1
|
Ke F, Yang M, Ji W, Liu D. Functional pH-sensitive film based on pectin and whey protein for grape preservation and shrimp freshness monitoring. Food Chem 2025; 463:141092. [PMID: 39255696 DOI: 10.1016/j.foodchem.2024.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wei Ji
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Jebel FS, Roufegarinejad L, Alizadeh A, Amjadi S. Development and characterization of a double-layer smart packaging system consisting of polyvinyl alcohol electrospun nanofibers and gelatin film for fish fillet. Food Chem 2025; 462:140985. [PMID: 39217749 DOI: 10.1016/j.foodchem.2024.140985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to develop a double-layer film composed of an intelligent, gelatin-based film integrated with active polyvinyl alcohol electrospun nanofibers (PVANFs). Eggplant skin extract (ESE), a colorimetric indicator, was incorporated into the gelatin-based film at varying concentrations ranging from 0 % to 8 % w/w. The gelatin film containing 8 % ESE was identified as the optimal formulation based on its superior color indication, water barrier, and mechanical properties. Savory essential oil (SEO)-loaded PVANFs were electrospun onto the optimized gelatin film to fabricate the double-layer film. Analysis of the chemical and crystalline structures and the double-layer film's thermal properties confirmed the gelatin film's physical integration with PVANFs. Morphological examination revealed a smooth surface on the film and a uniform fibrillar structure within the PVANFs. Furthermore, the developed double-layer film effectively detected spoilage in trout fish while controlling pH, oxidation, and microbial changes during storage.
Collapse
Affiliation(s)
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ainaz Alizadeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran.
| |
Collapse
|
3
|
Sun H, Liu X, Huang Y, Leng X. Incorporating functional colorants in whey protein isolate-cellulose nanocrystal-blended edible films for pork freshness prediction. Int J Biol Macromol 2024:137276. [PMID: 39510473 DOI: 10.1016/j.ijbiomac.2024.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
In this study, intelligent pH- and ammonia-sensing edible films are designed based on whey protein isolate (WPI)-cellulose nanocrystal-based biopolymers by incorporating different functional colorants (curcumin, phycocyanin, and modified lycopene), alone and paired, to promote food freshness and monitoring efforts. Incorporating the colorants endowed the films were endowed with pH- and ammonia-responsiveness and enhanced UV-blocking, antioxidant, and antibacterial capabilities. Phycocyanin induces WPI unfolding, increasing the accessibility of curcumin; hence, combining curcumin with phycocyanin promotes the sensitivity of films to pH and NH3 compared with those containing a single colorant. In the pork freshness monitoring analysis, the combined-colorants film underwent a noticeable color change as the meat spoiled. Moreover, the meat packaged with the combined film exhibited lower levels of lipid oxidation than those packaged in single-colorant films. These results suggest that curcumin-phycocyanin-containing films have multifunctional potential in intelligent food packaging.
Collapse
Affiliation(s)
- Hongbo Sun
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xinnan Liu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yue Huang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaojing Leng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Kuchaiyaphum P, Amornsakchai T, Chotichayapong C, Saengsuwan N, Yordsri V, Thanachayanont C, Batpo P, Sotawong P. Pineapple stem starch-based films incorporated with pineapple leaf carbon dots as functional filler for active food packaging applications. Int J Biol Macromol 2024; 282:137224. [PMID: 39505188 DOI: 10.1016/j.ijbiomac.2024.137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The results revealed that the CDs measured 2.36 ± 0.33 nm and exhibited antioxidant and antibacterial activities. The addition of the CDs led to notable enhancements in both mechanical strength and UV-barrier properties. Thus, PSS-CDs packaging film was successfully prepared, with the incorporation of CDs enhancing the antioxidant and antimicrobial properties of the film, thereby extending the shelf-life of fresh pork.
Collapse
Affiliation(s)
- Pusita Kuchaiyaphum
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Chatrachatchaya Chotichayapong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Nikorn Saengsuwan
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Visittapong Yordsri
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phitchaya Batpo
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Phatcharaporn Sotawong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Oliveira Filho JGD, de Souza BB, Robles JR, Azeredo HMCD, Tonon RV, Abiade J, Mattoso LHC, Yarin AL. Fast production of highly sensitive nanotextured nonwovens for detection of volatile amines, bacterial growth, and pH monitoring: New tools for real-time food quality monitoring. Food Chem 2024; 464:141896. [PMID: 39515155 DOI: 10.1016/j.foodchem.2024.141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
An efficient manufacturing of colorimetric nonwoven indicators represents a promising alternative to enable applications of such materials in food quality monitoring. The objective of this study is to use the solution blow spinning technique (SBS) to rapidly produce colorimetric nonwoven indicators based on polycaprolactone, incorporating natural or synthetic pH indicators to detect volatile amines, bacterial growth and monitor pH. Produced via the SBS method, these indicators were characterized aiming their physical, mechanical, thermal, and spectroscopic properties, evaluating their efficacy in detecting amines, monitoring bacterial growth, and pH, as well as assessing color stability during storage. The thermal stability and mechanical properties of the nonwovens practically always increased with the incorporation of natural and synthetic indicators. When exposed to volatile amines, the nonwoven indicators, particularly those embedded with bromophenol blue, displayed remarkable color change abilities in the presence of five volatile amines. These smart nonwovens in direct contact with E. coli K-12 or its volatiles in 24 h changed their color perceptible to the naked eye. The nanofiber nonwovens displayed visible color changes (ΔE ≥ 3) in response to buffer solutions (pH between 3 and 10). The smart nonwovens rapidly produced by the solution blow spinning method prove to be a promising tool for real-time monitoring of food freshness.
Collapse
Affiliation(s)
- Josemar Gonçalves de Oliveira Filho
- Nanotechnology National Laboratory for Agriculture (LNNA), Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Breno Bezerra de Souza
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Jaqueline Rojas Robles
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Henriette Monteiro Cordeiro de Azeredo
- Nanotechnology National Laboratory for Agriculture (LNNA), Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil.
| | - Renata Valeriano Tonon
- Brazilian Agricultural Research Corporation, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil.
| | - Jeremiah Abiade
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Luiz Henrique Capparelli Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil.
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| |
Collapse
|
6
|
Jiang G, Yang Y, Sheng W, Yang L, Yang H, Tang T, Wang C, Tian Y. Preparation and characterization of κ-carrageenan/dextran films blended with nano-ZnO and anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 282:137203. [PMID: 39489236 DOI: 10.1016/j.ijbiomac.2024.137203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The κ-carrageenan/microbial-originated dextran-based multifunctional intelligent packaging films, integrated with natural anthocyanins as a colorant and ZnO as an antibacterial agent, were successfully developed using a casting method. Their applicability and functionality were systematically assessed through various analytical techniques. The addition of dextran, anthocyanins, and ZnO in the films resulted in an increased tensile strength (from 13.66 ± 0.53 to 29.70 ± 1.29 MPa) and elongation at break (from 16.69 ± 1.05 % to 39.49 ± 0.73 %), and decreased water solubility (from 64.94 ± 0.34 % to 32.84 ± 1.55 %) and water vapor barrier property (from 8.29 ± 0.12 × 10-10 g/m•s•Pa to 6.92 ± 0.1 × 10-10 g/m•s•Pa). Spectroscopic analysis revealed that the dextran, ZnO and anthocyanins were uniformly dispersed within the film-forming substrates, achieved through hydrogen bonds and electrostatic interactions. The addition of anthocyanins and ZnO not only enhanced the antibacterial and antioxidant properties of the film but also provided it with good pH sensitivity and color stability, making it highly promising for use in shrimp freshness monitoring. All the films were shown to be biodegradable, decomposing completely in soil within 30 days. Overall, these results suggest that the films could serve as a potential replacement for plastic food packaging and additionally monitor the freshness of food.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Yicheng Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - WenYang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Viscusi G, Gorrasi G. Blueberry extract loaded into rice milk/alginate-based hydrogels as pH-sensitive systems to monitor the freshness of minced chicken. Int J Biol Macromol 2024; 282:137210. [PMID: 39491702 DOI: 10.1016/j.ijbiomac.2024.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Hydrogel beads from rice milk and blueberry (BB) skins were fabricated as novel bio-based pH-sensitive devices. The encapsulation of BB into rice milk/alginate beads was achieved through a simple methodology. The colourimetric response of beads in different pH media was evaluated along with the proof of reusability, showing appropriate reversibility. The evaluation of the stability of BB-loaded beads in accelerated ageing conditions (4, 25 and 40 °C and under visible/UV light) showed high stability of beads (up to 28 days) even in the presence of harsh conditions. The half-time of cyanidin-3-glucoside decreases at high temperatures and under UV light exposure. The sensitivity to ammonia (NH3) and trimethylamine (TMA), as main spoilage volatiles of protein food products, was evaluated. The detection limits (LOD) for NH3 and TMA were 22.4 ppm and 72.1 ppm, respectively. Finally, the hydrogel beads were applied to monitor the spoilage of minced chicken breast. The colour of the beads, changing from dark reddish to green/yellowish and indicative of a high level of amine, could be detected by the naked eye after 3-5 days. This research proposes a sustainable, low-cost, and simple method to fabricate BB-loaded hydrogel beads as a promising tool for intelligent packaging applications.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
8
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
9
|
Das PP, Prathapan R, Ng KW. Advances in biomaterials based food packaging systems: Current status and the way forward. BIOMATERIALS ADVANCES 2024; 164:213988. [PMID: 39116599 DOI: 10.1016/j.bioadv.2024.213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.
