1
|
Zhao R, Chang C, He Y, Jiang C, Bao Z, Wang C. Effects of mixing ratio on physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein and pea protein. Food Chem 2025; 463:141062. [PMID: 39236389 DOI: 10.1016/j.foodchem.2024.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein isolate (WPI) and pea protein isolate (PPI) at varying mass ratios (100/0, 75/25, 50/50, 25/75, 0/100) were investigated. Data indicated that the mass ratios affected the physical, chemical and storage stability of the emulsion by influencing the particle size, zeta-potential, surface hydrophobicity, free sulfhydryl content, and secondary structure of the blends. Particularly, emulsion with a mixing ratio of 75/25 exhibited superior physical stability against salt concentrations (200 and 500 mM), better chemical stability against UV light and heat, and maintained stability over a 30-day storage period. Emulsions stabilized by blends of different ratios exhibited similar digestion behavior, with no significant differences observed in lycopene's transformation stability and bio-accessibility. Data indicated that substitution of whey protein by pea protein is effective in term of emulsifier application and replacement ratio is an important factor need to be considered.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuyu Chang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuxin He
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuanrui Jiang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhaoxue Bao
- Hinggan League Mengyuan Technology Testing Service Co., Ltd, Ulanhot 137400, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Luo T, Hu G, Xie Y, Wang S, Yuan Y, Geng F. Research note: Proteomics profiling reveal key proteins in egg white emulsification. Poult Sci 2024; 104:104736. [PMID: 39729731 DOI: 10.1016/j.psj.2024.104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024] Open
Abstract
Egg white proteins are widely recognized as excellent natural emulsifiers, yet the molecular mechanisms underlying their emulsification properties remain incompletely understood, particularly regarding the roles of individual proteins in complex natural systems. Using 4D-label-free quantitative proteomics, we systematically investigated protein dynamics during egg white emulsification by comparing egg white (EW) and the aqueous phases of egg white emulsions (EWE-W). Proteomic analysis identified 96 distinct proteins, with 64 showing significant abundance changes during emulsification. Among them, lysozyme, ovomucin and Protein TENP were heavily involved in the formation of the oil-water interface during the emulsification process, leading to a significant decrease in their abundance in EWE-W. In particular, Protein TENP showed the most significant reduction in abundance among all differential proteins. These findings provide new insights for optimizing egg white functionality in food applications and understanding protein-based emulsion systems.
Collapse
Affiliation(s)
- Tianyu Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yunxiao Xie
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Shiwen Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yizi Yuan
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
3
|
Othmeni I, Blecker C, Karoui R. pH-dependent emulsifying properties of pea protein isolate: Investigation of the structure - Function relationship. Int J Biol Macromol 2024; 290:139105. [PMID: 39719231 DOI: 10.1016/j.ijbiomac.2024.139105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
This study investigated the relationship between pea protein isolates (PPI) emulsifying properties and their structural, interfacial, and physicochemical characteristics at various pH values (native pH, 7, 5, and 3). Emulsion characteristics including emulsifying activity and stability, droplet size, flocculation index (FI) and coalescence index (CI) were examined. Additionally, physicochemical properties such as solubility, zeta potential, surface hydrophobicity, interfacial protein adsorption and protein conformation were analyzed. Results revealed significant pH-dependent variations in emulsifying performance. The poorest emulsifying performance was observed at pH 5, with the largest droplet size (28.84 μm) and highest CI (38.94 %). Optimal emulsifying properties were noticed at native pH, with the smallest droplet size (7.73 μm) and lowest CI (4.69). At pH 3, good emulsifying ability with the highest physical stability (5.43) were observed, associated with increased surface hydrophobicity and the presence of some aggregates contributing to the formation of cohesive interfacial film. Structural elements, particularly β-sheets and random coils, were positively correlated with emulsifying activity and stability, while β-turns had a negative impact. These findings provide insights into the pH-dependent emulsifying behavior of PPI, highlighting the complex relationship between protein structure and functionality, enabling the optimization of the use of PPI as an emulsifier in food applications.
Collapse
Affiliation(s)
- Ines Othmeni
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium; Cosucra Groupe Warcoing S.A., B-7040 Warcoing, Belgium.
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| |
Collapse
|
4
|
Feng X, Zhu Y, Zhang Y, Hao X, Li S, Jiang C, Su H, Yao Y. The utilization of an ultrasonic mung bean protein-starch conjugate as a fat substitute in whipping cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39668389 DOI: 10.1002/jsfa.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Amidst the rising trend of healthy eating, there is a surge in demand for low-fat food options. Within the realm of fat substitutes, modified proteins have shown the most effective ability to replace fat due to their nutritional attributes and functional properties. This study focused on the development of a fat substitute for low-fat whipping cream using the conjugate of ultrasonic mung bean protein and mung bean starch. RESULTS Our findings revealed that the emulsifying properties and solubility of the conjugates were significantly superior to those of mung bean protein alone (P < 0.05). This enhancement was attributed to a smaller particle size, depolymerization of protein molecules and increased total sulfhydryl content, especially the conjugate formed by 60 min ultrasonic mung bean protein and mung bean starch (UMBP60+MS). Incorporating UMBP60+MS as a fat substitute at a 10% ratio in the formulation of low-fat whipping cream resulted in a product with enhanced apparent viscosity, superior environmental stability, and commendable sensory characteristics. Moreover, the fat digestion rate was significantly reduced by 13.5% with the 10% substitution. This 10% substitution also endowed the whipping cream with the most desirable β'-type crystal morphology and the most stable three-dimensional network structure. An intimate encapsulation of fat globules by the conjugate was observed using cryogenic scanning electron microscopy. CONCLUSION The UMBP60+MS conjugate emerged as an effective fat substitute in whipping cream, providing significant contributions to addressing health concerns in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuewei Feng
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | | | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- Heilongjiang Beiwei 47 Green Organic Food Co., Ltd, Qiqihar, China
| | - Shiyu Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Chunyang Jiang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Hang Su
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| |
Collapse
|
5
|
Feng Z, Li C, Yi X, Xue C, Gao X, Liao L, Xiang Q, Shen X, Pei Z. Raman spectroscopy and molecular dynamics simulations of protein microgels at the oil-water interface. Int J Biol Macromol 2024; 279:135398. [PMID: 39245112 DOI: 10.1016/j.ijbiomac.2024.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The real-time structural changes of the molecular space conformation of myofibrillar protein microgels (MPM) after heat treatment (90 °C, 30 min) were analyzed by molecular dynamics simulation, and the structural properties and changes of MPM at the oil-water interface were analyzed by the combination of Raman spectroscopy and molecular dynamics simulation. The shift in the oil ratio had a major impact on the transformation of disulfide bonds within the protein molecule. Simultaneously, it caused tryptophan and tyrosine residues (I850 cm-1/ I850 cm-1 > 1) to become exposed, increasing the locations of amino acid residues in the protein that interact with the oil phase. HIPE with different oil phases influenced the change in spatial structural conformation of MPM, and there was a flexible structural change in the molecular space. The HIPE system, which was stabilized by 3.0 wt% MPM and 0.75 oil phase, exhibited a thixotropic recovery of >70 % and the highest elastic modulus G' (822.14 Pa) based on the rheological behavior. It is expected to provide a theoretical basis for the development and utilization of high internal phase emulsion stabilized by microgel protein in food industry.
