1
|
Li L, Liu Y, Tan X, Teng F, Li Y. Synthesis and characterization of interpenetrating network hydrogels based on sugar beet pectin and heteroprotein complex: Structural characteristics and physicochemical properties. Carbohydr Polym 2025; 349:122959. [PMID: 39638502 DOI: 10.1016/j.carbpol.2024.122959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Hydrogels made from natural polymers have excellent application potential due to their good biocompatibility. However, it is difficult to maximise the benefits of hydrogels when the gel network is formed by a single substance. The purpose of this study was to investigate the relationship between the interaction of modified soybean lipophilic proteins (SLP) and lysozyme (LY) and the formation of heteroprotein complexes. Subsequently, interpenetrating network (IPN) hydrogels were further synthesized on the basis of heteroprotein (HP) complexes and sugar beet pectin (SBP) as the backbone. The strong interaction between SLP and LY drove them to spontaneously form heteroprotein complexes. The HP-SBP IPN imparted good mechanical properties to the hydrogel, which could withstand a maximum pressure of 7500 pa at 88 % strain. Meanwhile, there was still 93.52 % of water being trapped in IPN after freeze-thawing. The HP-SBP IPN hydrogels could effectively protect the encapsulated substance during UV irradiation and maintain its morphology after undergoing dynamic pH changes. Furthermore, the HP-SBP IPN hydrogels could regulate their release ability through their own swelling and achieved more than 88 % release rate in simulated intestinal fluid. Therefore, this study was expected to provide a potential strategy for the synthesis of IPN hydrogels.
Collapse
Affiliation(s)
- Lijia Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Qiu C, Meng Y, Zhang Z, Li X, McClements DJ, Li G, Jiang L, Wen J, Jin Z, Ji H. Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review. Compr Rev Food Sci Food Saf 2025; 24:e70095. [PMID: 39746860 DOI: 10.1111/1541-4337.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope. Compared to soy proteins alone, these conjugates or complexes exhibit enhanced technofunctional performance, including improved solubility, emulsification, foaming, gelling, antimicrobial properties, and antioxidant capacities. Conjugates are typically more stable than complexes, which may be an advantage for some food applications. However, complexes do not require additional regulatory approval, which makes them more suitable for most food applications. This review aims to comprehensively examine the enhancement of soy protein functionality through conjugation or complexation with polysaccharides or polyphenols. The research focuses on how these modifications enhance solubility, emulsification potential, foaming, gelling, and antioxidant properties, reduce the allergenicity of soy proteins, and enable their potential applications in plant-based food development, 3D food printing, fat substitutes, functional food carriers, and hypoallergenic foods.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaxu Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Guanghua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Lou K, Zheng Y, Wang L, Zhou C, Wang J, Pan D, Wu Z, Cao J, Zhang H, Xia Q. Molten globule-state protein structure: Perspectives from food processing applications. Food Res Int 2024; 198:115318. [PMID: 39643361 DOI: 10.1016/j.foodres.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Under specific pretreatment or processing conditions, spheroprotein can be transformed into a molten globule state, a typical protein conformation with enhanced functionality. Analyzing the correlation between the formation of molten-globule structures and their quality and functional characteristics is critical for developing tailored processing features, especially for minimally processed future foods. This review outlines the mechanisms driving the formation of molten globule proteins through various processes including ultra-high pressure pretreatments, heating, ultrasonication, pH-shifting, macromolecular crowding and exposure to small-molecule denaturants. These treatments yield proteins that retain structural compactness and primary and secondary structures of their native forms, but with modified conformations and increased hydrophobicity. Common methods for characterizing molten globule proteins include fluorescence spectroscopy, circular dichroism spectroscopy, and nuclear magnetic resonance. The review also explores the application of molten globule proteins in food processing, highlighting their potential significance in advancing the field. The detailed elucidation and exploration of the microstructural transition and conformational features of molten globule proteins, together with their quantitative relationship with processibility of proteins from various sources, holds significant implications for optimizing protein-based food processing techniques and achieving targeted improvements in food quality.