Collapse
Affiliation(s)
- Partha Pratim Das
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ragesh Prathapan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
10
|
Oliveira Filho JGD, Silva CDO, do Canto RA, Egea MB, Tonon RV, Paschoalin RT, Azeredo HMCD, Mattoso LHC. Fast and sustainable production of smart nanofiber mats by solution blow spinning for food quality monitoring: Potential of polycaprolactone and agri-food residue-derived anthocyanins. Food Chem 2024; 457:140057. [PMID: 38908248 DOI: 10.1016/j.foodchem.2024.140057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
The shelf life of perishable foods is estimated through expensive and imprecise analyses that do not account for improper storage. Smart packaging, obtained by agile manufacturing of nanofibers functionalized with natural pigments from agri-food residues, presents promising potential for real-time food quality monitoring. This study employed the solution blow spinning (SBS) technique for the rapid production of smart nanofiber mats based on polycaprolactone (PCL), incorporating extracts of agricultural residues rich in anthocyanins from eggplant (EE) or purple cabbage (CE) for monitoring food quality. The addition of EE or CE to the PCL matrix increased the viscosity of the solution and the diameter of the nanofibers from 156 nm to 261-370 nm. The addition of extracts also improved the mechanical and water-related properties of the nanofibers, although it reduced the thermal stability. Attenuated total reflectance Fourier-transform infrared spectroscopy confirmed the incorporation of anthocyanins into PCL nanofibers. Nanofiber mats incorporated with EE or CE exhibited visible color changes (ΔE ≥ 3) in response to buffer solutions (pH between 3 and 10), and ammonia vapor. Smart nanofibers have demonstrated the ability to monitor fish fillet spoilage through visible color changes (ΔE ≥ 3) during storage. Consequently, smart nanofibers produced by the SBS technique, using PCL and anthocyanins from agro-industrial waste, reveal potential as smart packaging materials for food.
Collapse
Affiliation(s)
| | | | - Renan Assalim do Canto
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil.
| | | | - Renata Valeriano Tonon
- Brazilian Agricultural Research Corporation, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil.
| | - Rafaella Takehara Paschoalin
- Laboratory of Biopolymers and Biomaterials (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara, SP, Brazil.
| | | | | |
Collapse
|
11
|
Forghani S, Almasi H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem 2024; 457:140072. [PMID: 38905838 DOI: 10.1016/j.foodchem.2024.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The aim of research was to fabricate a novel indicator by using κ-carrageenan and quince seed mucilage (QSM) hydrogels and red cabbage anthocyanin. The porosity of the hydrogel was controlled using different ratios of κ-carrageenan(C):QSM(Q) (C90:Q10, C70:Q30, and C50:Q50). The hardness of hydrogels decreased from 28.6 ± 0.3 N for C90Q10 to 11.0 ± 1.0 N for C50Q50 sample. However, according to field emission scanning electron microscopy (FE-SEM) analysis, the C50R50 sample had the best morphology with smooth surface and uniform interconnected porous network. Hydrogen bonding interactions among anthocyanins, QSM, and κ-carrageenan were confirmed by Fourier transforms infrared (FT-IR) spectroscopy. The indicator showed a color variation from red to yellow over the pH range of 2-12. Also, the indicator exhibited high sensitivity to ammonia vapors (SRGB = 115%) and good color stability. The C50QRA indicator was used for monitoring rainbow trout fillet spoilage and revealed a visually-detectable color change from red to green upon detecting total volatile basic nitrogen (TVB-N) content produced throughout storage at 4 °C. Generally, the halochromic hydrogel developed in this research can be suggested as a more sensitive and accurate freshness indicator than conventional indicator solid supports.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
12
|
Xu J, Ning Y, Yun Y, Cheng X, Li J, Wang L. A Highly CO 2-Sensitive Wood-Based Smart Tag for Strawberry Freshness Monitoring. Polymers (Basel) 2024; 16:2900. [PMID: 39458728 PMCID: PMC11511562 DOI: 10.3390/polym16202900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Smart tags are used for monitoring the freshness of foods. However, they often lack significant color changes, and their accuracy needs to be improved. In this study, a poplar veneer with a natural pore structure was selected as a matrix to prepare a smart tag with high pH sensitivity for tracking the freshness of strawberries. The delignified veneer was modified using 2,3-epoxypropyltrimethylammonium chloride (EPTAC) to be given positive charges to adsorb bromothymol blue (BTB) through electrostatic interactions. The adsorption capacity of the veneer reached 7.0 mg/g at 50 °C for 4 h, and the veneer showed an obvious blue color. The smart tags exhibited distinct color changes at different pHs and showed quick color changes in response to acetic acid. As the freshness of strawberries decreased, the color of the smart tags changed from blue to yellow-green, which indicated that the accuracy was high. In this study, an effective method was fabricated to prepare a highly sensitive tag, promoting popular application to ensure food quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China; (J.X.); (Y.N.); (Y.Y.); (X.C.); (J.L.)
| |
Collapse
|
13
|
Ding C, Yi Y, Cheng K, Wang Y, Wang S, Zhang M. Full life cycle green preparation of collagen-based food packaging films using Halocynthia roretzi as raw material. Food Chem 2024; 455:139943. [PMID: 38850993 DOI: 10.1016/j.foodchem.2024.139943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The extraction of collagen for packaging films typically requires a time-consuming process and the use of substantial chemicals. Herein, we present a full life cycle green preparation method for rapidly producing collagen-based food packaging films using Halocynthia roretzi (HR), a collagen-rich marine organism, as raw material. We first prepared the micro/nano-sized collagen fibers from HR tissue by utilizing urea and sonication as effective hydrogen-bond breakers. Subsequently, the collagen fiber was rapidly fabricated into a film through vacuum filtration. The resulting collagen fiber film (CFF) exhibited a uniform and dense surface, along with good tensile properties, water resistance, and biodegradability. In addition, the deposition of chitosan (CS) on the surface of CFF resulted in a remarkable preservation effect for both strawberries and pork. This full life cycle preparation method for collagen-based films provides a promising and innovative approach to the sustainable preparation of food packaging films.
Collapse
Affiliation(s)
- Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China; Institute of Food and Marine Bioresources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Yifan Yi
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Kuan Cheng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Yue Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, PR China
| | - Shaoyun Wang
- Institute of Food and Marine Bioresources, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China.
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
14
|
Priyanka S, S Karthick Raja Namasivayam, John F Kennedy, Meivelu Moovendhan. Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles - Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. Int J Biol Macromol 2024; 277:134319. [PMID: 39097046 DOI: 10.1016/j.ijbiomac.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
In this research, a novel active food packaging material was developed by blending starch, chitosan, and plant-based mucilage with zinc oxide nanoparticles. The polymeric nanocomposite film, created by incorporating zinc oxide nanoparticles into the mixture using a straightforward approach, was analyzed for its structural and functional attributes using FTIR, XRD, SEM, and TGA/DSC. These analyses revealed a robust interaction between the polymers' functional groups and the nanoparticles, forming a stable film. The film's mechanical properties, including tensile strength and Young's modulus, were high. It also showed reduced wettability and water solubility, enhancing water resistance. The biodegradability rate was 100 %. Antibacterial tests against Bacillus sp. and Pseudomonas sp. showed significant inhibition zones of 26 mm and 30 mm, respectively, demonstrating strong antibacterial effectiveness. The film's non-target toxicity was assessed through phytotoxicity experiments on Vigna angularis and soil nutrient evaluations, with no negative impact on plant growth or soil health observed. These results indicate that this nanocomposite is a safe, biocompatible option for food packaging.