Collapse
Affiliation(s)
- Zilan Feng
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China; School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Changfeng Xue
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Liao
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qiongyao Xiang
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xuanri Shen
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China.
| | - Zhisheng Pei
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
6
|
Wang J, Lin M, Shi L, Zhao Y, Liu S, Liu Z, Lin R, Jin R, Weng W, Ren Z. Characteristics and stabilization of Pickering emulsions constructed using myosin from bighead carp (Aristichthys nobilis). Food Chem 2024; 456:140033. [PMID: 38870822 DOI: 10.1016/j.foodchem.2024.140033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Myosin from bighead carp (Aristichthys nobilis) as a main type of fish protein possesses a good emulsifying ability. However, whether bighead carp myosin (BCM) could construct stable Pickering emulsions is still unclear. Therefore, myosin particles and Pickering emulsions stabilized by bighead carp myosin (BCMPEs) were analyzed. The surface structure of BCM particles at 0.6 mol/L NaCl treatment was uniform and compact with a contact angle of 86.4 ± 2.7°, exhibiting the potential ability to construct O/W Pickering emulsions. The size and flocculation index (FI) of BCMPEs decreased with the increase in BCM concentrations of 1%-4% (w/v). Reversely, the size of BCMPEs increased with the increase in oil-water ratios. BCM particles could uniformly distribute at the oil-water interface to stabilize BCMPEs at a BCM concentration of 4% (w/v) and an oil-water ratio of 6:4 (v/v). This study could help explore fish proteins to construct Pickering emulsions for the deep processing of fish products.
Collapse
Affiliation(s)
- Jiafei Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Min Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
7
|
Akgonullu D, O’Hagan NM, Murray BS, Connell SD, Fang Y, Linter BR, Sarkar A. Bulk and Interfacial Behavior of Potato Protein-Based Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21341-21351. [PMID: 39352068 PMCID: PMC11483775 DOI: 10.1021/acs.langmuir.4c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/16/2024]
Abstract
This study aims to understand the bulk and interfacial performance of potato protein microgels. Potato protein (PoP) was used to produce microgels of submicrometer diameter via a top-down approach of thermal cross-linking followed by high-shear homogenization of the bulk gel. Bulk "parent" gels were formed at protein concentrations [PoP] = 5-18 wt %, which subsequently varied in their bulk shear elastic modulus (G') by several orders of magnitude (1-100 kPa), G' increasing with increasing [PoP]. The PoP microgels (PoPM) formed from these parent gels had diameters varying between 100 and 300 nm (size increasing with increasing G' and [PoP]), as observed via dynamic light scattering and atomic force microscopy (AFM) of PoPM adsorbed onto silicon. Interfacial rheology (interfacial shear storage and loss moduli, Gi' and Gi″) and interfacial tension (γ) of adsorbed films of PoP (i.e., nonheated PoP) and PoPM (both at tetradecane-water interfaces) were also studied, as well as the bulk rheology of the PoPM dispersions. The results showed that PoPM dispersions (at 50 vol %) had significantly higher bulk viscosity and shear thinning properties compared to the nonmicrogelled PoP at the same overall [PoP], but the bulk rheological behavior was in sharp contrast to the interfacial rheological performance, where Gi' and Gi″ of PoP were higher than for any of the PoPM. This suggests that the deformability and size of the microgels were key in determining the interfacial rheology of the PoPM. These findings may be attributed to the limited capacity for "unfolding" and lateral interactions of the larger PoPM at the interface, which are presumed to be stiffer due to their production from the strongest PoP gels. Our study further confirmed that heating and cooling the adsorbed films of PoPM after their adsorption showed little change, highlighting that hydrogen bonding was limited between the microgel particles.
