1
|
Chai Y, Zhou Y, Zhang K, Shao P. Resveratrol nanoparticles coated by metal-polyphenols supramolecular enhance antioxidant activity and long-term stability of dietary gel. Food Chem 2025; 465:141987. [PMID: 39608093 DOI: 10.1016/j.foodchem.2024.141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Resveratrol (RES) is an important functional substance with multiple active properties. However, RES is susceptible to natural environmental conditions that reduce its bioactivity. To improve the bioavailability of RES, in this study, Catechin and Fe3+/Ca2+ were selected to form supramolecules, which were then coated on the surface of hydrophobic RES nanoparticles (RES NPs) to create composite RES NPs. The obtained composite RES NPs demonstrated higher antioxidant capacity and better photo-thermal stability than RES NPs. Additionally, a pectin (PE) dietary gel was designed as a delivery carrier for RES. The results showed that the incorporation of composite RES NPs not only endowed the gels with significant dietary activity but also enhanced the texture, water retention capacity and hydrophobicity. After 28 days of storage, the retention rate of RES could be maintained above 90 % in the dietary gels. Meanwhile, the controlled release of RES was achieved in in vitro simulated digestion.
Collapse
Affiliation(s)
- Yiyang Chai
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept, Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany; Biotechnology Center (Biotechnikum), University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang, Huzhou 313200, PR China.
| |
Collapse
|
2
|
Huang M, Song Y, Wang H, Li H, Zhou R, Cao Q, Dong L, Ren G, Wu D, Lei Q, Fang W, Deng D, Xie H. Fabrication and characterization of lysozyme fibrils/Zein complexes for resveratrol encapsulation: Improving stability, antioxidant and antibacterial activities. Food Chem 2025; 464:141746. [PMID: 39454440 DOI: 10.1016/j.foodchem.2024.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Resveratrol (Res), a naturally occurring hydrophobic polyphenol, boasts numerous health-promoting bio-functionalities. However, its limited water solubility and stability impede further applications in the food industry. This study aims to address these challenges by fabricating stable Res-loaded lysozyme fibrils/zein (Ly-F/Z) complexes. The complexes were prepared using an antisolvent precipitation method. The interaction mechanism between Ly-F and zein was elucidated through dynamic light scattering, Fourier-transform infrared spectroscopy and dissociative experiments, revealing the involvement of hydrogen bonding, electrostatic forces and hydrophobic interactions in complex formation. The Ly-F/Z complexes were utilized to encapsulate Res, resulting in an encapsulation efficiency of 82.58 %. X-ray diffraction analysis confirmed the successful encapsulation of Res within Ly-F/Z complexes, presenting an amorphous state. The Ly-F/Z-Res complexes exhibited a "fruit tree" morphology with dense fruit, showcasing remarkable stability, antioxidant and antibacterial activities. Consequently, the Ly-F/Z complexes can serve as promising delivery systems for Res in functional foods.
Collapse
Affiliation(s)
- Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Han Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Rongmi Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lijuan Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dan Deng
- Hangzhou Linping Hospital of Traditional Chinese and Western Medicine, Linping, 311100, Zhejiang, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Liu S, Yu L, Han Y, Wang S, Liu Z, Xu H. Preparation, characterization, formation mechanism, and stability studies of zein/pectin nanoparticles for the delivery of prodigiosin. Int J Biol Macromol 2024; 290:138915. [PMID: 39706435 DOI: 10.1016/j.ijbiomac.2024.138915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods. The encapsulation efficiency and loading capacities of prodigiosin in Z-Pet/PG 2:1 nanoparticles were 89.05 % and 7.49 %, respectively, with a zeta potential of -23.03 mV, with a particle size was 184.13 nm. The nanoparticles were uniformly distributed and possessed a spherical morphology, as determined using scanning electron microscopy. The formation mechanism between nanoparticles has been investigated using circular dichroism, fluorescence spectroscopy, molecular docking, and Fourier-transform infrared spectroscopy, which indicated stabilization predominantly through electrostatic, hydrophobic, and hydrogen-bonding interactions. Furthermore, Z-Pet/PG 2:1 nanoparticles proved remarkable stability across a pH range from 3 to 7, NaCl concentrations below 50 mmol/L, at elevated temperatures (60, 70, and 80 °C) for 1 h, and at redispersion. Prodigiosin was progressively delivered by the nanoparticles in simulated gastrointestinal settings, with a cumulative release rate of 75.32 % in simulated intestinal fluid, thereby demonstrating enhanced bioavailability and allowing for a controlled and sustained-release in vitro. These findings indicate that Z-Pet/PG nanoparticles are a promising delivery platform for prodigiosin, and are potentially applicable to other hydrophobic compounds with limited bioavailability.