Collapse
Affiliation(s)
- S Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - John F Kennedy
- Chembiotech Ltd, Institute of Research and Development, Kyrewood House, Worcestershire WR15 8FF, UK
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
15
|
Zhang D, Shu Q, Liu Y. The Use of Novel Colorimetric Films to Monitor the Freshness of Pork, Utilizing Konjac Glucomannan With Curcumin/Alizarin. J Food Prot 2024; 87:100339. [PMID: 39127227 DOI: 10.1016/j.jfp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In this study, different proportions of curcumin (CUR) and alizarin (ALI) were added to konjac glucomannan (KG)/ polyvinyl alcohol (PVA) to prepare an active intelligent packaging film and evaluate its potential to indicate pork freshness. The mixed indicator had a richer color hierarchy in the buffer solution with pH = 2-12. The surface of the KG-2C2A and KG-1C3A films is smoother and has fewer cross-section faults. With the increase of CUR content in the film, the crystal structure becomes more prominent, leading to poor compatibility with KG. The WAC of KG-3C1A and KG-1C3A films was significantly higher than that of the other groups, and they had better hydrophobicity. With the increase of CUR content in the films, the thermal stability of the films was enhanced, and the KG-C films showed the highest thermal stability. Among them, the KG-2A2C and KG-1C3A films showed the most significant color change during pork spoiling and could be used to monitor the freshness of pork. As a pH colorimetric indicator, CUR and ALI-coated KG films might be of great potential in fresh meat monitoring.
Collapse
Affiliation(s)
- Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
16
|
Zhu Y, Gao X, Gao X, Jiang Z, Alhomrani M, Alamri AS, Alsanie WF, Cui H. Development of polysaccharide based intelligent packaging system for visually monitoring of food freshness. Int J Biol Macromol 2024; 277:134588. [PMID: 39122071 DOI: 10.1016/j.ijbiomac.2024.134588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
With the increased awareness on food freshness and food quality among consumers, the intelligent packaging films that can visually monitor the freshness of packaged foods by observing the color changes of packaging materials are gradually drawing more and more attentions. In this paper, various colorimetric indicators, types of polysaccharides as film-forming materials, production methods, freshness monitoring application, along with the future development of different intelligent packaging films are illustrated detailedly and deeply. Natural pH sensitive indicators such as anthocyanin, alizarin, curcumin, betaines and chlorophylls, as well as the gases sensitive indicators (hydrogen sulfide sensitive indicators and ethylene sensitive indicators) are the most widely used indicators for monitoring of food freshness. By incorporating different colorimetric indicators into polysaccharides (starch, chitosan, gum and cellulose derivatives) based substrates, the intelligent packaging films can be fabricated by solvent casting method, extrusion-blow molding method and electrospinning technique for monitoring of meat products, fruits, vegetables, milk products and other food products. In conclusion, intelligent packaging films with colorimetric functions are promising and feasible methods for real-time monitoring of food freshness, while stable colorimetric indicators, new film-forming methods and cheaper polysaccharide materials are still needed to develop for further commercialization.
Collapse
Affiliation(s)
- Yulin Zhu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China.
| | - Xinke Gao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaona Gao
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China
| | - Zhumao Jiang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Science, Yantai University, Yantai 264005, China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Walaa F Alsanie
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Cao S, Liu H, Qin M, Xu N, Liu F, Liu Y, Gao C. Development and characterization of polyvinyl alcohol/chitosan crosslinked malic acid composite films with curcumin encapsulated in β-cyclodextrin for food packaging application. Int J Biol Macromol 2024; 278:134749. [PMID: 39214835 DOI: 10.1016/j.ijbiomac.2024.134749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Considering that fruits are vulnerable to damage and waste during stockpiling, transport and marketing. Given this, an innovative curcumin inclusion compound (Cur@β-CD) was devised in this study to introduce oil-soluble curcumin (Cur) into water-soluble polyvinyl alcohol (PVA) materials, thereby fabricating food packaging films endowed with excellent properties. DPPH test manifested that the oxidation resistance for PCOMC-Cur@β-CD film was 95 % above PVA material. It was ascribed to the fact that the Cur@β-CD elevated the water solubility of Cur while the increase of water solubility heightened the antioxidant effect for Cur in the film. Additionally, the chitosan (CS) was crosslinked with malic acid (MA), which elevated the barrier property of the film, reduced the amount of oxygen transmission and further retarded the oxidation reaction of the fruits for packaging. The antibacterial test demonstrated that the antibacterial rates of PCOMC-Cur@β-CD film against E. coli and S. aureus reached 92 % and 95 %, respectively, which was attributed to the slow release of Cur when Cur@β-CD was dissolved in PVA material and the Schiff base reaction between Cur and amino groups on CS. These findings indicate that the PCOMC-Cur@β-CD film developed in this work can provide certain insights into the field of food packaging.
Collapse
Affiliation(s)
- Shuting Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongzhen Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ming Qin
- Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Nannan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fuhao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Xiaowei H, Wanying Z, Zhihua L, Junjun Z, Ning Z, Jiyong S, Xiaodong Z, Tingting S, Xiaobo Z. pH-triggered bilayer film based on carboxymethyl cellulose/zein/Eudragit L100 with purple cabbage anthocyanin for monitoring pork freshness. Int J Biol Macromol 2024; 278:134358. [PMID: 39089560 DOI: 10.1016/j.ijbiomac.2024.134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A novel pH-triggered bilayer film was composed of zein (Z), carboxymethylcellulose (CMC), Eudragit L100 (L100), and purple cabbage anthocyanin (PCA), followed by casting for monitoring pork freshness during storage at 4 °C and 25 °C. This bilayer film was employed to encapsulate anthocyanins, preventing anthocyanins oxidation and photodegradation. Additionally, under pH 6, this film ruptures and releases anthocyanins, inducing a sudden color change in the indicator film, significantly reducing errors in freshness indications. Notably, the ZCLP8% film had excellent stability and pH response properties. The performance of the ZCLP8% film in monitoring pork freshness was evaluated. When the concentration of pork TVB-N reached 15.59 mg/100 g (pH = 6.35), the bilayer film was ruptured, and the release rate of PCA was 85.52 %, which was a significant change in the color of the bilayer film compared with that at pH = 5. Therefore, this work addresses the limitation that anthocyanin-based intelligent films are subject to judgment errors when applied, opening new possibilities for food freshness differentiation monitoring.
Collapse
Affiliation(s)
- Huang Xiaowei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhao Wanying
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Zhang Junjun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhang Ning
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhai Xiaodong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Shen Tingting
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
19
|
Du XX, Ge ZT, Hao HS, Bi JR, Hou HM, Zhang GL. An antibacterial film using κ-carrageenan loaded with benzyl isothiocyanate nanoemulsion: Characterization and application in beef preservation. Int J Biol Macromol 2024; 276:133689. [PMID: 38971272 DOI: 10.1016/j.ijbiomac.2024.133689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Benzyl isothiocyanate (BITC) is a naturally active bacteriostatic substance and κ-carrageenan (KC) is a good film-forming substrate. In the present study, a nanoemulsion incorporating BITC was fabricated with a particle size of 224.1 nm and an encapsulation efficiency of 69.2 %. Subsequently, the acquired BITC nanoemulsion (BITC-NE) was incorporated into the KC-based film, and the light transmittance of the prepared composite films was lower than that of the pure KC film. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that BITC-NE was compatible with the KC matrix. BITC-NE incorporation enhanced the tensile strength of the KC-based films by 33.7 %, decreased the elongation at break by 33.8 %, decreased the water vapor permeability by 60.1 %, increased the maximum thermal degradation temperature by 48.8 %, and decreased the oxygen permeability by 42 % (p < 0.05). Furthermore, the composite films showed enhanced antimicrobial activity against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas fluorescens. The developed KC-based composite films were applied to wrap raw beef, which significantly delayed the increase in total viable count, total volatile base nitrogen content, and thiobarbituric acid reactive substances, and prolonged the shelf-life of the raw beef by up to 10 days. These results indicated that the composite films prepared by incorporating BITC nanoemulsions into KC matrices have great antimicrobial application potential.