Collapse
Affiliation(s)
- Daisy
Z. Akgonullu
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nicholas M. O’Hagan
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| | - Brent S. Murray
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| | - Simon D. Connell
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.
| | - Yuan Fang
- PepsiCo, Valhalla, New York, New
York 10595, United States
| | | | - Anwesha Sarkar
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
8
|
Gu J, Pan MH, Chiou YS, Wei S, Ding B. Enhanced stability of Pickering emulsions through co-stabilization with nanoliposomes and thermally denatured ovalbumin. Int J Biol Macromol 2024; 278:134561. [PMID: 39127283 DOI: 10.1016/j.ijbiomac.2024.134561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Pickering emulsions were co-stabilized by nanoliposome (NL) and thermally denatured ovalbumin (DOVA) based on the induction of OVA with strong particle characteristics through thermal denaturation. DOVA-NL particles were spherical and their sizes were mainly distributed between 50 and 100 nm. The surface tension and interfacial tension of DOVA-NL were significantly reduced, and the surface hydrophobicity, amphiphilicity and free -SH content of DOVA were enhanced after complexation with NL. The content of α-helix and β-sheet in DOVA decreased, whereas the content of β-turn and random coil increased after complexation with NL. Hydrophobic interactions, hydrogen bonding and electrostatic forces played a vital role in the interactions between NL and DOVA, leading to conformational changes in DOVA. The number of binding sites between NL and DOVA was more than one, and the interaction between NL and DOVA was exothermic and spontaneous. The emulsification index showed that DOVA-NL-stabilized Pickering emulsions (DNPE) were significantly more stable than DOVA-stabilized emulsions. DOVA-NL particles adsorbed at the oil-water interface and the droplet size of DNPE was smaller than that of DOVA-stabilized emulsions. This study suggests that it may be an effective strategy to improve the stability of Pickering emulsions through co-stabilization with NL and DOVA.
Collapse
Affiliation(s)
- Jinhui Gu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Shiou Chiou
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, ROC
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China.
| |
Collapse
|
9
|
Ling B, Shao L, Jiang H, Wu S. Wide pH, Adaptable High Internal Phase Pickering Emulsion Stabilized by a Crude Polysaccharide from Thesium chinense Turcz. Molecules 2024; 29:4312. [PMID: 39339307 PMCID: PMC11434410 DOI: 10.3390/molecules29184312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ultrasound-assisted extraction conditions of Thesium chinense Turcz. crude polysaccharide (TTP) were optimized, and a TTP sample with a yield of 11.9% was obtained. TTP demonstrated the ability to stabilize high-internal-phase oil-in-water emulsions with an oil phase volume reaching up to 80%. Additionally, the emulsions stabilized by TTP were examined across different pH levels, ionic strengths, and temperatures. The results indicated that the emulsions stabilized by TTP exhibited stability over a wide pH range of 1-11. The emulsion remained stable under ionic strengths of 0-500 mM and temperatures of 4-55 °C. The microstructure of the emulsions was observed using confocal laser scanning microscopy, and the stabilization mechanism of the emulsion was hypothesized. Soluble polysaccharides formed a network structure in the continuous phase, and the insoluble polysaccharides dispersed in the continuous phase, acting as a bridge structure, which worked together to prevent oil droplet aggregation. This research was significant for developing a new food-grade emulsifier with a wide pH range of applicability.
Collapse
Affiliation(s)
- Borong Ling
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lijun Shao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huicong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Siddiqui SA, Khan S, Bahmid NA, Nagdalian AA, Jafari SM, Castro-Muñoz R. Impact of high-pressure processing on the bioactive compounds of milk - A comprehensive review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1632-1651. [PMID: 39049911 PMCID: PMC11263445 DOI: 10.1007/s13197-024-05938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 11/12/2023] [Accepted: 01/17/2024] [Indexed: 07/27/2024]
Abstract
High-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400-600 MPa and exposure times of 1-5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and β-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100-250 MPa with time dependency while decreasing up to 70% at 400-600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350-400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components. Graphical abstract
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), 55961 Yogyakarta, Indonesia
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Iran Food and Drug Administration, Halal Research Center of IRI, Ministry of Health and Medical Education, Tehran, Iran
| | - Roberto Castro-Muñoz
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80–233 Gdansk, Poland
| |
Collapse
|
11
|
Jadhav HB, Choudhary P, Gogate P, Ramniwas S, Mugabi R, Ahmad Z, Mohammed Basheeruddin Asdaq S, Ahmad Nayik G. Sonication as a potential tool in the formation of protein-based stable emulsion - Concise review. ULTRASONICS SONOCHEMISTRY 2024; 107:106900. [PMID: 38781674 PMCID: PMC11141282 DOI: 10.1016/j.ultsonch.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Emulsion systems are extensively used in the food processing sector and the use of natural emulsifiers like proteins for stabilizing emulsion has been in demand from consumers due to increased awareness about the consumption of healthy food. Numerous methods are available for the preparation of emulsion, but ultrasound got more attention among common methods owing to its economical and environment-friendly characteristics. The physical effects caused by to bursting of the cavity bubble, result in reduced droplet size, thus forming an emulsion with appreciable stability. Ultrasound ameliorates the emulsifying characteristics of natural emulsifiers like protein and improves the storage stability of the emulsion by positively boosting the rheological, emulsifying characteristics, improving zeta potential, and reducing average droplet size. The stability of protein-based emulsion is affected by environmental stresses hence conjugate of protein with polysaccharide showed good emulsifying characteristics. However, the data on the effect of ultrasound parameters on emulsifier properties is lacking and there is a need to develop a sonication device that can carry out large-scale emulsification operation. The review covers the principles and mechanisms of ultrasound-assisted formation of protein-based and protein-based conjugate emulsions. Further, the effect of ultrasound on various characteristics of protein-based emulsion is also explored. This review will provide concise data to the researchers to extend their experiments in the area of ultrasound emulsification which will help in commercializing the technology at the industrial scale.