Collapse
Affiliation(s)
- Shuhua Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Leijuan Yu
- Shandong Polytechnic, Jinan 250104, China
| | - Yanlei Han
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Shanshan Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Zihao Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Hui Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China.
| |
Collapse
|
4
|
Ma D, Zhang X, Yin C, Xu Z, Zhao S, Qin M, Zhao Q, Li Y, Zhang S. Fabrication and characterization of curcumin-encapsulated composite nanoparticles based on soybean protein isolate hydrolysate/soybean polysaccharides: Interaction mechanism, stability and controlled release properties. Int J Biol Macromol 2024; 282:137540. [PMID: 39537045 DOI: 10.1016/j.ijbiomac.2024.137540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study developed a stable nanoparticle (CUR-SPIH/SSPS) using soybean protein isolate hydrolysate (SPIH) and soybean polysaccharides (SPSS) to protect curcumin (CUR) from degradation during storage and exposure to light and heat conditions, achieving controlled release. The SPIH to SPSS mass ratio of 5:1 gave the CUR-SPIH/SPSS nanoparticles with the highest CUR encapsulation efficiency (95.60 ± 3.00 %) and the strongest antioxidant capacity (90.26 ± 2.42 % and 66.78 ± 1.89 % for ABTS•+ and DPPH radical scavenging ability, respectively), and CUR was successfully encapsulated within the CUR-SPIH/SPSS as evidenced by X-ray diffraction. FTIR and fluorescence spectroscopy analysis confirmed that the interactions in CUR-SPIH/SPSS are primarily driven by electrostatic, hydrogen bonding, and hydrophobic interactions. Moreover, the CUR-SPIH/SPSS nanoparticles significantly enhanced CUR's thermal and UV light stability. The UV degradation kinetics showed that the half-life of CUR-SPIH/SPSS (247.55 min) was 1.61 times longer than that of free CUR (154.03 min). The release rate of CUR incorporated into CUR-SPIH/SPSS was significantly delayed during in vitro gastrointestinal digestion. This study introduces an innovative nanoparticle strategy for the stable delivery of lipophilic compounds.
Collapse
Affiliation(s)
- Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zheng Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siru Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengxing Qin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Zhou S, Li J, Lin D, Feng X, Zhang R, Wang D, Zhao A, Tian H, Yang X. Development of konjac glucomannan-based active-intelligent emulsion films loaded with different curcumin-metal chelates: Stability, antioxidant, fresh-keeping and freshness detection properties. Int J Biol Macromol 2024; 282:137231. [PMID: 39491698 DOI: 10.1016/j.ijbiomac.2024.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to develop konjac glucomannan (KGM)-based active-intelligent emulsion films loaded with different curcumin-metal chelates, where six types of films were prepared and their corresponding properties were investigated. The FTIR and XRD results showed that curcumin chelated with metal ions successfully. Moreover, curcumin-Ca chelate had the best thermal stability and antioxidant activity with the DPPH and ABTS radical-scavenging activity values of 38.28 % and 22.79 %, respectively. Furthermore, the results of microstructure and contact angle showed that chelation with metal ions improved the interfacial interactions between curcumin-metal chelates and film matrix. Interestingly, KGM-based active-intelligent emulsion films loaded with curcumin-Ca chelate (Type IV film) displayed the best thermal stability with the highest temperature of maximum weight loss at 380 °C, the best mechanical property, the highest total phenol content (17.31 mg gallic acid/g film), as well as the best antioxidant activity with DPPH and ABTS radical-scavenging activity values of 69.24 % and 58.66 %, respectively, and the best antibacterial activity. Consequently, Type IV film was used for the fresh-keeping and freshness detection of pork. The results showed that the pork packaged with Type IV film displayed excellent fresh-keeping properties, including reducing the increase rate of volatile basic nitrogen (TVB-N) and pH values and the decrease rate of hardness and elasticity of pork during storage time. Meanwhile, the color of Type IV film gradually changed from yellow to red. Therefore, this study suggested that KGM-based active-intelligent emulsion films have great potential application in the fresh-keeping and freshness detection of fresh meat.
