was conducted in batch (6 kg of the substrate and 10% of kefir grains were added with homogenization every 3 hr). Samples were evaluated every 12 hr for both fermentation processes (fermentation process 1: 24 hr and fermentation process 2: 48 hr). The flours were evaluated for physicochemical, nutritional, and microbiological qualities, using a completely randomized design, considering only the variation in the duration of both fermentation processes (from 24 to 48 hr). The fermentation process positively modified the physicochemical, nutritional, and microbial characteristics of the flours. An increase in antioxidant activity (IC50 : control flour [CF] = 18.9 ± 0.13; arrowroot kefir flour [24 hr of fermentation; AKF1] = 15.36 ± 0.14; and arrowroot kefir flour [48 hr of fermentation; AKF2] = 13.84 ± 0.15), protein percentage (CF = 3.08 ± 0.12; AKF1 = 4.87 ± 0.33; and AKF2 = 6.00 ± 0.07), and organic acid (lactic, acetic, and propionic acids) production was observed, as well as modification in color (browning), the conformation of starch structures, and carbohydrate reduction. These results suggested that the "arrowroot kefir flours" open a new perspective for introduction in the market as a new product that can be used as food in nature or food ingredient for making bread, biscuits, pasta, and others, showing microbiological safety and functions properties. PRACTICAL APPLICATION: The fermented flours present improved nutritional characteristics due to the fermentation process, such as higher antioxidant activity and protein levels. Regarding the population growth and societal demand for healthier food, one possibility is to provide a fermented flour with added nutritional value and raise knowledge about the arrowroot. Thus, these flours can be used in various food items or as an ingredient in food preparations for consumers that desire a healthy diet.
Collapse
Affiliation(s)
- Beatriz Lourdes de Souza
- Food Science Department, Microbiology Sector, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | | | - Paulo Vitor França Lemos
- Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Salvador, BA, 40171-970, Brazil
| | - Leonardo Fonseca Maciel
- Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Salvador, BA, 40171-970, Brazil
| | - Disney Ribeiro Dias
- Food Science Department, Microbiology Sector, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Janice Izabel Druzian
- Bromatological Analysis Department, Pharmacy Faculty, Federal University of Bahia (UFBA), Salvador, BA, 40171-970, Brazil
| | - Rosane Freitas Schwan
- Biology Department, Microbiology Sector, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| |
Collapse
|
30
|
Roman L, Yee J, Hayes AMR, Hamaker BR, Bertoft E, Martinez MM. On the role of the internal chain length distribution of amylopectins during retrogradation: Double helix lateral aggregation and slow digestibility. Carbohydr Polym 2020; 246:116633. [PMID: 32747268 DOI: 10.1016/j.carbpol.2020.116633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
A structure-digestion model is proposed to explain the formation of α-amylase-slowly digestible structures during amylopectin retrogradation. Maize and potato (normal and waxy) and banana starch (normal and purified amylopectin through alcohol precipitation), were analyzed for amylose ratio and size (HPSEC) and amylopectin unit- and internal-chain length distribution (HPAEC). Banana amylopectin (BA), like waxy potato (WP), exhibited a larger number of B3-chains, fewer BS- and Bfp-chains and lower S:L and BS:BL ratios than maize, categorizing BA structurally as type-4. WP exhibited a significantly greater tendency to form double helices (DSC and 13C-NMR) than BA, which was attributed to its higher internal chain length (ICL) and fewer DP6-12-chains. However, retrograded BA was remarkably more resistant to digestion than WP. Lower number of phosphorylated B-chains, more S- and Bfp-chains and shorter ICL, were suggested to result in α-amylase-slowly digestible structures through further lateral packing of double helices (suggested by thermo-rheology) in type-4 amylopectins.
Collapse
Affiliation(s)
- Laura Roman
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Josephine Yee
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Anna M R Hayes
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Eric Bertoft
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Mario M Martinez
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Department of Food Science, iFOOD Multidisciplinary Center, Aarhus University, Agro Food Park 48, Aarhus N, 8200, Denmark.
| |
Collapse
|
31
|
Tuta Şimşek S. Evaluation of partial-vacuum baking for gluten-free bread: Effects on quality attributes and storage properties. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|