Collapse
Affiliation(s)
- Harsh B Jadhav
- PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650 Villeneuve d'Ascq, France; Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana.
| | - Parag Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Zubair Ahmad
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian-192303, J&K, India.
| |
Collapse
|
12
|
Hu Y, Zhou C, Zeng X, Xia Q, Sun Y, Pan D. Phosphate type dependent phosphorylation on the interfacial and emulsion stabilizing behaviors of goose liver protein: Perspective of protein charging. Colloids Surf B Biointerfaces 2024; 238:113872. [PMID: 38555762 DOI: 10.1016/j.colsurfb.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Elucidation on the emulsifying behaviors of goose liver protein (GLP) from interfacial perspective was scarce when protein charging was altered. This work aimed to elucidate the role of phosphorylation on the interfacial associative interaction and then emulsion stabilizing properties of GLP using three structurally relevant phosphates of sodium trimetaphosphate (STMP), sodium tripolyphosphate (STPP) and sodium pyrophosphate (TSPP). A monotonic increment of protein charging treated from STMP, STPP to TSPP caused progressively increased particle de-aggregation, surface hydrophobicity and structural flexibility of GLP. Compared with STMP and TSPP, STPP phosphorylation rendered the most strengthened interfacial equilibrium pressure (11.98 ± 0.24 mN/m) due to sufficient unfolding but moderated charging character conveyed. Desorption curve and interfacial protein microstructure indicated that STPP phosphorylation caused the highest interfacial connectivity between proteins adsorbed onto the same droplet, as was also verified by interfacial elastic modulus (10.3 ± 0.21 mN/m). STPP treated GLP also yielded lowest droplet size (8.16 ± 0.10 μm), flocculation (8.18%) and Turbiscan stability index (8.78 ± 0.36) of emulsion but most improved microrheological properties. Overall, phosphorylation functioned itself in fortifying the intradroplet protein-protein interaction but restraining the interdroplet aggregation, and STPP phosphorylation endowed the protein with most enhanced interfacial stabilization and emulsifying efficiency.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
13
|
Patil ND, Bains A, Sridhar K, Bhaswant M, Kaur S, Tripathi M, Lanterbecq D, Chawla P, Sharma M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024; 13:1398. [PMID: 38731769 PMCID: PMC11083271 DOI: 10.3390/foods13091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education Deemed to be University, Coimbatore 641021, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | | |
Collapse
|
14
|
Dong H, Yang L, Dadmohammadi Y, Li P, Lin T, He Y, Zhou Y, Li J, Meletharayil G, Kapoor R, Abbaspourrad A. Investigating the synergistic effects of high-pressure homogenization and pH shifting on the formation of tryptophan-rich nanoparticles. Food Chem 2024; 434:137371. [PMID: 37708572 DOI: 10.1016/j.foodchem.2023.137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
A combined treatment of high-pressure homogenization (HPH) and pH-shifting on the mixture of α-lactalbumin (α-LA) and tryptophan (Trp) was used to fabricate nanoparticles (α-LA-Trp-NP). The optimal α-LA/Trp ratio (5:1), HPH pressure (206.8 MPa), and recirculation time (40 min) was found to produce small α-LA-Trp-NP (243.0 ± 7.2 nm) with a narrow particle size distribution. Comparing the size and morphology of α-LA-NPs with α-LA-Trp-NPs indicated that the presence of Trp significantly affected the size and morphology of the NPs in the dry form. The stability of the α-LA-Trp-NPs was improved by using the combination of HPH and pH-shifting. The α-LA-Trp-NPs showed better freeze-thaw stability and retained the particle characteristics with heat treatment at 63 °C, 30 min after the freeze-thaw cycle. α-LA-Trp-NPs were also observed to have remarkable stability against pH changes and thermal treatments at 63 °C, 30 min, and 90 °C, 2 min.
Collapse
Affiliation(s)
- Hongmin Dong
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lixin Yang
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Peilong Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiantian Lin
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yanhong He
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yufeng Zhou
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jieying Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Pereira RN, Rodrigues R, Avelar Z, Leite AC, Leal R, Pereira RS, Vicente A. Electrical Fields in the Processing of Protein-Based Foods. Foods 2024; 13:577. [PMID: 38397554 PMCID: PMC10887823 DOI: 10.3390/foods13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, "Electric Field Processing" acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Zita Avelar
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ana Catarina Leite
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Rita Leal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ricardo S. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - António Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
16
|
Fan X, Li C, Shi Z, Xia Q, Du L, Zhou C, Pan D. Soy protein isolate-guar gum-goose liver oil O/W Pickering emulsions that remain stable under accelerated oxidation at high temperatures. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1107-1115. [PMID: 37736877 DOI: 10.1002/jsfa.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Goose liver oil (GLO) is a solid-liquid mixture, rich in polyunsaturated fatty acids and high in nutritional value, but poor in fluidity and easily oxidized. Therefore, oil-in-water (O/W) Pickering emulsions of three polysaccharides and soy protein isolate (SPI) with GLO were prepared to improve the stability of it. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy, and zeta potential revealed that the SPI and complexes with konjac glucomannan, pectin, and guar gum (GG) ranged from 17 to 75 kDa, with the site of action being the -OH stretch and the amide group, and bound by hydrogen bonding. Adding konjac glucomannan and GG significantly increased the water contact angle of the SPI to 74.1° and 59.0°, respectively. Therefore, the protein-polysaccharide complexes could enhance the emulsion stability. In addition, the O/W Pickering emulsions with GLO had near-Newtonian fluid rheological properties with a significant increase in apparent viscosity and viscoelasticity, forming a dual network structure consisting of a ductile and flexible protein network and a rigid and brittle polysaccharide network. The microstructure observation indicated that the O/W emulsions were spherical and homogeneous. The highest emulsification activity was observed for the SPI-GG-GLO emulsions, without significant delamination or flocculation and high oxidative stability after 7 days in storage. CONCLUSION These results demonstrate that the construction of SPI-GG-GLO O/W Pickering emulsions can stabilize GLO even at high temperatures that promote oxidation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chunwei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Jiang W, Xiang W, Lu W, Yuan D, Gao Z, Hu B, Li Y, Wu Y, Feng Z. Emulsifying performance of the hexadecyltrimethylammonium bromide (CTAB) complexed alginate microgels: Effects from their deformability on oil-water interface. Int J Biol Macromol 2023; 253:127509. [PMID: 37865370 DOI: 10.1016/j.ijbiomac.2023.127509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Hexadecyltrimethylammonium bromide complexed alginate-Ca2+ microgels (C/AMGs) were developed as emulsifiers, which shown remarkably improved emulsifying performance than non-complexed alginate-Ca2+ microgels (AMGs) in previous study. This work focus on the impact of deformability on the emulsifying performance of C/AMGs. By regulating alginate concentration (1.0-4.0 wt%), microgels with different deformability were prepared. Deformability was proved to have great influence on the emulsifying performance of C/AMGs, which was evaluated by Langmuir trough measurements, emulsion appearance, centrifugation stability, digestive behavior, and oxidative stability. Particle size and SEM images indicated microgels prepared with lower alginate concentration are more deformable. C/AMGs (2.0 wt%) exhibits the best emulsifying performance, which could be ascribed to the appreciated deformability and mechanical strength. Digestive behavior and oxidative stability of alginate-Ca2+ microgel (2.0 wt%) stabilized emulsions were further investigated. Compared with alginate-Ca2+ microgel (2.0 wt%) stabilized emulsions, C/AMGs (2.0 wt%) stabilized emulsions shown delayed lipid digestion and lower POV. Results of this work supporting that Mickering mechanism have potential in fabricating functional emulsions based on natural polysaccharides.