Collapse
Affiliation(s)
- Siyu Zhou
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Juncong Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Xinyi Feng
- Xi'an Supervision & Inspection Institute of Product Quality, Xi'an 710065, China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Di Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
6
|
Liu M, Wang X, Li Y, Jin D, Jiang Y, Fang Y, Lin Q, Ding Y. Effects of OSA-starch-fatty acid interactions on the structural, digestibility and release characteristics of high amylose corn starch. Food Chem 2024; 454:139742. [PMID: 38795623 DOI: 10.1016/j.foodchem.2024.139742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
This study investigated the effects of octenyl succinic anhydride (OSA)-starch-fatty acid (FA) interactions on the structural, digestibility and release characteristics of high amylose corn starch (HAS). FTIR and XRD analysis showed that the hydrophobic interaction between HAS and FA promoted the covalent binding between OSA and HAS. With the increasing of the FA chain length, the complex index, degree of substitution, R1047/1022 and relative crystallinity of OSA-HAS-FA increased first and then decreased, whereas the first-order rate coefficient and percentage of digested in infinite time showed an opposite trend. Structural changes and the molecular interactions of OSA-HAS-FA with 12‑carbon FA resulted in highest resistant starch content (45.43%) and encapsulation efficiency of curcumin (Cur) (47.98%). In vitro release test revealed that Cur could be gradually released from OSA-HAS-FA in simulated gastric, intestinal and colonic fluids. Results provided novel insights into HAS-FA complex grafted with OSA as carrier for colon-specific of functional materials.
Collapse
Affiliation(s)
- Mingyue Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Yihui Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Danni Jin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023,China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
7
|
Yang Q, Feng S, Guo J, Guan F, Zhang S, Sun J, Zhang Y, Xu Y, Zhang X, Bao D, He J. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems. Int J Biol Macromol 2024; 275:133367. [PMID: 38945720 DOI: 10.1016/j.ijbiomac.2024.133367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
To replace traditional petrochemical-based thermal insulation materials, in this work, the chitosan (CHI)/alginate (ALG) (CA) aerogels with three-dimensional hierarchical pore network structure were constructed by compositing CHI and ALG using a synergistic strategy of hydrogen bonding dissolution and covalent crosslinking. The structure and properties were further regulated by crosslinking the CA aerogels with epichlorohydrin (ECH). The CA aerogels exhibited various forms of covalent crosslinking, hydrogen bonding and electrostatic interactions, with hydrogen bonding content reaching 79.12 %. The CA aerogels showed an excellent three-dimensional hierarchical pore network structure, with an average pore size minimum of 15.92 nm. The structure regulation of CA aerogels obtained excellent compressive properties, with an increase of stress and strain by 137.61 % and 45.05 %, which can support a heavy object 5000 times its weight. Additionally, CA aerogels demonstrate excellent thermal insulation properties and low thermal conductivity, comparable to commercially available insulation materials. More importantly, CA aerogels have good cyclic insulation stability and thermal properties, and they have a flame retardancy rating of V-0, which shows the stability of insulation properties and excellent safety. CA aerogels provide new ideas for the development of biomass thermal insulation materials and are expected to be candidates for thermal management applications.
Collapse
Affiliation(s)
- Qiang Yang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, PR China
| | - Sen Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yi Xu
- College of Textile and Clothing, Hunan Institute of Engineering, Xiangtan 411104, PR China
| | - Xin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jiahao He
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
8
|
Wang N, Fan H, Wang J, Wang H, Liu T. Fabrication and characterization of curcumin-loaded composite nanoparticles based on high-hydrostatic-pressure-treated zein and pectin: Interaction mechanism, stability, and bioaccessibility. Food Chem 2024; 446:138286. [PMID: 38428073 DOI: 10.1016/j.foodchem.2023.138286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 03/03/2024]
Abstract
We successfully designed curcumin (Cur)-loaded composite nanoparticles consisting of high-hydrostatic-pressure-treated (HHP-treated) zein and pectin with a pressure of 150 MPa (zein-150 MPa-P-Cur), showing nano-spherical structure with high zeta-potential (-36.72 ± 1.14 mV) and encapsulation efficiency (95.64 ± 1.23 %). We investigated the interaction mechanism of the components in zein-150 MPa-P-Cur using fluorescence spectroscopy, molecular dynamics simulation, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. Compared with zein-P-Cur, the binding sites and binding energy (-53.68 kcal/mol vs. - 44.22 kcal/mol) of HHP-treated zein and Cur were increased. Meanwhile, the interaction force among HHP-treated zein, pectin, and Cur was significantly enhanced, which formed a tighter and more stable particle structure to further improve package performance. Additionally, Cur showed the best chemical stability in zein-150 MPa-P-Cur. And the bioavailability of Cur was increased to 65.53 ± 1.70 %. Collectively, composite nanoparticles based on HHP-treated zein and pectin could be used as a promising Cur delivery system.