Collapse
Affiliation(s)
- Xia-Xin Du
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Zi-Tong Ge
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Hong-Shun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Jing-Ran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Hong-Man Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Gong-Liang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
20
|
Wang R, Cao L, Wang W, Mao Z, Han D, Pei Y, Chen Y, Fan W, Li W, Chen S. Construction of Smart Coatings Containing Core-Shell Nanofibers with Self-Healing and Active Corrosion Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42748-42761. [PMID: 39082737 DOI: 10.1021/acsami.4c09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
With increasingly severe metal corrosion, coating preparation with high-performance corrosion protection has attracted more attention. Herein, the encapsulation of the corrosion inhibitor 8-hydroxyquinoline (8-HQ) as well as the self-healing agent linseed oil (LO) in polyvinyl alcohol (PVA) and chitosan (CS) shells were realized by coaxial electrospinning, which was recorded as PVA/CS@LO/8-HQ core-shell nanofibers. PVA/CS@LO/8-HQ nanofibers were employed to promote the high-performance corrosion protection of the epoxy coating. The anticorrosion mechanism was that the change of the local pH on the metal surface stimulated the release of 8-HQ from the nanofibers, which were then chelated with iron ions to form a complex. When cracks occurred and caused rupture of the nanofibers, LO was released and reacted with oxygen to cure them so that the cracks could be healed autonomously. The dynamic potential polarization curves showed that the corrosion inhibition efficiency of the compound inhibitor LO + 8-HQ reached 87.54%, 90.31%, and 85.57% at pH = 3, 7, and 11, respectively, higher than that of the single corrosion inhibitor. Density functional theory calculations revealed that the LO and 8-HQ combination, forming a hydrogen bond interaction, promoted the adsorption of inhibitors on the steel surface. Scanning Kelvin probe and electrochemical impedance spectroscopy proved the self-healing corrosion protection properties of the epoxy coating. These results demonstrated that embedding PVA/CS@LO/8-HQ nanofibers in the coating could obtain self-healing properties, and promote the mechanical and corrosion protection of epoxy coating.
Collapse
Affiliation(s)
- Ruzheng Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhipeng Mao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongxiao Han
- Beijing Shiny Tech. Co. Ltd, No.50 Yongding Road, Beijing, 100039, China
| | - Yantong Pei
- Beijing Shiny Tech. Co. Ltd, No.50 Yongding Road, Beijing, 100039, China
| | - Ye Chen
- Beijing Shiny Tech. Co. Ltd, No.50 Yongding Road, Beijing, 100039, China
| | - Weijie Fan
- Qingdao Branch of Naval Aeronautical University, Qingdao, 266041, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
21
|
Bansal H, Singh HP, Singh S, Sharma A, Singh J, Kaur K, Mehta SK. Preserving plum perfection: Buckwheat starch edible coating with xanthan gum and lemongrass essential oil. Int J Biol Macromol 2024; 274:133239. [PMID: 38897516 DOI: 10.1016/j.ijbiomac.2024.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The research focused on the fabrication of composite coatings using buckwheat starch (BS) and xanthan gum (XG) with incorporation of lemongrass (Cymbopogon citratus) essential oil (LEO) with varying concentration (0.75 %, 1.0 % and 1.25 % (w/v). BS was extracted from buckwheat groats (Fagopyrum esculentum) and its physico-chemical characteristics were determined. BS showed spherical and polygonal morphology and its XRD pattern was similar to starch extracted from other cereal sources. The amount of reducing sugar, starch and amylose content in extracted BS were 0.99 ± 0.33 %, 86.32 ± 0.22 % and 21.02 ± 1.89 % respectively, which indicates that BS is a suitable base material for the formation of edible coatings. XG was mixed with BS in different ratios (1:1, 2:1, 3:1 and 4:1) to optimize the best ratio of combination for composite coatings. The coating with a ratio of 2:1 was very smooth and was chosen for incorporation of LEO and the coatings physical, functional, mechanical, thermal and micro-structural characteristics were examined. The coating S5 with 1.25 % (w/v) concentration of LEO showed the best results with least moisture content (MC), minimum water vapor permeability (WVP) and maximum contact angle value. Moreover, the S5 formulation had the highest antioxidant (73.3 %) ability and maximum antimicrobial efficiency with inhibition zones of 22.09 ± 0.06 mm and 28.65 ± 0.14 mm against S. aureus and E. coli respectively. The coatings were then coated on plum fruit, and various parameters like weight loss, pH, shrinkage and TSS were calculated every 4th day during the 20 days of refrigeration period. The coated plums' ripening pace was delayed by the S5 formulation which improved moisture retention, maintained the plums' TSS value and overall pH. Therefore, composite coatings made up of BS, XG and 1.25 % (w/v) can be used as a cost-effective bio-active coating material for plum preservation under refrigeration conditions.
Collapse
Affiliation(s)
- Himanshi Bansal
- Energy Research Center, Panjab University, Chandigarh 160014, India
| | - Hemant Pratap Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India.
| | - Aashima Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Jatinder Singh
- Department of Chemistry, Guru Nank College, Budhlada, Mansa, India
| | - Kuljinder Kaur
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; University of Ladakh, Leh, UT-Ladakh 194101, India
| |
Collapse
|
22
|
Liu T, Zheng N, Ma Y, Zhang Y, Lei H, Zhen X, Wang Y, Gou D, Zhao J. Recent advancements in chitosan-based intelligent food freshness indicators: Categorization, advantages, and applications. Int J Biol Macromol 2024; 275:133554. [PMID: 38950804 DOI: 10.1016/j.ijbiomac.2024.133554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
With an increasing emphasis on food safety and public health, there is an ongoing effort to develop reliable, non-invasive methods to assess the freshness of diverse food products. Chitosan-based food freshness indicators, leveraging properties such as biocompatibility, biodegradability, non-toxicity, and high stability, offer an innovative approach for real-time monitoring of food quality during storage and transportation. This review introduces intelligent food freshness indicators, specifically those utilizing pH-sensitive dyes like anthocyanins, curcumin, alizarin, shikonin, and betacyanin. It highlights the benefits of chitosan-based intelligent food freshness indicators, emphasizing improvements in barrier and mechanical properties, antibacterial activity, and composite film solubility. The application of these indicators in the food industry is then explored, alongside a concise overview of chitosan's limitations. The paper concludes by discussing the challenges and potential areas for future research in the development of intelligent food freshness indicators using chitosan. Thus, chitosan-based smart food preservation indicators represent an innovative approach to providing real-time data for monitoring food quality, offering valuable insights to both customers and retailers, and playing a pivotal role in advancing the food industry.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Nan Zheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yaomei Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China.
| |
Collapse
|
23
|
Li C, Song A, Wu Y, Gao Y, Li C. Intelligent double-layer film based on gellan gum/modified anthocyanin/curcumin/sodium alginate/zinc oxide for monitoring shrimp freshness. Int J Biol Macromol 2024; 274:132724. [PMID: 38815946 DOI: 10.1016/j.ijbiomac.2024.132724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this study, intelligent double-layer films were prepared using modified black rice anthocyanin (MBRA)-curcumin (CUR)-gellan gum (GG) as the inner indicator layer and sodium alginate (ALG)‑zinc oxide (ZnO) as the outer antimicrobial layer. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements. The mechanical characteristics, moisture content, and water vapor resistance of GG-MBRA/CUR1@ALG-ZnO, GG-MBRA/CUR2@ALG-ZnO, and GG-MBRA/CUR3@ALG-ZnO films showed significant enhancement compared to GG-MBRA/CUR3 and ALG-ZnO films. The bilayer films exhibited excellent pH responsiveness and reacted effectively to ammonia. The outer layer significantly improved the antioxidant and antibacterial properties of the inner layer. When the films were applied to shrimp, it was found that the double-layer films not only monitored the freshness of the shrimp in real-time but also were influential in extending the shelf life of the shrimp by about 1 d. Therefore, the double-layer film demonstrated potential as a smart packaging material for real-time monitoring of meat product freshness.
Collapse
Affiliation(s)
- Chenyu Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Gao
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
24
|
Chen D, Lv J, Wang A, Yong H, Liu J. Intelligent Food Packaging: Quaternary Ammonium Chitosan/Gelatin Blended Films Enriched with Blueberry Anthocyanin-Derived Cyanidin for Shrimp and Milk Freshness Monitoring. Foods 2024; 13:2237. [PMID: 39063321 PMCID: PMC11275320 DOI: 10.3390/foods13142237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Blueberry anthocyanin-derived cyanidin (BAC) was used to prepare a series of responsive food freshness packaging films by compounding it with quaternary chitosan (QC) and gelatin (G). The fundamental properties, pH sensitivity, and functional attributes of the films were examined. The BAC solutions exhibited notable variations in color (from red to pink to violet) under different pH conditions. The incorporation of BAC resulted in improved UV-vis shielding capabilities but compromised the mechanical strength of the films (with tensile strength values from 85.02 to 44.89 MPa, elongation at break from 13.08% to 3.6%, and water vapor transmission rates from 5.24 × 10-9 to 7.80 × 10-9 g m-1 s-1 Pa-1). The QC-G-BAC films, containing 5-15 wt% BAC, exhibited noticeable color changes in acidic/ammonia environments within a short timeframe, easily discernible to the naked eye. Furthermore, the inclusion of BAC significantly enhanced the antioxidant and antimicrobial properties of the films. The addition of 5-15 wt% BAC to QC-G-BAC films could be employed for assessing the freshness of fresh shrimp (from red to dark red) and pasteurized milk (from red to dark earthy yellow). Among them, the total color difference (ΔE) of QC-G-BAC5 film was significantly correlated with the pH, acidity, and total colony count of pasteurized milk (R = 0.846, -0.930, -0.908, respectively). This new concept in smart packaging offers a straightforward and user-friendly freshness indicator.