Collapse
Affiliation(s)
- Wenxin Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wei Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wei Lu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China.
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhengpeng Feng
- Pro-Health (China), West Ring South Road BDA, Beijing 100176, PR China
| |
Collapse
|
18
|
Liu J, Zhang H, Sun X, Fan F. Development and Characterization of Pickering Emulsion Stabilized by Walnut Protein Isolate Nanoparticles. Molecules 2023; 28:5434. [PMID: 37513302 PMCID: PMC10386357 DOI: 10.3390/molecules28145434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This study was conducted to prepare walnut protein isolate nanoparticles (nano-WalPI) by pH-cycling, combined with the ultrasound method, to investigate the impact of various nano-WalPI concentrations (0.5~2.5%) and oil volume fractions (20~70%) on the stability of Pickering emulsion, and to improve the comprehensive utilization of walnut residue. The nano-WalPI was uniform in size (average size of 108 nm) with good emulsification properties (emulsifying activity index and stability index of 32.79 m2/g and 1423.94 min, respectively), and it could form a stable O/W-type Pickering emulsion. When the nano-WalPI concentration was 2.0% and the oil volume fraction was 60%, the best stability of Pickering emulsions was achieved with an average size of 3.33 μm, and an elastic weak gel network structure with good thermal stability and storage stability was formed. In addition, the emulsion creaming index value of the Pickering emulsion was 4.67% after 15 days of storage. This study provides unique ideas and a practical framework for the development and application of stabilizers for food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Jiongna Liu
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hengxuan Zhang
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Xue Sun
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Fangyu Fan
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
19
|
Xu Y, Sun L, Zhuang Y, Gu Y, Cheng G, Fan X, Ding Y, Liu H. Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review. Foods 2023; 12:2703. [PMID: 37509795 PMCID: PMC10378947 DOI: 10.3390/foods12142703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In today's food industry, the potential of bioactive compounds in preventing many chronic diseases has garnered significant attention. Many delivery systems have been developed to encapsulate these unstable bioactive compounds. Emulsion gels, as colloidal soft-solid materials, with their unique three-dimensional network structure and strong mechanical properties, are believed to provide excellent protection for bioactive substances. In the context of constructing carriers for bioactive materials, proteins are frequently employed as emulsifiers or gelling agents in emulsions or protein gels. However, in emulsion gels, when protein is used as an emulsifier to stabilize the oil/water interface, the gelling properties of proteins can also have a great influence on the functionality of the emulsion gels. Therefore, this paper aims to focus on the role of proteins' emulsifying and gelling properties in emulsion gels, providing a comprehensive review of the formation and modification of protein-based emulsion gels to build high-quality emulsion gel systems, thereby improving the stability and bioavailability of embedded bioactive substances.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Hu W, Chen C, Wang Y, He W, He Z, Chen J, Li Z, Li J, Li W. Development of high internal phase emulsions with noncovalent crosslink of soy protein isolate and tannic acid: Mechanism and application for 3D printing. Food Chem 2023; 427:136651. [PMID: 37392629 DOI: 10.1016/j.foodchem.2023.136651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
In this study, we propose a design strategy using soy protein isolate (SPI)-tannic acid (TA) complexes crosslinked through noncovalent interactions to develop high internal phase emulsions (HIPEs) for 3D printing materials. The results of Fourier transform infrared spectroscopy, intrinsic fluorescence, and molecular docking analyses indicated that the dominant interactions occurring between the SPI and TA were mediated by hydrogen bonds and hydrophobic interactions. The secondary structure, particle size, ζ-potential, hydrophobicity and wettability of SPI was significantly altered by the addition of TA. The microstructure of HIPEs stabilized by SPI-TA complexes exhibited more regular and even polygonal shapes, thereby allowing the protein to form a dense self-supporting network structure. When the concentration of TA exceeded 50 μmol/g protein, the formed HIPEs remained stable after 45 days of storage. Rheological tests revealed that the HIPEs exhibited a typical gel-like (G' > G'') and shear-thinning behavior, which contributed to preferable 3D printing behavior.