Collapse
Affiliation(s)
- Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-effeciency Utilization of By-products of Jilin Province, Changchun 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Jiaxun Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Hanmiao Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China.
| |
Collapse
|
9
|
Lei Y, Lee Y. Stabilization of zein nanoparticles with tween-80 and fucoidan for encapsulation of eugenol via a nozzle simulation chip. Food Res Int 2024; 188:114514. [PMID: 38823885 DOI: 10.1016/j.foodres.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Eugenol (EU), a natural bioactive compound found in various plants, offers numerous health benefits, but its application in the food and pharmaceutical industry is limited by its high volatility, instability, and low water solubility. Therefore, this study aimed to utilize the surface coating technique to develop zein-tween-80-fucoidan (Z-T-FD) composite nanoparticles for encapsulating eugenol using a nozzle simulation chip. The physicochemical characteristics of the composite nanoparticles were examined by varying the weight ratios of Z, T, and FD. Results showed that the Z-T-FD weight ratio of 5:1:15 exhibited excellent colloidal stability under a range of conditions, including pH (2-8), salt concentrations (10-500 mmol/L), heating (80 °C), and storage (30 days). Encapsulation of EU into Z-T-FD nanoparticles (0.5:5:1:15) resulted in an encapsulation efficiency of 49.29 ± 1.00%, loading capacity of 0.46 ± 0.05%, particle size of 205.01 ± 3.25 nm, PDI of 0.179 ± 0.006, and zeta-potential of 37.12 ± 1.87 mV. Spherical structures were formed through hydrophobic interaction and hydrogen bonding, as confirmed by Fourier transform infrared spectroscopy and molecular docking. Furthermore, the EU-Z-T-FD (0.5:5:1:15) nanoparticles displayed higher in vitro antioxidant properties (with DPPH and ABTS radical scavenging properties at 75.28 ± 0.16% and 39.13 ± 1.22%, respectively), in vitro bioaccessibility (64.78 ± 1.37%), and retention rates under thermal and storage conditions for EU compared to other formulations. These findings demonstrate that the Z-T-FD nanoparticle system can effectively encapsulate, protect, and deliver eugenol, making it a promising option for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanlin Lei
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
10
|
Tong MJ, Song MX, Liu Z, Yu W, Wang CZ, Cai CD, Zhang YK, Zhang YQ, Wang LP, Zhu ZZ, Yin XF, Yan ZQ. A Bionic Thermosensitive Sustainable Delivery System for Reversing the Progression of Osteoarthritis by Remodeling the Joint Homeostasis. Adv Healthc Mater 2024; 13:e2303792. [PMID: 38394066 DOI: 10.1002/adhm.202303792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Although the pathogenesis of osteoarthritis (OA) is unclear, inflammatory cytokines are related to its occurrence. However, few studies focused on the therapeutic strategies of regulating joint homeostasis by simultaneously remodeling the anti-inflammatory and immunomodulatory microenvironments. Fibroblast growth factor 18 (FGF18) is the only disease-modifying OA drug (DMOAD) with a potent ability and high efficiency in maintaining the phenotype of chondrocytes within cell culture models. However, its potential role in the immune microenvironment remains unknown. Besides, information on an optimal carrier, whose interface and chondral-biomimetic microenvironment mimic the native articular tissue, is still lacking, which substantially limits the clinical efficacy of FGF18. Herein, to simulate the cartilage matrix, chondroitin sulfate (ChS)-based nanoparticles (NPs) are integrated into poly(D, L-lactide)-poly(ethylene glycol)-poly(D, L-lactide) (PLEL) hydrogels to develop a bionic thermosensitive sustainable delivery system. Electrostatically self-assembled ChS and ε-poly-l-lysine (EPL) NPs are prepared for the bioencapsulation of FGF18. This bionic delivery system suppressed the inflammatory response in interleukin-1β (IL-1β)-mediated chondrocytes, promoted macrophage M2 polarization, and inhibited M1 polarization, thereby ameliorating cartilage degeneration and synovitis in OA. Thus, the ChS-based hydrogel system offers a potential strategy to regulate the chondrocyte-macrophage crosstalk, thus re-establishing the anti-inflammatory and immunomodulatory microenvironment for OA therapy.