Collapse
Affiliation(s)
| | | | | | | | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.C.); (J.L.); (A.W.); (H.Y.)
| |
Collapse
|
25
|
Du X, Wu G, Dou X, Ding Z, Xie J. Alizarin complexone modified UiO-66-NH 2 as dual-mode colorimetric and fluorescence pH sensor for monitoring perishable food freshness. Food Chem 2024; 445:138700. [PMID: 38359567 DOI: 10.1016/j.foodchem.2024.138700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Food prone to spoilage has a huge food safety hazard, threatening people's health, so early detection of food spoilage is a continuous and urgent need. Herein, we developed a dual-mode response sensor, alizarin complexone@UiO-66-NH2, which can accurately detect pH. The sensor demonstrated significant changes in color from pale yellow to deep pink, while the fluorescence shifted from light blue to blue violet. Moreover, both UV absorption and fluorescence intensity showed a linear correlation with pH raging from 4.5 to 7.5. These results indicate that the sensor effectively responds to pH, making it suitable for detecting the freshness of perishable food. To put this into practice, we integrated the sensor with cellulose-based filter paper to determine the freshness of shrimp and beef, which was proved to be effective in assessing freshness. In the future, it can be combined with intelligent colorimetric and fluorescence instruments to achieve visual detection.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
26
|
Guo C, Li Y, Zhang H, Zhang Q, Wu X, Wang Y, Sun F, Shi S, Xia X. A review on improving the sensitivity and color stability of naturally sourced pH-sensitive indicator films. Compr Rev Food Sci Food Saf 2024; 23:e13390. [PMID: 39031881 DOI: 10.1111/1541-4337.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.
Collapse
Affiliation(s)
- Chang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., Ltd, Daqing, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Chiu I, Yang T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2300065. [PMID: 38948319 PMCID: PMC11210745 DOI: 10.1002/ansa.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024]
Abstract
Increasing concerns about global food safety and security demands innovative solutions, particularly in food packaging technologies. This review paper investigates the advanced integration of natural colourimetric sensors with biopolymer-based packaging materials, with a focus on developments over the past 5 years. These sensors change colour in response to environmental stimuli such as oxygen, temperature, pH and relative humidity, intuitively indicating food freshness and safety. The paper emphasizes the recent advancements in using natural colourants, such as alizarin, anthocyanins, betacyanins, chlorophyll, curcumin and shikonin. When combined with either natural or synthetic biopolymers, these colourants contribute to a sustainable and eco-friendly approach to food packaging. Such technological advances could notably decrease the incidence of foodborne illnesses by signaling potential spoilage or contamination, while also addressing food wastage by providing clear indications of edibility. Although challenges remain in sensor longevity and widespread adoption, the prospects for biopolymer-based food packaging with embedded natural colourimetric sensors are promising.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| |
Collapse
|
28
|
He Y, Yuan Y, Gao Y, Chen M, Li Y, Zou Y, Liao L, Li X, Wang Z, Li J, Zhou W. Enhancement of Colorimetric pH-Sensitive Film Incorporating Amomum tsao-ko Essential Oil as Antibacterial for Mantis Shrimp Spoilage Tracking and Fresh-Keeping. Foods 2024; 13:1638. [PMID: 38890874 PMCID: PMC11171633 DOI: 10.3390/foods13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Anthocyanin-based smart packaging has been widely used for food freshness monitoring, but it cannot meet the requirements of smart films with antibacterial properties. This study aimed to enhance the antibacterial properties of intelligent films by incorporating Amomum tsao-ko essential oil (AEO) for mantis shrimp spoilage tracking and keeping the product fresh. A smart film was designed by introducing AEO and purple potato anthocyanin (PPA) to a polyvinyl alcohol/cellulose nanocrystal (PVA/CNC) polymer matrix. Our findings revealed that APP and AEO imparted the smart film with a favorable oxygen barrier, UV protection, mechanical properties, and antioxidant and pH/NH3-sensitive functions. Interestingly, the PVA/CNC-AEO-PPA film achieved 45.41% and 48.25% bactericidal efficacy against S. putrefaciens and V. parahaemolyticus, respectively. Furthermore, a visual observation confirmed that the target film (PVA/CNC-AEO-PPA) changed color significantly during mantis shrimp spoilage: rose red-light red-pink-light gray-dark gray. Meanwhile, the PVA/CNC-AEO-PPA film retarded the quality deterioration of the mantis shrimp effectively. The PVA/CNC-AEO-PPA film shows great application potential in mantis shrimp preservation and freshness monitoring; it is expected to become a rapid sensor for detecting seafood quality non-destructively and a multifunctional film for better preservation of product quality.
Collapse
Affiliation(s)
- Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuanyuan Gao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yingying Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Xiaotong Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| |
Collapse
|
29
|
Zhang J, Zhang J, Zhang X, Huang X, Shi J, Sobhy R, Khalifa I, Zou X. Ammonia-Responsive Colorimetric Film of Phytochemical Formulation (Alizarin) Grafted onto ZIF-8 Carrier with Poly(vinyl alcohol) and Sodium Alginate for Beef Freshness Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11706-11715. [PMID: 38728528 DOI: 10.1021/acs.jafc.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.
Collapse
Affiliation(s)
- Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| | - Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Food Technology Department, Faculty of Agriculture, Benha University, Toukh13736, Egypt
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
30
|
Shavisi N. Electrospun fiber mats based on chitosan-carrageenan containing Malva sylvestris anthocyanins: Physic-mechanical, thermal, and barrier properties along with application as intelligent food packaging materials. Int J Biol Macromol 2024; 266:131077. [PMID: 38531525 DOI: 10.1016/j.ijbiomac.2024.131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to encapsulate Malva sylvestris extract (MSE) into chitosan-carrageenan (CH-KC) fibers using the electrospinning technique and monitor the freshness of silver carp fillets during the refrigerated storage conditions for 8 days. The CH-KC + MSE 4 % fiber mats were red at pH values lower than 3, purple at pH 4-6, dark blue at pH 7, green at pH 8-10, and brown at pH 11-12. The tensile strength, elongation at break, water vapor permeability, oxygen transmission rate, moisture content, and water solubility of fabricated fiber mats were 7.71-11.02 MPa, 13.12 %-30.00 %, 7.35-20.01 × 10-4 g mm/m2 h Pa, 3.81-8.23 cm3/m2 h, 15.74 %-27.34 %, and 3.90 %-7.56 %, respectively. Regarding the potential application of a fabricated indicator for freshness monitoring of silver carp fillets, total viable count, psychrotrophic bacterial count, pH, and total volatile basic nitrogen reached 8.91 log CFU/g, 8.03 log CFU/g, 8.10, and 40.18 mg N/100 g at the end of the study, respectively. Meanwhile, the CH-KC + MSE 4 % fiber mat color changed from white to green. These findings suggest that CH-KC + MSE 4 % fiber mats can be further utilized in the food industry to control the freshness of refrigerated silver carp fillets.
Collapse
Affiliation(s)
- Nassim Shavisi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
31
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
32
|
Guo Y, Gong Y, Lin A, Chen Q, Chen X. Alizarin-embedded γ-cyclodextrin-based metal-organic framework in a methylcellulose/polyvinyl alcohol film for maintaining and monitoring grass carp freshness. Int J Biol Macromol 2024; 264:130628. [PMID: 38453111 DOI: 10.1016/j.ijbiomac.2024.130628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Multifunctional packaging films that monitor and maintain fish freshness hold significant potential for use in the food industry. This study introduces a multifunctional intelligent packaging film comprising alizarin (ALI)-embedded cubic γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) (denoted as γ-CD-MOFs@ALI) in a methylcellulose/polyvinyl alcohol (MP)-based matrix to achieve colorimetric monitoring and enhanced preservation of fish freshness. The MP/γ-CD-MOFs@ALI reveals a rapid color transition in 3 min from yellow color progressively darkens to purple as the pH increases from 2.0 to 10.0. And it is proved that the as-prepared film owns high antibacterial activity against Gram-positive bacteria (S. aureus), impressive ABTS+ radical scavenging rates of 85.54 ± 1.25 %, and effective ALI sustained-release properties. The intelligent packaging film exhibits an excellent colorimetric response to total volatile basic nitrogen and provides exceptional freshness preservation performance, effectively prolonging the shelf life of Ctenopharyngodon idella (grass carp) under 25 °C to 42 h.