Collapse
Affiliation(s)
- Wenyi Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chunli Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei He
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
21
|
Perța-Crișan S, Ursachi CȘ, Chereji BD, Tolan I, Munteanu FD. Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels 2023; 9:gels9050386. [PMID: 37232978 DOI: 10.3390/gels9050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Currently, a large number of scientific articles can be found in the research literature in the field focusing on the use of oleogels for food formulation to improve their nutritional properties. The present review focuses on the most representative food-grade oleogels, highlighting current trends in terms of the most suitable methods of analysis and characterization, as well as trends in their application as substitutes for saturated and trans fats in foods. For this purpose, the physicochemical properties, structure, and composition of some oleogelators are primarily discussed, along with the adequacy of oleogel incorporation for use in edible products. Analysis and characterization of oleogels by different methods are important in the formulation of innovative foods, and therefore, this review discusses the most recent published results regarding their microstructure, rheological and textural properties, and oxidative stability. Last but not least, issues related to the sensory properties of oleogel-based foods are discussed, highlighting also the consumer acceptability of some of them.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Claudiu-Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Bianca-Denisa Chereji
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Iolanda Tolan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| |
Collapse
|
22
|
Yin Q, Wu L, Zhang X, Zheng Z, Luo S, Zhong X, Zhao Y. Preparation of high complex concentration emulsion stabilized by soy protein/dextran sulfate composite particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37185886 DOI: 10.1002/jsfa.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) could be used as an emulsifier to stabilize emulsions, while SPI is unstable under low acidic conditions. The stable composite particles of SPI and dextran sulfate (DS) could be formed by the electrostatic interaction at the pH was 3.5. And the SPI/DS composite particles were used to prepare the high complex concentration emulsion. The stabilization properties of high complex concentration emulsion were investigated. RESULTS Compared to uncompounded SPI, the particle size of SPI/DS composite particles was smaller at 1.52 μm, and the absolute value of the potential increased to 19.9 mV when the mass ratio of SPI to DS was 1:1 and the pH was 3.5. With the DS ratio increased, the solubility of the composite particles increased to 14.44 times of the untreated protein at pH 3.5, while the surface hydrophobicity decreased. Electrostatic interactions and hydrogen bonds were the main forces between SPI and DS, and DS was electrostatically adsorbed on the surface of SPI. The emulsion stability significantly enhanced with the increase of complex concentration (38.88 times higher than at 1% concentration), the emulsion average droplet size was the lowest (9.64 μm), and the absolute value of potential was the highest (46.67 mV) when the mass ratio of SPI to DS was 1:1 and the complex concentration of 8%. The stability of the emulsion against freezing was improved. CONCLUSION The SPI/DS complex has high solubility and stability under low acidic conditions, and the SPI/DS complex' emulsion has a well stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xinli Zhang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
23
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
24
|
Chao Song Z, Zhang H, Fei Niu P, Shi LS, Yan Yang X, Hong Meng Y, Yu Wang X, Gong T, Rong Guo Y. Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chem 2023; 420:136110. [PMID: 37105086 DOI: 10.1016/j.foodchem.2023.136110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Soy protein isolates (SPI) exhibit weaker emulsifying properties than those of animal proteins, thereby limiting their wide applicability. In this study, a novel plant-based antioxidant emulsifier was developed using SPI and young apple polyphenols (YAP), and its underlying interaction mechanisms were discovered using multispectral technology and molecular docking. YAP physically bound to SPI through hydrogen bonds and hydrophobic interactions, which significantly enhanced the free radicals scavenging, reducing, and metal ion chelating abilities of SPI by introducing free hydroxyl groups. Moreover, SPI modified by YAP exerted better emulsifying performance owing to a looser protein structure, reflected by a higher random coil and a lower α-helix content. In addition, YAP may bridge adjacent SPI molecules, promoting the adsorption and anchoring of SPI at the oil-water interface. SPI-YAP complexes are promising antioxidant emulsifiers that can be used to nano-deliver functional oils and nutrients, thereby broadening SPI and YAP applications in the food industry.
Collapse
Affiliation(s)
- Zhi Chao Song
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Huan Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Peng Fei Niu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Xiao Yu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| | - Yu Rong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
25
|
Transforming monomeric globulins into pickering particles to stabilize nanoemulsions: Contribution of trehalose. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
26
|
Chang L, Lan Y, Chen B, Rao J. Interfacial, and emulsifying properties nexus of green pea protein fractions: Impact of pH and salt. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Effects of pre-emulsion prepared using sucrose esters with different hydrophile-lipophile balances on characteristics of soy protein isolate emulsion films. Food Res Int 2023; 165:112542. [PMID: 36869455 DOI: 10.1016/j.foodres.2023.112542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The preparation of emulsion films using pre-emulsification has received extensive attention due to the enhancement of oil binding capacity. However, the different effects of water in oil (W/O) and oil in water (O/W) pre-emulsions on the physicochemical properties of films are still unclear. Therefore, the soy protein isolate (SPI) based emulsion films were prepared by W/O or O/W pre-emulsion using sucrose esters with different hydrophile-lipophile balances to investigate the properties of SPI emulsion (SPIE) films. The viscosity, storage moduli, and loss moduli of film-forming solutions (FFSs) with O/W pre-emulsion were higher than those of FFSs with W/O pre-emulsion. The oil droplets of FFSs with W/O pre-emulsion were large and uneven, and the oil droplet size increased after drying. Phase separation and macroporous network appeared in cross-sectional of SPIE films with W/O pre-emulsion according to scanning electron microscope images. Meanwhile, the SPIE films with W/O pre-emulsion demonstrated higher oil concentration and hydrophobicity on the upper surface compared with the SPIE films with O/W pre-emulsion. Low tensile strength, glass transition temperature, and high elongation at break and transparency value of SPIE films with O/W pre-emulsions were founded. The water vapor permeability of SPIE films with W/O pre-emulsion increased with the addition of oil, whereas the opposite trend appeared in that with O/W pre-emulsion. In conclusion, the structure and porosity of emulsion films could be affected by the pre-emulsion types, which can determine the application ranges.