Collapse
Affiliation(s)
- Min-Ji Tong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meng-Xiong Song
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Zhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen-Zhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuan-Dong Cai
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Kai Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Peng Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen-Zhong Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiao-Fan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Zuo-Qin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Li Y, Wang C, Hu N, Zhao Y, Wu Y, Liu J, Zhao Y. Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein-Pea Protein Complex: Physicochemical and Gel Properties. Gels 2024; 10:301. [PMID: 38786218 PMCID: PMC11120923 DOI: 10.3390/gels10050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant proteins have the advantages of low cost and high yield, but they are still not comparable to animal proteins in processing due to factors such as gelation and solubility. How to enhance the processing performance of plant proteins by simple and green modification means has become a hot research topic nowadays. Based on the above problems, we studied the effect of gel induction on its properties. In this study, a pea protein-zein complex was prepared by the pH cycle method, and the effects of different induced gel methods on the gel properties of the complex protein were studied. The conclusions are as follows: All three gel induction methods can make the complex protein form a gel system, among which the gel strength of heat treatment and the TG enzyme-inducted group is the highest (372.84 g). Through the observation of the gel microstructure, the gel double network structure disappears and the structure becomes denser, which leads to a stronger water-binding state of the gel sample in the collaborative treatment group. In the simulated digestion experiment, heat treatment and enzyme-induced samples showed the best slow-release effect. This study provides a new method for the preparation of multi-vegetable protein gels and lays a theoretical foundation for their application in food processing.
Collapse
Affiliation(s)
- Yan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.L.); (C.W.); (Y.Z.)
- Chengde Center for Disease Control and Prevention, Chengde 067000, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (N.H.); (Y.W.); (J.L.)
| | - Chi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.L.); (C.W.); (Y.Z.)
| | - Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (N.H.); (Y.W.); (J.L.)
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.L.); (C.W.); (Y.Z.)
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (N.H.); (Y.W.); (J.L.)
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (N.H.); (Y.W.); (J.L.)
| | - Yilin Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.L.); (C.W.); (Y.Z.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (N.H.); (Y.W.); (J.L.)
| |
Collapse
|
12
|
Ren J, Wu H, Lu Z, Qin Q, Jiao X, Meng G, Liu W, Li G. pH-driven preparation of pea protein isolate-curcumin nanoparticles effectively enhances antitumor activity. Int J Biol Macromol 2024; 256:128383. [PMID: 38000617 DOI: 10.1016/j.ijbiomac.2023.128383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Soluble pea protein isolate-curcumin nanoparticles were successfully prepared at a novel pH combination, with encapsulation efficiency and drug loading amount of 95.69 ± 1.63 % and 32.73 ± 0.56 μg/mg, respectively, resulting in >4000-fold increase in the water solubility of curcumin. The encapsulation propensity and interaction mechanism of pea protein isolates with curcumin and colchicine were comparatively evaluated by structural characterization, molecular dynamics simulations and molecular docking. The results showed that the nanoparticles formed by curcumin and colchicine with pea protein isolates were mainly driven by hydrogen bonding and hydrophobic interactions, and the binding process did not alter the secondary structure of pea protein. In contrast, pea protein isolate-curcumin nanoparticles exhibited smaller particle size, lower RMSD value, lower binding Gibbs free energy and greater structural stability. Therefore, pea protein isolate is a suitable encapsulation material for hydrophobic compounds. Furthermore, the pea protein isolate-curcumin nanoparticles showed remarkably enhanced antitumor activity, as evidenced by a significant reduction in IC50, and the anti-tumor mechanism of it involved the ROS-induced mitochondria-mediated caspase cascade apoptosis pathway. These findings provide insights into the development of pea protein-based delivery systems and the possibility of a broader application of curcumin in antitumor activity.