Collapse
Affiliation(s)
- Kangshuai Lou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changyu Zhou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Daodong Pan
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiang Xia
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Zhuang X, Yan S, Luo C, Liu J, Chen Y, Liu Q, Zhou G, Ding C. Constructing soybean protein isolate /bacterial cellulose co-assemblies by pH shifting treatment: Molecular conformation and physicochemical properties. Food Chem 2024; 460:140628. [PMID: 39089021 DOI: 10.1016/j.foodchem.2024.140628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The study elucidates that the pH shifting treatment unfolds the conformation of soybean protein isolate (SPI), enabling it to intertwine with bacterial cellulose (BC) and form SPI/BC co-assemblies. Results from intrinsic fluorescence spectroscopy and surface hydrophobicity indicate that the SPI with pH shifting treatment shows a notable blue shift in maximum emission wavelength and increased surface hydrophobicity. It demonstrates that pH shifting treatment facilitates the unfolding of SPI's molecular conformation, promoting its entanglement with high aspect ratio BC. Particle size distribution and microstructural analysis further demonstrate that the pH shifting treatment facilitates the formation of SPI/BC co-assemblies. Evaluation of processing properties reveals that the SPI/BC co-assemblies exhibited exceptional gel and emulsification properties, with gel strength and emulsifying activity respectively six and two times higher than natural SPI. This enhancement is attributed to the thickening properties of BC with a high aspect ratio and the superior hydrophobicity of SPI in its molten globule state.
Collapse
Affiliation(s)
- Xinbo Zhuang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| | - Sunhui Yan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Cheng Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Jiaoqiong Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yinji Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Guanghong Zhou
- Key Lab of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
5
|
Wang X, Zhu J, Tang T, Yang L, Chen X, Meng S, Zheng R, Wu H. Carboxymethyl chitosan coating infused with linalool-loaded molten globular β-Lactoglobulin nanoparticles for extended preservation of fresh-cut apples. Food Chem 2024; 460:140578. [PMID: 39106811 DOI: 10.1016/j.foodchem.2024.140578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
This investigation employed molten globule state β-lactoglobulin nanoparticles (MG-BLGNPs) for encapsulating linalool (LN) combined with carboxymethyl chitosan (CMC) coating to enhance the shelf-life of fresh-cut apples. The effect of different MG structures on the encapsulation efficiency of BLGNPs and the properties of coating was studied. Structural characterization and molecular simulation showed structural differences between heat-induced MG state (70-BLGNPs, heated at 70 °C for 1 h) and sodium dodecyl sulfate-co-heat-induced MG state (SDS/70-BLGNPs, treated with 0.192 mg/mL SDS for 10 min, then heated at 70 °C for 1 h), with the latter being more unfolded. LN self-assembles into MG-BLGNPs, among the generated particles, SDS/70-BLG@LN exhibits stronger binding effect and higher LN loading capacity. Integration of MG-BLG@LN into CMC enhanced coating's mechanical properties and adhesion to fresh-cut apples. The SDS/70-BLG@LN/CMC coating showed superior preservation on fresh-cut apples during storage, reducing enzymatic browning, membrane lipid oxidation, and microbial growth while maintaining hardness and overall quality.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Tianjin Tang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Xingyu Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Si Meng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rui Zheng
- Shimadzu China Co. LTD, Shanghai 200233, China
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
6
|
Pan Y, Liu S, Han Z, Zeng H, Xu X, Shao JH, Xing L, Yin Y. The influence of pH-ultrasonic-induced myofibrillar protein conformation of Penaeus vannamei (Litopenaeus vannamei) on emulsification and digestion characteristics of fish oil oleogel-based emulsions. Int J Biol Macromol 2024; 283:137419. [PMID: 39542286 DOI: 10.1016/j.ijbiomac.2024.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
pH-induced and ultrasound treatment can both adjust spatial conformation to improve the interfacial stability, and fish oil oleogel could be used to enhance oil binding capacity. The relationship between stabilization mechanism and lipid digestion was revealed, considering the protein conformation and interfacial characteristics. The results showed that pH-ultrasonic-induced myofibrillar proteins (MPs) at pH 7.0 had higher interfacial adsorption capacity and surface hydrophobicity as well as more stable secondary structures, which lowered the particle size and enhanced the interfacial stability. In the stomach, the particle size increased along with the decrease in electrostatic repulsion, and β-sheets significantly increased, which promoted aggregation and flocculation. In the small intestine, the reduction of β-sheets favored the interfacial replacement and facilitated the lipid digestion. Therefore, pH-ultrasonic-modified method improved the structure and function of MPs, facilitated the interfacial stability and intestinal digestion.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Huilan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Xuefei Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