Collapse
|
28
|
Tan M, Ding Z, Chu Y, Xie J. Potential of Good's buffers to inhibit denaturation of myofibrillar protein upon freezing. Food Res Int 2023; 165:112484. [PMID: 36869497 DOI: 10.1016/j.foodres.2023.112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The current systematic study sought to examine the potential use of three Good's buffers (MES, MOPS and HEPES) in inhibiting myofibrillar protein (MFP) denaturation induced by acidity changes. The highest degree of acidity variation was found in the center and bottom of large bottles due to the freeze-concentration effect. Good's buffer tended to basify during freezing, and it could prevent the crystallization of sodium phosphate (Na-P) buffer. Acidification upon freezing Na-P disrupted the natural conformation of MFP and induced the formation of large proteins aggregates with tight packing. The 15 mM MES, 20 mM MOPS, and 30 mM HEPES were respectively added to neutralize the strong acidity drop induced by freezing 20 mM Na-P, and all of them significantly improved the stability of the MFP conformation (P < 0.05). This work is not only critical to meet the growing demand for protein, but also groundbreaking for broadening the applicability of Good's buffers in the food industry.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
29
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
30
|
Han W, Liu TX, Tang CH. Use of oligomeric globulins to efficiently fabricate nanoemulsions: Importance of enhanced structural stability by introducing trehalose. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
31
|
Dong W, Zhang X, Ding L, Liu C, Ai M, Jin Y, Isobe K, Handa A, Cai Z. Enhancement of emulsification properties by modulation of egg white protein fibril structure with different heating times. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
High-internal-phase emulsions stabilized solely by chitosan hydrochloride: Fabrication and effect of pH on stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Jiang W, Xiang W, Xu L, Yuan D, Gao Z, Hu B, Li Y, Wu Y. Fabrication, characterization, and emulsifying properties of hexadecyltrimethylammonium bromide complexed alginate microgel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
34
|
Pickering stabilizing capacity of Plasma-treated Grass pea protein nanoparticles. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
35
|
Development and characterization of high internal phase pickering emulsions stabilized by heat-induced electrostatic complexes particles: Growth nucleation mechanism and interface architecture. Food Chem 2023; 402:134512. [DOI: 10.1016/j.foodchem.2022.134512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 12/31/2022]
|
36
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Valorizing protein-polysaccharide conjugates from sugar beet pulp as an emulsifier. Int J Biol Macromol 2023; 226:679-689. [PMID: 36436597 DOI: 10.1016/j.ijbiomac.2022.11.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 μm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | | | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
37
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
38
|
Hydrolyzed rice glutelin nanoparticles as particulate emulsifier for Pickering emulsion: Structure, interfacial properties, and application for encapsulating curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
High internal phase Pickering emulsions prepared by globular protein-tannic acid complexes: A hydrogen bonds-based interfacial crosslinking strategy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Gu R, Li C, Shi X, Xiao H. Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water Pickering emulsions and the formation mechanism. Food Chem 2022; 395:133641. [PMID: 35816986 DOI: 10.1016/j.foodchem.2022.133641] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
In this study, we reported for the first time that the natural protein/polysaccharide hybrid nanoparticles (PPH NPs) with a diameter of ∼ 129 nm, originating from Lactobacillus plantarum fermented cheese whey, could act as green-based NPs for stabilizing Pickering emulsions. Characterizations of PPH NPs showed that the negative-charged PPH NPs were composed of ∼ 37.7% total protein and ∼ 7.3% polysaccharide bearing several functional groups, such as -OH, -NH, -COOH, etc.; and displayed excellent emulsifying capacity in preparing oil-in-water Pickering emulsions. The obtained emulsions exhibited gel-like behavior with excellent stability against the variation of pH, ionic strength, and temperature. Confocal observations showed that PPH NPs effectively adsorbed and anchored at the oil-water interface, thus creating the steric hindrance to inhibit droplet coalescence. This research is of importance in developing novel and biocompatible Pickering stabilizers with outstanding performance, as well as enable a versatile design of stable Pickering emulsions suitable for food industries.
Collapse
Affiliation(s)
- Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
42
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
43
|
Ling M, Yan C, Huang X, Xu Y, He C, Zhou Z. Phosphorylated walnut protein isolate as a nanocarrier for enhanced water solubility and stability of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5700-5710. [PMID: 35388485 DOI: 10.1002/jsfa.11917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The low solubility and poor dispersion of alkaline-extracted walnut protein isolate (AWPI) limit its application as a protein-based carrier for the delivery of poorly soluble nutraceuticals, including curcumin. This work investigated the physicochemical characteristics of phosphorylated walnut protein isolate (PWPI) extracted using sodium tripolyphosphate (STP) and evaluated its encapsulation ability. RESULTS The results of phosphorus determination, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy confirmed the phosphorylation of the extracted PWPI. Circular dichroism (CD) analysis indicated that PWPI contained higher α-helix and lower β-sheet contents than AWPI. The PWPI prepared at pH 9.0 and 11.0 showed significantly improved solubility, similar surface hydrophobicity, and increased surface charges compared to the AWPI. Fluorescence quenching experiments indicated that the binding affinity of curcumin to PWPI was significantly higher than that of AWPI. When bound to PWPI, the solubility of curcumin in aqueous solution was greatly enhanced, with an 8700-fold increase at a nanocomplex concentration of 10 mg mL-1 . The complexation of curcumin with PWPI significantly improved the storage stability of curcumin. Additionally, the PWPI-curcumin nanocomplexes showed significantly increased antioxidant capacity. CONCLUSION Phosphorylated walnut protein isolate showed greatly improved solubility and strong encapsulation ability, making it a promising nanocarrier for curcumin. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Chunjun Yan
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Yanfei Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, PR China
| |
Collapse
|
44
|
Fabrication and Characterization of the Egg-White Protein Chitosan Double-Layer Emulsion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186036. [PMID: 36144772 PMCID: PMC9503630 DOI: 10.3390/molecules27186036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Egg-white protein has an abundance of hydrophobic amino acids and could be a potential emulsifier after modification. Here, egg-white protein was modified via ultrasonic and transglutaminase treatments to destroy the globular structure. The egg-white protein gel particles (EWP-GPs) were prepared and then a novel highly stable EWP-chitosan double-layer emulsion was constructed. When ultrasonic treatment was applied at 240 W and TGase (20 U/g EWP) treatment, the EWP-GPs had a low particle size and good emulsification performance. The particle size of EWP-GPs was a minimum of 287 nm, and the polymer dispersity index (PDI) was 0.41. The three-phase contact angle (θo/w) of EWP-GPs was 79.6° (lower than 90°), performing with good wettability. Based on these results, the EWP-chitosan double-layer emulsion was prepared through the EWP-GPs being treated with 240 W ultrasound, TGase, and chitosan in this study. When the double-layer emulsion had 0.6% (v/v) chitosan, the zeta potential of the double-layer emulsion was -1.1 mV and the double-layer emulsion had a small particle size (56.87 µm). The creaming index of double-layer emulsion at 0.6% (v/v) chitosan was 16.3% and the droplets were dispersed uniformly. According to the rheological results, the storage modulus (G') was larger than the loss modulus (G″) in the whole frequency, indicating the formation of an elastic gel network structure in the emulsion. It is hoped to develop a novel food-grade stabilizer and a stable double-layer emulsion, providing new environment-friendly processing in hen egg products and delivery systems.