Collapse
Affiliation(s)
- Jie Ren
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Hanshuo Wu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Zhihao Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Qingyu Qin
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xinru Jiao
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Ganlu Meng
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Wenying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Guoming Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China.
| |
Collapse
|
13
|
Li Y, Liu J, Shi X, Zhang H, Zhang L, Xu Z, Zhang T, Yu Y, Du Z. Precursor template-induced egg white-derived peptides self-assembly for the enhancement of curcumin: Structure, environmental stability, and bioavailability. Food Res Int 2023; 172:113120. [PMID: 37689888 DOI: 10.1016/j.foodres.2023.113120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Natural multicomponent peptides with abundant bioactivity, varied sizes, and tunable interaction potential are available for rational designing novel self-assembled delivery carriers. Herein, we exploited zein-hyaluronic acid nanoparticles (Z-HA NPs) with a predetermined ordered structure as precursor templates to induce the self-assembly of egg white-derived peptides (EWDP) to generate stable spherical architectures for the enhancement of curcumin (Cur). The resulting Z-EWDP-HA NPs encapsulated hydrophobic Cur through robust hydrogen bonding and hydrophobic interactions with high encapsulation efficiency (97.38% at pH 7.0). The NPs presented superior Cur aqueous solubility, redispersibility, and photothermal stability. More importantly, the self-assembled EWDP could exert synergistic antioxidant activity with Cur and enhance the bioaccessibility of Cur. Meanwhile, the favorable biocompatibility and membrane affinity of EWDP further prolonged residence and time-controlled release feature of Cur in the small intestine. Precursor template-induced multicomponent peptides' self-assembly provides an efficient and controllable strategy for co-enhanced bioactivity and self-assembly capacity of peptides, which could dramatically broaden the functionalization of multicomponent peptides hydrolyzed from natural food proteins.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Leiyi Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ziang Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
14
|
Liu Y, Ma M, Yuan Y. The potential of curcumin-based co-delivery systems for applications in the food industry: Food preservation, freshness monitoring, and functional food. Food Res Int 2023; 171:113070. [PMID: 37330831 DOI: 10.1016/j.foodres.2023.113070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Currently, curcumin-based co-delivery systems are receiving widespread attention. However, a systematic summary of the possibility of curcumin-based co-delivery systems used for the food industry from multiple directions based on the functional characteristics of curcumin is lacking. This review details the different forms of curcumin-based co-delivery systems including the single system of nanoparticle, liposome, double emulsion, and multiple systems composed of different hydrocolloids. The structural composition, stability, encapsulation efficiency, and protective effects of these forms are discussed comprehensively. The functional characteristics of curcumin-based co-delivery systems are summarized, involving biological activity (antimicrobial and antioxidant), pH-responsive discoloration, and bioaccessibility/bioavailability. Correspondingly, potential applications for food preservation, freshness detection, and functional foods are introduced. In the future, more novel co-delivery systems for active ingredients and food matrices should be developed. Besides, the synergistic mechanisms between active ingredients, delivery carrier/active ingredient, and external physical condition/active ingredient should be explored. In conclusion, curcumin-based co-delivery systems have the potential to be widely used in the food industry.