7
|
Geng Q, Zhou W, Zhang Y, Wu Z, Chen H. Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein. Foods 2024; 13:3467. [PMID: 39517251 PMCID: PMC11545115 DOI: 10.3390/foods13213467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hypoallergenic processing is an area worthy of continued exploration. In the treatment of the peanut protein (PP), pH shift was applied by acidic (pH 1.0-4.0) and alkaline (pH 9.0-12.0) treatment, after which the pH was adjusted to 7.0. Following pH-shift treatment, PP showed a larger particle size than in neutral solutions. SDS-PAGE, CD analysis, intrinsic fluorescence, UV spectra, and surface hydrophobicity indicated the protein conformation was unfolded with the exposure of more buried hydrophobic residues. Additionally, the IgE-binding capacity of PP decreased after pH-shift treatment on both sides. Label-free LC-MS/MS results demonstrated that the pH-shift treatment induced the structural changes on allergens, which altered the abundance of peptides after tryptic digestion. Less linear IgE-binding epitopes were detected in PP with pH-shift treatment. Our results suggested the pH-shift treatment is a promising alternative approach in the peanut hypoallergenic processing. This study also provides a theoretical basis for the development of hypoallergenic food processing.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenlong Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
8
|
Yang Y, Zhang C, Ma CM, Bian X, Zou L, Fu Y, Shi YG, Wu Y, Zhang N. Characterization of structural and functional properties of soybean 11S globulin during renaturation after denaturation induced by changes in pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6778-6786. [PMID: 38567792 DOI: 10.1002/jsfa.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and β-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the β-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ling Zou
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yan-Guo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
9
|
Zhu PY, Ma CM, Yang Y, Bian X, Ren LK, Wang B, Liu XF, Chen FL, Zhang G, Zhang N. Elucidating the interaction mechanism of rice glutelin and soybean 11S globulin using multi-spectroscopy and molecular dynamics simulation methods. Food Chem 2024; 442:138615. [PMID: 38309242 DOI: 10.1016/j.foodchem.2024.138615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, β-turn and random coil, but decreased β-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.
Collapse
Affiliation(s)
- Peng-Yu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Li-Kun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Feng-Lian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
10
|
Tang S, Liu P, Zhu S, Kou T, Li Y, Jiang L, Qi B. Self-assembly and aggregation behavior of temperature-controlled modified glycinin and d-galactose colloidal particles. Food Chem 2024; 441:138323. [PMID: 38199105 DOI: 10.1016/j.foodchem.2023.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The molecular structure and morphologies of complex colloidal particles with modified glycine (S-11S) and d-galactose were studied by multispectral, microscopic imaging and chromatographic techniques at different temperatures, and the self-assembly and aggregation mechanisms were determined. Overall, high-temperature-treated S-11S and d-galactose associate at cysteine and phenylalanine sites and self-assemble into colloidal particles of greater stability than glycinin and S-11S via ionic and disulfide bonds. The structure and subunit content of composite colloidal particles were changed. Assessing the sub-microstructure reveals that temperature can regulate the directional aggregation of complex colloidal particles. The elasticity of the complex colloidal particles is maximum enhanced at 95 ℃ as confirmed by the rheological. Thus, the heat-treated aggregation of the soy protein and its complex was evaluated to provide a new theoretical basis for the application of soy protein in gels and other areas and contribute to the design of new soy protein products.
Collapse
Affiliation(s)
- Shiqi Tang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Panling Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Sha Zhu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianzhan Kou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Li D, Yao M, Yang Y, Wang B, Zhang D, Zhang N. Changes of structure and functional properties of rice protein in the fresh edible rice during the seed development. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Liu J, Yu Z, Xie W, Yang L, Zhang M, Li C, Shao JH. Effects of tetrasodium pyrophosphate coupled with soy protein isolate on the emulsion gel properties of oxidative myofibrillar protein. Food Chem 2023; 408:135208. [PMID: 36525730 DOI: 10.1016/j.foodchem.2022.135208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The effects of protein oxidation on the emulsion gel properties of myofibrillar protein (MP) in the presence of tetrasodium pyrophosphate (TSPP) and soybean protein isolate (SPI) were investigated from the perspective of interfacial protein interactions. The results showed that the emulsifying activity and emulsion stability of MP increased by 35.2 %-181.6 % with elevated H2O2 concentrations (1-20 mM), while the gel strength and water holding capacity of MP emulsions first increased to a maximum at 5 mM H2O2 and then decreased. TSPP and SPI further reinforced the effects caused by oxidation. The emulsifying properties of MP and its emulsion gel properties were closely related to surface hydrophobicity/hydrogen bonds/hydrophobic interactions and disulfide bonds among interfacial proteins, respectively. However, these correlations became difficult to define when TSPP and SPI were introduced. The study provides a theoretical basis for the strategy development to reduce protein oxidation damage on meat product quality.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ze Yu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenru Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lu Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyun Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
13
|
Wen J, Jin H, Wang L, Zhang Y, Jiang L, Sui X. Fabrication and characterization of high internal phase Pickering emulsions based on pH-mediated soy protein-epigallocatechin-3-gallate hydrophobic and hydrophilic nano-stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
14
|
Insight into binding mechanism between three whey proteins and mogroside V by multi-spectroscopic and silico methods: Impacts on structure and foaming properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Zhu P, Ma C, Fan J, Yang Y, Liu X, Bian X, Ren L, Xu Y, Yu D, Liu L, Fu Y, Gao J, Zhang N. The interaction of trehalose and molten globule state soybean 11S globulin and its impact on foaming capacities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1194-1204. [PMID: 36088619 DOI: 10.1002/jsfa.12214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengyu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Likun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Dehui Yu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Gao
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
16
|
Fu Y, Li Y, Su H, Wu T, Li T. Inhibiting ice recrystallization by amyloid protein fibrils. Int J Biol Macromol 2023; 227:1132-1140. [PMID: 36470434 DOI: 10.1016/j.ijbiomac.2022.11.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Ice recrystallization is harmful to the quality of frozen foods and the cryopreservation of cells and biological tissues, requiring biocompatible materials with ice recrystallization inhibition (IRI) activity. Emerging studies have associated IRI activity with amphiphilic structures. We propose amphiphilic amyloid protein fibrils (APFs) may be IRI-active. APFs were prepared from whey protein isolate (WPI) in water (W-APFs) and in trifluoroethanol (TFE-APFs). W-APFs and TFE-APFs were more IRI-active than WPI over a concentration range of 2.5-10.0 mg/mL. Both APFs showed stronger IRI activity at pH 3.0 than at pH 5.0, 7.0, and 10.0, which was ascribed to the effect of water dispersibility and fibril length. The reduced IRI activity of the two APFs with increasing NaCl content was caused by fibril aggregation. Ice binding by APFs was absent or very weak. Ordered water was observed for the two APFs, which might be essential for IRI activity. Our findings may lead to the use of APFs as novel ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuan Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Improving gas-water interface properties and bioactivities of α-lactalbumin induced by three structurally different saponins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Structural Transitions of Alpha-Amylase Treated with Pulsed Electric Fields: Effect of Coexisting Carrageenan. Foods 2022; 11:foods11244112. [PMID: 36553854 PMCID: PMC9778200 DOI: 10.3390/foods11244112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field (PEF) is an effective way to modulate the structure and activity of enzymes; however, the dynamic changes in enzyme structure during this process, especially the intermediate state, remain unclear. In this study, the molten globule (MG) state of α-amylase under PEF processing was investigated using intrinsic fluorescence, surface hydrophobicity, circular dichroism, etc. Meanwhile, the influence of coexisting carrageenan on the structural transition of α-amylase during PEF processing was evaluated. When the electric field strength was 20 kV/cm, α-amylase showed the unique characteristics of an MG state, which retained the secondary structure, changed the tertiary structure, and increased surface hydrophobicity (from 240 to 640). The addition of carrageenan effectively protected the enzyme activity of α-amylase during PEF treatment. When the mixed ratio of α-amylase to carrageenan was 10:1, they formed electrostatic complexes with a size of ~20 nm, and carrageenan inhibited the increase in surface hydrophobicity (<600) and aggregation (<40 nm) of α-amylase after five cycles of PEF treatment. This work clarifies the influence of co-existing polysaccharides on the intermediate state of proteins during PEF treatment and provides a strategy to modulate protein structure by adding polysaccharides during food processing.