Collapse
Affiliation(s)
- Yaping Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yuting Gong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Anhui Lin
- School of Marine Engineering, Jimei University, Xiamen, 361021, China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
33
|
Zhan S, Yi F, Hou F, Song L, Chen X, Jiang H, Han X, Sun X, Liu Z. Development of pH-freshness smart label based on gellan gum film incorporated with red cabbage anthocyanins extract and its application in postharvest mushroom. Colloids Surf B Biointerfaces 2024; 236:113830. [PMID: 38422667 DOI: 10.1016/j.colsurfb.2024.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Novel colorimetric films based on gellan gum (GG) containing red cabbage anthocyanins extract (RCAE) were prepared as pH-freshness smart labels for real-time visual detection of mushroom freshness. The GG/RCAE films had excellent pH and ammonia sensitivity. The GG/RCAE-0.2-0.3 films had the highest sensitivity to acetic acid. The SEM micrographs, AFM images, FT-IR and XRD spectra demonstrated that RCAE were successfully combined into the film-forming substrate. The incorporation of RCAE resulted in the increase of thermal stability, opacity and surface hydrophobicity of films. Meanwhile, the GG/RCAE-0.2 film exhibited stronger tensile strength and excellent color stability at 4℃. The color changes of GG/RCAE-0.2 film were visually easier to distinguish during the storage of mushroom. The results showed the GG/RCAE films could be used as pH-freshness smart labels to detect the freshness of fruits and vegetables.
Collapse
Affiliation(s)
- Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xiuxiu Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Hai Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China.
| |
Collapse
|
34
|
Nogueira GF, Meneghetti BB, Soares IHBT, Soares CT, Bevilaqua G, Fakhouri FM, de Oliveira RA. Multipurpose arrowroot starch films with anthocyanin-rich grape pomace extract: Color migration for food simulants and monitoring the freshness of fish meat. Int J Biol Macromol 2024; 265:130934. [PMID: 38493824 DOI: 10.1016/j.ijbiomac.2024.130934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Extraction of anthocyanins from grape pomace, is a way of valuing these abundant by-products with low added value. Its integration into films may allow it to be used in bioactive packaging, which creates new color and solubility properties for food and smart food packaging which tracks the freshness of fish. Films of arrowroot starch added with different concentrations of grape pomace extract (GPE) were flexible to handle, reddish and presented a high content of anthocyanins. The water vapor permeability increased by 17 %, while the tensile strength of arrowroot starch film decreased by 79 % with the addition of 40 % GPE. The addition of GPE increased the solubility of the starch film in aqueous and lipid food simulants by 121 and 119 %. The GPE pigment preferentially migrated to the aqueous simulant due to the hydrophilic nature of anthocyanins and starch. The GPE film showed distinguishable color changes in different pH buffer solutions from pink at pH 2 to light blue at pH 7 and slightly yellowish green at pH 10. When the composite films were monitored for fish meat freshness, the change in color of the film from reddish pink to slightly green after 96 h of storage at 25 °C was evident.
Collapse
Affiliation(s)
- Gislaine Ferreira Nogueira
- Department of Biomedical and Health Sciences, Minas Gerais State University, Passos 37900-106, MG, Brazil.
| | | | | | - Cyntia Trevisan Soares
- School of Agricultural Engineering, University of Campinas, Campinas, SP 13083-875, Brazil
| | - Gabriela Bevilaqua
- Department of Physical-Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Farayde Matta Fakhouri
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Poly2 Group, Carrer Colom 11, E-08222 Terrassa, Spain.
| | | |
Collapse
|
35
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
36
|
Lau WN, Mohammadi Nafchi A, Zargar M, Rozalli NHM, Mat Easa A. Development and evaluation of Bauhinia Kockiana extract-incorporated sago starch intelligent film strips for real-time freshness monitoring of coconut milk. Int J Biol Macromol 2024; 260:129589. [PMID: 38296665 DOI: 10.1016/j.ijbiomac.2024.129589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The aim of this work was to fabricate an intelligent film using sago starch incorporated with the natural source of anthocyanins from the Bauhinia Kockiana flower and use it to monitor the freshness of coconut milk. The films were developed using the casting method that included the addition of the different concentrations (0, 5, 10, 15 mg) of Bauhinia Kockiana extract (BKE) obtained using a solvent. The anthocyanin content of Bauhinia Kockiana was 262.17 ± 9.28 mg/100 g of fresh flowers. The spectral characteristics of BKE solutions, cross-section morphology, physiochemical, barrier, and mechanical properties, and the colour variations of films in different pH buffers were investigated. Films having the highest BKE concentration demonstrated the roughest structure and highest thickness (0.16 mm), moisture content (9.72 %), swelling index (435.83 %), water solubility (31.20 %), and elongation at break (262.32 %) compared to the other films. While monitoring the freshness of coconut milk for 16 h, BKE15 showed remarkable visible colour changes (from beige to dark brown), and the pH of coconut milk dropped from 6.21 to 4.56. Therefore, sago starch film incorporated with BKE has excellent potential to act as an intelligent pH film in monitoring the freshness of coconut milk.
Collapse
Affiliation(s)
- Weng Nyan Lau
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia.
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Norazatul Hanim Mohd Rozalli
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
37
|
Liu W, Chen J, Ye H, Su C, Wu Z, Huang L, Zhou L, Wei X, Pang J, Wu S. Multifunctional Sensors Made with Conductive Microframework and Biomass Hydrogel for Detecting Packaging Pressure and Food Freshness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10785-10794. [PMID: 38357872 DOI: 10.1021/acsami.3c19392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Food packaging detection devices have attracted attention to optimize storage situations and reduce food spoilage. However, low-cost and highly sensitive multifunctional sensors for detecting both food freshness and packaging pressure are still lacking. In this study, a multifunctional sensor was developed consisting of a MXene coated alcohol-soluble polyurethane fiber network (MXene/APU) and composite biohydrogel films made of konjac glucomannan, chitosan, and blueberry anthocyanin (KCB). Based on the pressure sensitivity of MXene/APU and the color changes of KCB in response to pH values, the sensor can detect internal package bulging, external squeezing, and food deterioration. The pressure sensor shows a sensitivity of 1.16 kPa-1, a response time of 200 ms, a wide strain range of 1092%, and stability over multiple loops. The pressure sensor could detect human motion and identify surface morphologies. The excellent sensor performance was attributed to the porous structure and large specific surface area of microfiber networks, conductivity of MXene nanosheets, and protective effect of KCB films coated on the conductive membrane. Besides, the microfluidic blow-spinning method used to prepare microfiber networks showed the advantages of low energy consumption and high production efficiency. Based on the color changes of blueberry anthocyanin loaded in KCB films in response to pH, the sensor realized sensitive spoilage detection of food containing protein. This study provides a new multifunctional food packaging sensing device and a greater understanding of the optimization and application of related devices.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Ye
- Fuzhou International Travel Healthcare Center, Fuzhou Customs, Fuzhou 350001, China
| | - Che Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Huang
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Wei
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| |
Collapse
|
38
|
Wen P, Wu J, Wu J, Wang H, Wu H. A Colorimetric Nanofiber Film Based on Ethyl Cellulose/Gelatin/Purple Sweet Potato Anthocyanins for Monitoring Pork Freshness. Foods 2024; 13:717. [PMID: 38472830 DOI: 10.3390/foods13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, colorimetric indicator nanofiber films based on ethyl cellulose (EC)/gelatin (G) incorporating purple sweet potato anthocyanins (PSPAs) were designed via electrospinning technology for monitoring and maintaining the freshness of pork. The film presented good structural integrity and stability in a humid environment with water vapor permeability (WVP) of 6.07 ± 0.14 × 10-11 g·m-1s-1Pa-1 and water contact angle (WCA) of 81.62 ± 1.43°. When PSPAs were added into the nanofiber films, the antioxidant capacity was significantly improved (p < 0.05) with a DPPH radical scavenging rate of 68.61 ± 1.80%. The nanofiber films showed distinguishable color changes as pH changes and was highly sensitive to volatile ammonia than that of casting films. In the application test, the film color changed from light pink (fresh stage) to light brown (secondary freshness stage) and then to brownish green (spoilage stage), indicating that the nanofiber films can be used to detect the real-time freshness of pork during storage. Meanwhile, it could prolong the shelf life of pork by inhibiting the oxidation degree. Hence, these results suggested that the EC/G/PSPA film has promising future for monitoring freshness and extending shelf life of pork.