Collapse
Affiliation(s)
- Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
16
|
Zhong W, Li J, Wang C, Zhang T. Formation, stability and in vitro digestion of curcumin loaded whey protein/ hyaluronic acid nanoparticles: Ethanol desolvation vs. pH-shifting method. Food Chem 2023; 414:135684. [PMID: 36809722 DOI: 10.1016/j.foodchem.2023.135684] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Curcumin (CUR) was encapsulated in whey protein isolate/hyaluronic acid (WPI/HA) electrostatic nanoparticles at pH 5.4, 4.4, 3.4 and 2.4 using ethanol desolvation (DNP) or pH-shifting (PSNP) method. The prepared nanoparticles were characterized and compared for physiochemical properties, structure, stability, and in vitro digestion. PSNPs had smaller particle size, more uniform distribution, and higher encapsulation efficiency than DNPs. Main driving forces involved for fabricating the nanoparticles were electrostatic forces, hydrophobic forces, and hydrogen bonds. PSNP exhibited better resistance towards salt, thermal treatment, and long-term storage while DNPs showed stronger protection for CUR against thermal degradation and photodegradation. Stability of nanoparticles increased with decreasing pH values. In vitro simulated digestion exhibited that DNPs had lower release rate of CUR in SGF and higher antioxidant activity of its digestion products. Data may provide a comprehensive reference for selection of loading approach when constructing nanoparticles based on proteins/polysaccharides electrostatic complexes.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jiatong Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
17
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Recent advances in delivery systems of fucoxanthin. Food Chem 2023; 404:134685. [DOI: 10.1016/j.foodchem.2022.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
19
|
Wang L, Wei Z, Xue C. Effect of carboxymethyl konjac glucomannan coating on the stability and colon-targeted delivery performance of fucoxanthin-loaded gliadin nanoparticles. Food Res Int 2022; 162:111979. [PMID: 36461224 DOI: 10.1016/j.foodres.2022.111979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Fucoxanthin (FUC) is a hydrophobic carotenoid that has a protective effect on the colon. To exert the beneficial effects of FUC in the colon and expand its application in functional food, FUC was encapsulated in carboxymethyl konjac glucomannan (CMKGM)-coated gliadin nanoparticles (Gli-CMKGM NPs) in this paper. Gli-CMKGM NPs were prepared at pH 5.0 with Gli/CMKGM mass ratio of 1:1. The formation of Gli-CMKGM NPs was associated with hydrogen bonding, hydrophobic interactions and electrostatic attractions. Additionally, Gli-CMKGM NPs exhibited good stability to pH, salt, heating and storage. The results showed that FUC had been successfully encapsulated in Gli-CMKGM NPs, and the encapsulation efficiency of FUC-Gli-CMKGM NPs was significantly higher than that of uncoated FUC-Gli NPs. FUC-Gli-CMKGM NPs had a nano-spherical structure, and embedded FUC in Gli-CMKGM NPs improved their stabilities to photodegradation and thermal degradation. Furthermore, in vitro release and in vivo organ distribution studies showed that FUC-Gli-CMKGM NPs had an excellent colon targeting function. Overall, our findings illustrated the promise of CMKGM-coated Gli NPs for constructing targeted delivery systems for FUC.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
20
|
Jin H, Li M, Tian F, Yu F, Zhao W. An Overview of Antitumour Activity of Polysaccharides. Molecules 2022; 27:molecules27228083. [PMID: 36432183 PMCID: PMC9692906 DOI: 10.3390/molecules27228083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, and they have become the focus of current antitumour drug research owing to their significant antitumour effects. In addition to the direct antitumour activity of some natural polysaccharides, their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in natural polysaccharides and polysaccharide-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hongzhen Jin
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Maohua Li
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Tian
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| |
Collapse
|
21
|
Liang X, Cheng W, Liang Z, Zhan Y, McClements DJ, Hu K. Co-Encapsulation of Tannic Acid and Resveratrol in Zein/Pectin Nanoparticles: Stability, Antioxidant Activity, and Bioaccessibility. Foods 2022; 11:3478. [PMID: 36360091 PMCID: PMC9656218 DOI: 10.3390/foods11213478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Hydrophilic tannic acid and hydrophobic resveratrol were successfully co-encapsulated in zein nanoparticles prepared using antisolvent precipitation and then coated with pectin by electrostatic deposition. The encapsulation efficiencies of the tannic acid and resveratrol were 51.5 ± 1.9% and 77.2 ± 3.2%, respectively. The co-encapsulated nanoparticles were stable against aggregation at the investigated pH range of 2.0 to 8.0 when heated at 80 °C for 2 h and when the NaCl concentration was below 50 mM. The co-encapsulated tannic acid and resveratrol exhibited stronger in vitro antioxidant activity than ascorbic acid, as determined by 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH·) and 2,2'-azinobis (3-ethylberizothiazoline-6-sulfonic acid) radical cation (ABTS+·) scavenging assays. The polyphenols-loaded nanoparticles significantly decreased the malondialdehyde (MDA) concentration and increased the superoxide dismutase (SOD) and catalase (CAT) activities in peroxide-treated human hepatoma cells (HepG2). An in vitro digestion model was used to study the gastrointestinal fate of the nanoparticles. In the stomach, encapsulation inhibited tannic acid release, but promoted resveratrol release. However, in the small intestine, it led to a relatively high bioaccessibility of 76% and 100% for resveratrol and tannic acid, respectively. These results suggest that pectin-coated zein nanoparticles have the potential for the co-encapsulation of both polar and nonpolar nutraceuticals or drugs.