Collapse
|
19
|
Anjali, Kishore N. Influence of amino acids on alkaline pH induced partially folded molten globule like intermediate of bovine serum albumin: Conformational and thermodynamic insights. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Li J, Yang X, Swallah MS, Amin K, Fu H, Ji L, Meng X, Song B, Yu H, Jing W, Liu S. Structure and rheology of foams stabilized by different soybean varieties deficient in β-conglycinin subunits trimers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Liu ZW, Zhou YX, Tan YC, Cheng JH, Bekhit AED, Mousavi Khaneghah A, Aadil RM. Influence of mild oxidation induced through DBD-plasma treatment on the structure and gelling properties of glycinin. Int J Biol Macromol 2022; 220:1454-1463. [PMID: 36122773 DOI: 10.1016/j.ijbiomac.2022.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The effects of dielectric-barrier discharge (DBD) plasma treatment (20 s to 120 s treatment time with 40 kV, 12 kHz) induced mild oxidation on the gelling properties, and related structural changes of glycinin were investigated. The gelling ability of glycinin was improved by the mild oxidation induced by the plasma treatment. Treated glycinin gels exhibited a continuous and uniform network microstructure. Samples treated for 120 s had a 2.07-, 3.99- and 2.03-fold increase in hardness, chewiness, and resilience compared to the 20 s treated samples. Structural analyses showed that primary and secondary structures of glycinin were unaffected. The tertiary structure was shifted, accompanied by a decrease in free sulfhydryl (-SH) content. At the same time, carbonyl content and average particle diameter were increased by DBD treatment. The DBD treatment facilitated the generation/exchange of intermolecular disulfide bonds and enhanced gelling properties of glycinin. It is concluded that controlled plasma-induced protein oxidation can improve protein functionality.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying-Xue Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Cheng Tan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology-State Research Institute, 36 Rakowiecka St., 02-532 Warsaw, Poland.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
22
|
Huang H, Zhu Y, Li L, Yang H, Zhao G, Luo Z. Cross-Linked Bovine Serum Albumin-Crocin I Nanoparticle-Based Gel Network for Stabilizing High Internal Phase Pickering Emulsion. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Insight into binding behavior, structure, and foam properties of α-lactalbumin/glycyrrhizic acid complex in an acidic environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Xie J, Li Y, Qu X, Kang Z. Effects of combined high pressure and temperature on solubility, foaming, and rheological properties of soy
11S
globulin. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing‐Jie Xie
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yan‐Ping Li
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Food Technologies Faculty Sumy National Agrarian University Sumy Ukraine
| | - Xiao‐Qing Qu
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Food Technologies Faculty Sumy National Agrarian University Sumy Ukraine
| | - Zhuang‐Li Kang
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
25
|
Characterization of the binding behavior, structure and foaming properties of bovine α-lactalbumin combined with saponin by the multi-spectroscopic and silico approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Figueroa-González JJ, Lobato-Calleros C, Vernon-Carter EJ, Aguirre-Mandujano E, Alvarez-Ramirez J, Martínez-Velasco A. Modifying the structure, physicochemical properties, and foaming ability of amaranth protein by dual pH-shifting and ultrasound treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Schmitt C, Bovetto L, Buczkowski J, De Oliveira Reis G, Pibarot P, Amagliani L, Dombrowski J. Plant proteins and their colloidal state. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Mild heating assisted alkaline pH shifting modify the egg white protein: The mechanism and the enhancement of emulsifying properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Li J, Yang X, Swallah MS, Fu H, Ji L, Meng X, Yu H, Lyu B. Soy protein isolate: an overview on foaming properties and air–liquid interface. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaxin Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiaoqing Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Hongling Fu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Lei Ji
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiangze Meng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Hansong Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Bo Lyu
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
- College of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
30
|
Pengyu Z, Yang Y, Ling Z, Jian G, Bing W, Xin B, Dehui Y, Linlin L, Congyu L, Na Z. The effect of trehalose on the thermodynamic stability and emulsification of soybean 11S globulin in the molten globule state. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Pang XH, Yang Y, Bian X, Wang B, Ren LK, Liu LL, Yu DH, Yang J, Guo JC, Wang L, Zhang XM, Yu HS, Zhang N. Hemp ( Cannabis sativa L.) Seed Protein-EGCG Conjugates: Covalent Bonding and Functional Research. Foods 2021; 10:foods10071618. [PMID: 34359488 PMCID: PMC8304514 DOI: 10.3390/foods10071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
In order to make HPI have a wide application prospect in the food industry, we used EGCG to modify HPI. In this study, we prepared different concentrations (1, 2, 3, 4, and 5 mM) of (-)-epigallocatechin gallate (EGCG) covalently linked to HPI and use methods such as particle size analysis, circular dichroism (CD), and three-dimensional fluorescence spectroscopy to study the changes in the structure and functional properties of HPI after being covalently combined with EGCG. The particle size data indicated that the covalent HPI-EGCG complex was larger than native HPI, and the particle size was mainly distributed at about 200 μm. CD and three-dimensional fluorescence spectroscopy analyses showed that the conformation of the protein was changed by conjugation with EGCG. The β-sheet content decreased from 82.79% to 66.67% after EGCG bound to the protein, and the hydrophobic groups inside the protein were exposed, which increased the hydrophobicity of the protein and changed its conformation. After HPI and 1 mM of EGCG were covalently bonded, the solubility and emulsifying properties of the covalent complex were improved compared with native HPI. These results indicated that HPI-EGCG conjugates can be added in some foods.