Collapse
Affiliation(s)
- Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| |
Collapse
|
39
|
Khaledian Y, Moshtaghi H, Shahbazi Y. Development and characterization of smart double-layer nanofiber mats based on potato starch-turnip peel anthocyanins and guar gum-cinnamaldehyde. Food Chem 2024; 434:137462. [PMID: 37734152 DOI: 10.1016/j.foodchem.2023.137462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
This experiment was conducted with the objectives of developing bilayer nanofiber mats based on potato starch-turnip peel extract (PS-TPE) and guar gum-cinnamaldehyde (GG-CA) for freshness monitoring and enhancing the quality of lamb meat during cooled storage conditions. Encapsulating CA/TPE into the nanofibers resulted in reduced tensile strength, water vapor permeability, moisture content, and water solubility. Colorimetric nanofibers, including PS-GG-TPE 6%, PS-GG-TPE 6%-CA 0.5%, and PS-GG-TPE 6%-CA 1%, presented red color at pH 1-4, purplish red at pH 5-7, green at pH 8-10, and brown at pH 11-12. The color of PS-GG-TPE 6% nanofiber mats changed from white to purplish red, signaling that the lamb meats had turned from fresh to spoiled. PS-GG-CA 1%, PS-GG-TPE 6%-CA 0.5%, and PS-GG-TPE 6%-CA 1% nanofibers have the potential to be utilized to control the growth of spoilage-related microorganisms for extending the shelf-life of fresh lamb meat under cooled storage conditions up to 13 days.
Collapse
Affiliation(s)
- Yousef Khaledian
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Shahrekord, Chaharmahal and Bakhtiari, Iran
| | - Hamdollah Moshtaghi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Shahrekord, Chaharmahal and Bakhtiari, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
40
|
Szadkowski B, Marzec A, Kuśmierek M, Piotrowska M, Moszyński D. Functionalization of bamboo fibers with lawsone dye (Lawsonia inermis) to produce bioinspired hybrid color composite with antibacterial activity. Int J Biol Macromol 2024; 259:129178. [PMID: 38184044 DOI: 10.1016/j.ijbiomac.2023.129178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
There is great interest in using eco-friendly functional colorants with antibacterial activity to produce colorful textile and plastic products. In this study, we designed, produced, and analyzed a novel multifunctional hybrid color composite colorant with antimicrobial properties, prepared from plant-based products. The new functional color composite was prepared by stabilizing lawsone dye onto amino-silanized cellulose from bamboo fibers. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were performed to examine the possible interactions between the lawsone dye and silanized bamboo fibers. The color performance, morphology, chemical stability, and thermal stability of the prepared color composite were evaluated using scanning electron microscopy (SEM), UV-Vis spectrophotometry, and thermogravimetric analysis (TGA). The results were compared to those for pure lawsone dye. Modification of amino-silanized bamboo fibers with lawsone dye led to the formation of a light brown colorant that is more resistant to organic solvents (e.g. acetone, ethanol) and elevated temperatures than raw natural dye. Importantly, the designed bamboo fiber/lawsone system (BF-APTES-L) benefits from the synergistic combination of lawsone and bamboo fibers, showing strong antibacterial activity compared to the control sample of bamboo-as evidenced by noticeably inhibited growth of E. coli, S. aureus, and B. subtilis.
Collapse
Affiliation(s)
- Bolesław Szadkowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Małgorzata Kuśmierek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 71/173, 90-924 Lodz, Poland
| | - Dariusz Moszyński
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland
| |
Collapse
|
41
|
Cui F, Zheng S, Wang D, Ren L, Wang T, Meng Y, Ma R, Wang S, Li X, Li T, Li J. Preparation of multifunctional hydrogels based on co-pigment-polysaccharide complexes and establishment of a machine learning monitoring platform. Int J Biol Macromol 2024; 259:129258. [PMID: 38218291 DOI: 10.1016/j.ijbiomac.2024.129258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Economic loss due to fish spoilage exceeds 25 billion euros every year. Accurate and real-time monitoring of the freshness of fish can effectively cut down economic loss and food wastage. In this study, a dual-functional hydrogel based on sodium alginate-co-pigment complex with volatile antibacterial and intelligent indication was prepared and characterized. The characterization results indicated that the sodium alginate-co-pigment complex successfully improved the stability and color development ability of blueberry anthocyanins and bilberry anthocyanins at different temperatures and pH. The double cross-linking network inside the hydrogel conferred it with excellent mechanical properties. During rainbow trout storage, the hydrogel indicated a color difference of 73.55 on the last day and successfully extended the shelf-life of rainbow trout by 2 days (4 °C). Additionally, four dual-channel monitoring models were constructed using machine learning. The validation error of the genetic algorithm back propagation model (GA-BP) was only 5.6e-3, indicating that GA-BP can accurately monitor the freshness of rainbow trout. The rainbow trout real-time monitoring platform built based on GA-BP model can monitor the freshness of rainbow trout in real time through the images uploaded by users. The results of this study have broad applicability in the food industry, environmental conservation, and economic sustainability.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Shiwei Zheng
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Tian Wang
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shulin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
42
|
Sharaby MR, Soliman EA, Khalil R. Halochromic smart packaging film based on montmorillonite/polyvinyl alcohol-high amylose starch nanocomposite for monitoring chicken meat freshness. Int J Biol Macromol 2024; 258:128910. [PMID: 38141710 DOI: 10.1016/j.ijbiomac.2023.128910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Polyvinyl alcohol (PVA) was blended with high amylose starch (HAS) at a ratio of 3:1, and reinforced with montmorillonite (MMT K10) at different concentrations (1, 2, 5, and 7 % w/w of polymers) and anthocyanins (ANT) to develop an active and smart packaging film. MMT addition enhanced the film's mechanical, barrier, thermal, and water resistance properties. Incorporating ANT extracted from roselle calyx into the optimal nanocomposite film (MMT/PVA-HAS II) increased the films' antioxidant, pH-response, and antibacterial properties. FTIR, XRD, and SEM confirmed the intermolecular interactions and even distribution of ANT and MMT in the film matrix. Release rate of ANT was dependent on type of simulant, with higher rate in aqueous solutions compared to alcoholic/fatty food simulants, and cytotoxicity evaluation proved safety of films for food packaging applications. Storage experiments confirmed the potential applicability of the novel halochromic smart film as a promising candidate for monitoring chicken spoilage under abusive storage conditions.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab city, Alexandria 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
43
|
Khan A, Riahi Z, Tae Kim J, Rhim JW. Carrageenan-based multifunctional packaging films containing Zn-carbon dots/anthocyanin derived from Kohlrabi peel for monitoring quality and extending the shelf life of shrimps. Food Chem 2024; 432:137215. [PMID: 37633134 DOI: 10.1016/j.foodchem.2023.137215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Carrageenan-based active/intelligent packaging films containing anthocyanin and ZnO-doped CD (Zn-CD) from purple Kohlrabi peels were prepared for freshness monitoring and shelf-life extension of shrimp, and the influence of additives on the films' physical, functional, and structural properties was investigated. The films showed excellent UV blocking ability (85.2% of UV-A and 99.4% of UV-B) and high antioxidant effect (∼99% for ABTS and ∼ 58.6% for DPPH radical scavenging activity) and showed strong antibacterial activity to stop the growth (100%) of L. monocytogenes and to reduce the growth of E. coli by 8.1 log CFU/mL after 12 h of incubation. In shrimp packaging experiments, the films were evident in the freshness monitoring, reduced spoilage, and increased shelf life. This study suggests that next-generation biopolymer films impregnated with biomass-derived CDs and natural colorants will provide broad directions for ensuring safety and extending shelf life to meet the accelerating demand for packaging products.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
44
|
Khan S, Monteiro JK, Prasad A, Filipe CDM, Li Y, Didar TF. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300875. [PMID: 37085965 DOI: 10.1002/adma.202300875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
45
|
Doğan V, Evliya M, Nesrin Kahyaoglu L, Kılıç V. On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 2024; 266:125021. [PMID: 37549568 DOI: 10.1016/j.talanta.2023.125021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Real-time and on-site food spoilage monitoring is still a challenging issue to prevent food poisoning. At the onset of food spoilage, microbial and enzymatic activities lead to the formation of volatile amines. Monitoring of these amines with conventional methods requires sophisticated, costly, labor-intensive, and time consuming analysis. Here, anthocyanins rich red cabbage extract (ARCE) based colorimetric sensing system was developed with the incorporation of embedded machine learning in a smartphone application for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. The color change of FG-UV-CD100 films with varying ammonia vapor concentrations was captured in different light sources with smartphones of various brands, and a comprehensive dataset was created to train machine learning (ML) classifiers to be robust and adaptable to ambient conditions, resulting in 98.8% classification accuracy. Meanwhile, the ML classifier was embedded into our Android application, SmartFood++, enabling analysis in about 0.1 s without internet access, unlike its counterpart using cloud operation via internet. The proposed system was also tested on a real fish sample with 99.6% accuracy, demonstrating that it has a great advantage as a potent tool for on-site real-time monitoring of food spoilage by non-specialized personnel.