Collapse
|
45
|
Ma J, Chen H, Chen W, Wu J, Li Z, Zhang M, Zhong Q, Chen W. Effects of heat treatment and pH on the physicochemical and emulsifying properties of coconut (Cocos nucifera L.) globulins. Food Chem 2022; 388:133031. [PMID: 35483287 DOI: 10.1016/j.foodchem.2022.133031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
The present study aimed to assess the effects of heat treatment (70-90 °C) and pH (pH 3-11) on the physicochemical, structural, and emulsifying properties of coconut globulins (CG). The results revealed that the emulsifying property was improved with increasing temperature due to the denaturation degree of CG. CG had a better emulsifying property at pH 3 but showed the worst emulsifying property at pH 5 due to its lowest solubility, surface hydrophobicity, and absolute value of zeta potential. The best emulsifying stability was detected at pH 11 with 90 °C heating. SDS-PAGE indicated that the formation of aggregates cross-linked by covalent bonds was the main reason for the better emulsion stability at pH 3 and pH 11 with 90 °C heating. The secondary structure showed that CG had more α-helix and β-turn contents as well as fewer β-sheet contents at pH 3 and pH 11 with 90 °C heating.
Collapse
Affiliation(s)
- Jingrong Ma
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Jilin Wu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Zengqing Li
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| |
Collapse
|
46
|
Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. Int J Biol Macromol 2022; 222:121-131. [PMID: 36113597 DOI: 10.1016/j.ijbiomac.2022.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
The effect of weakly charged insoluble karaya gum (KG) on zein colloidal nanoparticles (ZKGPs) for stabilizing Pickering emulsions was investigated. Due to weak surface charge, KG could cover the surface of zein particles by hydrogen bonds and weak electrostatic interactions. With the increase in coverage, the zeta potential of ZKGPs changed from positive to negative values close to zero and the average particle size tended to become larger. The closest neutral wettability (89.85°) was achieved when the zein/KG mass ratio was 1:1. The samples prepared with high oil volume fraction (φ = 0.5-0.75) and high particle concentration (1.0-1.3 %, w/v) formed emulsion gels easily and showed higher storage stability. CLSM images also confirmed that ZKGPs could be distributed in the continuous phase to enhance the emulsion network structure. Consequently, weakly charged ZKGPs reduced the emulsification energy barrier and increased the coverage and steric hindrance of particles at the oil/water interface. These findings provide new ideas for the development of stable Pickering emulsions for application in food textural modification as well as encapsulation and delivery of bioactive substances.
Collapse
|
47
|
Fang B, Gu Z, Ohm JB, Chen B, Rao J. Reverse micelles extraction of hemp protein isolate: Impact of defatting process on protein structure, functionality, and aromatic profile. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Wu C, Liu Z, Zhi L, Jiao B, Tian Y, Liu H, Hu H, Ma X, Pignitter M, Wang Q, Shi A. Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2949. [PMID: 36079986 PMCID: PMC9458105 DOI: 10.3390/nano12172949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
High internal phase Pickering emulsion (HIPPE) is a type of emulsion stabilized by solid particles irreversibly adsorbed on an interfacial film, and the volume fraction of the dispersed phase (Φ) is larger than the maximum packing volume fraction (Φmax). Proteins, polysaccharides, and their composite particles can be used as good particle stabilizers. The contact angle can most intuitively demonstrate the hydrophilicity and hydrophobicity of the particles and also determines the type of emulsions (O/W or W/O type). Particles' three-phase contact angles can be adjusted to about 90° by compounding or modification, which is more conducive to emulsion stability. As a shear thinning pseudoplastic fluid, HIPPE can be extruded smoothly through 3D printer nozzles, and its high storage modulus can support the structure of printed products. There is huge potential for future applications in 3D printing of food. This work reviewed the biomacromolecules that can be used to stabilize food-grade HIPPE, the stabilization mechanism of the emulsions, and the research progress of food 3D printing to provide a reference for the development of advanced food products based on HIPPE.
Collapse
Affiliation(s)
- Chao Wu
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanjie Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hongzhi Liu
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Qiang Wang
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Aimin Shi
- College of Food Science and Engineering, Hebei Agricultural University, Baoding 071001, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
49
|
Ultrasound modified protein colloidal particles: Interfacial activity, gel property and encapsulation efficiency. Adv Colloid Interface Sci 2022; 309:102768. [DOI: 10.1016/j.cis.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
50
|
Li F, Zhang Y, Tang X, Song P, Su L, Fan J. Improving emulsifying properties of carboxylated microcrystalline cellulose by calcium bridging to hydrophobic peptides. Food Chem 2022; 384:132422. [DOI: 10.1016/j.foodchem.2022.132422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/04/2022]
|