Collapse
Affiliation(s)
- Xin-Hui Pang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Lin-Lin Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - De-Hui Yu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Jing Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
| | - Jing-Chun Guo
- Heilongjiang Academy of Sciences, Harbin 150000, China; (J.-C.G.); (L.W.)
| | - Lei Wang
- Heilongjiang Academy of Sciences, Harbin 150000, China; (J.-C.G.); (L.W.)
| | - Xiu-Min Zhang
- Beijing Academy of Food Sciences, Beijing 100068, China;
| | - Han-Song Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
- Correspondence: (H.-S.Y.); (N.Z.)
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Songbei District, Harbin 150076, China; (X.-H.P.); (Y.Y.); (X.B.); (B.W.); (L.-K.R.); (L.-L.L.); (D.-H.Y.); (J.Y.)
- Correspondence: (H.-S.Y.); (N.Z.)
| |
Collapse
|
32
|
Liu ZW, Zhou YX, Wang F, Tan YC, Cheng JH, Bekhit AED, Aadil RM, Liu XB. Oxidation induced by dielectric barrier discharge (DBD) plasma treatment reduces IgG/IgE binding capacity and improves the functionality of glycinin. Food Chem 2021; 363:130300. [PMID: 34130101 DOI: 10.1016/j.foodchem.2021.130300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The effect of dielectric barrier discharge (DBD) plasma treatment times from 2 to 5 min at 40 kV on IgG/IgE binding capacity and functionality of soybean glycinin was examined. A substantial reduction in the binding capacity (91.64% for IgG and 81.49% for IgE) was obtained after 5 min of plasma treatment, as determined by western-blot and ELISA analyses. Further studies demonstrated that the elimination of antigenicity and allergenicity of glycinin was directly related to plasma-induced structural changes on two aspects. A conformational alteration caused by oxidation of peptide bond amino groups, accompanied with an oxidation of Trp, Tyr, and Phe amino acid residues, which was confirmed by surface hydrophobicity, multi-spectroscopic analysis, and amino acid analysis. The cleavage of polypeptide chains inevitably partially diminished the linear epitopes, resulting in a primary decline in IgG/IgE binding capacity. Additionally, an increase in the solubility from 10.78 ± 0.35 to 65.96 ± 1.86% and significant increase in the emulsifying ability from 21.08 ± 2.64 to 160.29 ± 4.12 m2/g were observed after treatment of the plasma for 2 min. The present results confirm the potential use of DBD for the production of hypoallergenic soy protein-based products and improving their technical functions such as solubility and emulsifying ability.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying-Xue Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Feng Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Cheng Tan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Xiu-Bin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
33
|
Tang CH. Nano-architectural assembly of soy proteins: A promising strategy to fabricate nutraceutical nanovehicles. Adv Colloid Interface Sci 2021; 291:102402. [PMID: 33752139 DOI: 10.1016/j.cis.2021.102402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
Use of protein-based nanovehicles has been well recognized to be one of the most effective strategies to improve water dispersibility, stability and bioavailability of nutraceuticals or bioactive ingredients. Thanks to their health-benefiting effects and unique assembly behavior, soy proteins seem to be the perfect food proteins for fabricating nanovehicles in this regard. This review presents the state-of-art knowledge about the assembly of soy proteins into nano-architectures, e. g., nanoparticles, nanocomplexes or nanogels, induced by different physicochemical strategies and approaches. The strategies to trigger the assembly of soy proteins into a variety of nano-architectures are highlighted and critically reviewed. Such strategies include heating, enzymatic hydrolysis, pH shift, urea or ethanol treatment, reduction, and static high pressure treatment. The self-assembly behavior of soy proteins (native or denatured) is also reviewed. Besides the assembly of proteins alone, soy proteins can co-assemble with polysaccharides to form versatile nano-architectures, through different processes, e.g., heating or ultrasonication. Finally, recent progress in the development of assembled soy protein nano-architectures as nanovehicles for hydrophobic nutraceuticals is briefly summarized. With the fast increasing health awareness for natural and safe functional foods, this review is of crucial relevance for providing an important strategy to develop a kind of novel soy protein-based functional foods with dual-function health effects from soy proteins and nutraceuticals.
Collapse
|