Collapse
Affiliation(s)
- Vakkas Doğan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Melodi Evliya
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| |
Collapse
|
46
|
Shi Z, Liu L, Chen H, Tang C, Yu J, Fan Y. Preparation of Janus film for fog water collection via layer-by-layer assembling of nanocellulose and nanochitin on PLA. Carbohydr Polym 2024; 323:121369. [PMID: 37940268 DOI: 10.1016/j.carbpol.2023.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
In order to explore the possibility of natural carbohydrate polymers as a biodegradable and sustainable fog water harvesting material, this work proposed an efficient substrate (hydrophobic)-transition layer (amphoteric)-coating (hydrophilic) sandwich spin-coating strategy to form all biomass-based Janus film. The oxalic acid hydrolyzed nanochitin (OAChN) was applied as a transition layer that enabled successful spin-coating of the hydrophilic nanocellulose (TEMPO-oxidized cellulose nanofiber, TOCN) and nanochitin (partially deacetylated chitin nanofibers, DEChN) on the hydrophobic polylactic acid (PLA) film substrate. In which a layer-by-layer (LBL) assembling of TOCN (carboxyl-rich negative surface charge) and DEChN (amino-rich positive surface charge) was designed to form a thickness and surface property controllable polysaccharide coating on PLA. The finally formed PLA-OAChN-TOCN/DEChN (LBL) film showed hydrophilic and hydrophobic heteromeric faces at the opposite sides and thus had improved fog water collection capacity of 90.85 mg·cm-2·h-1 (30 layers of TOCN/DEChN spin-coated on PLA), which was 276 % higher than the pure PLA film. The transition layer engaged sandwich spin-coating strategy, together with LBL assembling method proposed in this study provided a feasible fabrication of all biomass-based fog water collectors (FWC) that could contribute to alleviating water shortage.
Collapse
Affiliation(s)
- Zicong Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
47
|
Mueller E, Hoffmann TG, Schmitz FRW, Helm CV, Roy S, Bertoli SL, de Souza CK. Development of ternary polymeric films based on cassava starch, pea flour and green banana flour for food packaging. Int J Biol Macromol 2024; 256:128436. [PMID: 38016616 DOI: 10.1016/j.ijbiomac.2023.128436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
The development of alternative materials to replace plastics used in food packaging is an important approach to reducing environmental pollution and minimizing harmful impacts on ecosystems. In this study, biopolymeric films were formulated using cassava starch (Manihot esculenta Crantz), pea flour (Pisum sativum) and green banana flour (Musa sp.) to obtain a material for application in food packaging. The influence of a plasticizer on the optical and physicochemical properties of the films was analyzed and the synergy between higher concentrations of starch and plasticizer resulted in films with low opacity. In addition, the morphology, thermal, mechanical and barrier properties were examined. The film with the best formulation (p < 0.05) contained 12 g cassava starch, 3.6 g pea flour and 30 % glycerol (the maximum levels of the experiment). This film presented average values of thickness, moisture, solubility, opacity, maximum strength (F), maximum tensile stress (σ), elongation at break (ε) and elasticity (E) of 0.47 mm, 19.95 %, 87.45 %, 20.93 %, 9.30 N, 1.75 MPa, 30.10 % and 5.93 %, respectively. This research demonstrates the potential application of films obtained by combining starches from different sources. The sustainable production of environmentally-friendly packaging provides an alternative to fossil-based plastics, which have well-documented adverse effects on the environment.
Collapse
Affiliation(s)
- Eduarda Mueller
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau 89030-000, Brazil
| | - Tuany Gabriela Hoffmann
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau 89030-000, Brazil; Department Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | | | - Cristiane Vieira Helm
- Brazilian Agricultural Research Corporation - Embrapa Florestas, Ribeira Road, Colombo 83411-000, Brazil
| | - Swarup Roy
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sávio Leandro Bertoli
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau 89030-000, Brazil
| | - Carolina Krebs de Souza
- Department of Chemical Engineering, University of Blumenau, 3250 São Paulo Street, Blumenau 89030-000, Brazil.
| |
Collapse
|
48
|
Li H, Jiang F, Chen J, Wang Y, Zhou Z, Lian R. Development of seaweed-derived polysaccharide/cellulose nanocrystal-based antifogging labels loaded with alizarin for monitoring aquatic products' freshness. Int J Biol Macromol 2023; 253:126640. [PMID: 37657568 DOI: 10.1016/j.ijbiomac.2023.126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Intelligent freshness indicator labels have attracted great interest for their massive potential in monitoring the freshness of aquatic products over the years. However, there is still a challenge where fogging on the labels during dramatic temperature changes affects the reading of freshness. At the same time, the freshness indicator labels need high mechanical strength to resist collision damage during transportation and storage. Herein, an antifogging freshness indicator label was developed based on seaweed extracts and alizarin. Firstly, soluble polysaccharides and insoluble components were extracted from Gelidium amansii, and cellulose nanocrystal (CNC) was further prepared from the insoluble components by sulfuric acid hydrolysis. Subsequently, a polysaccharide-based film was fabricated using soluble polysaccharides as the matrix materials and CNC as the reinforcement agent. Antifogging experiments showed that the hydrophilic composite films presented good antifogging performance. After loading with alizarin, the composite indicator label exhibited both antifogging and freshness-indicating properties for the salmon sample. The work provided a new idea for developing freshness indicator labels suitable for low-temperature transportation and storage.
Collapse
Affiliation(s)
- Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Fan Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhigang Zhou
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Renjie Lian
- Jinghai Group Co., Ltd., Rongcheng 264307, PR China
| |
Collapse
|
49
|
Yu H, Zhou Q, He D, Yang J, Wu K, Chai X, Xiang Y, Duan X, Wu X. Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols. Int J Biol Macromol 2023; 253:126859. [PMID: 37714243 DOI: 10.1016/j.ijbiomac.2023.126859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
In this study, cinnamon essential oil and tea polyphenols were added to chitosan/ polyvinyl alcohol/ hydroxypropyl methylcellulose/ alizarin composite films to enhance their mechanical and functional properties. Their addition to the composite films enhanced their antibacterial and antioxidant properties and significantly improved its elongation at break (p < 0.05). Cinnamon essential oil reduced the water vapor permeability, water content, and water solubility of composite films and improved their transparency. The composite films with additive exhibited excellent UV-barrier ability and pH responsivity. Fourier Transform infrared spectroscopy and X-Ray Diffraction analyses confirmed hydrogen bond formation between the polymer molecules and additives. The results of Scanning Electron Microscope-Focused Ion Beam revealed improved surface and cross-section morphology of the films, leading to the generation of a cross-linked structure. Thermogravimetric and differential scanning calorimetry analysis indicated enhanced thermal stability of the composite films upon cinnamon essential oil addition. Analysis of storage quality indicators (TBARS value, TVC, and TVB-N) revealed that the composite films could prolong the freshness of surimi. The incorporation of cinnamon essential oil and tea polyphenols into the composite films has demonstrated significant potential as an effective and natural alternative for active food packaging.
Collapse
Affiliation(s)
- Hongpeng Yu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006,China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Qing Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Dong He
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006,China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China.
| | - JinJin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Kegang Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006,China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xianghua Chai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Yujuan Xiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xuejuan Duan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xiqin Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| |
Collapse
|
50
|
Wu Y, Xu F, Zhao H, Wu H, Sun C, Li Q. Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. Int J Biol Macromol 2023; 253:126883. [PMID: 37709222 DOI: 10.1016/j.ijbiomac.2023.126883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Considering the growing threats to the environment and human health, such as plastic pollution and food spoilage, the development of naturally antibacterial food packaging materials with biodegradable capabilities has recently attracted considerable attention. This work applies the concept of green environmental protection to packaging technology, and a new type of green edible antibacterial packaging film was developed. The basic idea is to incorporate furoic acid (FA), which possesses excellent antibacterial activity, into the flaxseed gum and konjac glucomannan matrix (FK) as a filler to obtain a series of FK-FA bioactive films. This incorporation simultaneously improves the hydrophobicity and UV-barrier ability by 12.28 % and 42.87 %, respectively. Meanwhile, the diameters of the antibacterial zone of the FK-FA0.4% films (composite FK films containing 0.4 % FA) against E. coli and S. aureus increased to 38.98 mm and 36.29 mm from 24.00 mm of pure FK film, respectively. As a consequence, the grape sample sealed with FK-FA0.4% film remained edible on the 18th day of storage, while those packaged with commercial PE film and pure FK were seriously rotted and lost edible value on the 12th day, further confirming the enhanced preservation capacity. Finally, the as-prepared films were established to be biodegradable and were almost completely degraded within 25 days under simulated environmental conditions. Overall, these promising results show the potential of FK-FA films for replacing plastic packaging materials as eco-friendly edible films with prolonged shelf life for active packaging.
Collapse
Affiliation(s)
- Yi Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fei Xu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongyang Zhao
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Li
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|