Collapse
Affiliation(s)
- Xiao Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Clinical Medicine Department, Guangdong Maoming Health Vocational College, Maoming 525400, China
| | - Wanting Cheng
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhanhong Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yiling Zhan
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | | | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
22
|
Yuan Y, Zhang S, Ma M, Xu Y, Wang D. Delivery of curcumin by shellac encapsulation: Stability, bioaccessibility, freeze-dried redispersibility, and solubilization. Food Chem X 2022; 15:100431. [PMID: 36211724 PMCID: PMC9532768 DOI: 10.1016/j.fochx.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Shellac can nano-encapsulate curcumin by pH cycle. The starting point of the design is economy, simplicity, energy saving and safety. High loading capacity of curcumin is the unique advantage of shellac nanoparticles. The nanoparticles had good physicochemical stability and bioaccessibility. The redispersibility is proportional to the mass ratio of shellac-to-curcumin.
Curcumin is an active ingredient with multiple functions, however, its application is limited by its low stability, bioaccessibility, freeze-dried redispersibility, and solubilization. The work aims to improve the application of curcumin (Cur) by encapsulation. Shellac was the wall material inspired by its pH-dependent deprotonation and amphiphilic nature to form nanoparticles. The curcumin/shellac nanoparticles (S/Cur) exhibited a bright spot of high loading capacity (the maximum of higher than 70 %), while still having high encapsulation efficiency (the minimum of higher than 85 %). Transmission electron microscopy showed that S/Cur was a spherical structure. It exhibited good physical stability, including pH (4.0–8.0), ionic strength (NaCl, < 900 mM), thermo stability (80 ℃, 180 min), and storage stability (light and dark, 4 and 25 ℃, 20 days). Meanwhile, the chemical stability was increased by encapsulation. Furthermore, the bioaccessibility of Cur was improved to 75.95 %, which is attributed to the pH response of shellac. Additionally, S/Cur had freeze-dried redispersibility and solubilization, which is proportional to the mass ratio of shellac-to-Cur. The mechanism of S/Cur formation involved hydrophobic interaction and hydrogen bonds, and the nanoconfined Cur was amorphous.
Collapse
|
23
|
Wang X, Wang M, Zhao H, Liu J, Xing M, Huang H, Cohen Stuart MA, Wang J. Flash nanoprecipitation enables regulated formulation of soybean protein isolate nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Yan X, Li M, Xu X, Liu X, Liu F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Front Nutr 2022; 9:999373. [PMID: 36245539 PMCID: PMC9554640 DOI: 10.3389/fnut.2022.999373] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 12/25/2022] Open
Abstract
Zein is a kind of excellent carrier materials to construct nano-sized delivery systems for hydrophobic bioactives, owing to its unique interfacial behavior, such as self-assembly and packing into nanoparticles. In this article, the chemical basis and preparation methods of zein nanoparticles are firstly reviewed, including chemical crosslinking, emulsification/solvent evaporation, antisolvent, pH-driven method, etc., as well as the pros and cons of different preparation methods. Various strategies to improve their physicochemical properties are then summarized. Lastly, the encapsulation and protection effects of zein-based nano-sized delivery systems (e.g., nanoparticles, nanofibers, nanomicelles and nanogels) are discussed, using curcumin as a model bioactive ingredient. This review will provide guidance for the in-depth development of hydrophobic bioactives formulations and improve the application value of zein in the food industry.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- *Correspondence: Fuguo Liu
| |
Collapse
|
25
|
Self-assembled asparaginase-based nanoparticles with enhanced anti-cancer efficacy and anticoagulant activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Li Y, Liu J, Ma S, Yang M, Zhang H, Zhang T, Yu Y, Du Z. Co-assembly of egg white-derived peptides and protein-polysaccharide complexes for curcumin encapsulation: The enhancement of stability, redispersibility, and bioactivity. Food Chem 2022; 394:133496. [PMID: 35728466 DOI: 10.1016/j.foodchem.2022.133496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
In this study, a nanocomposite was developed by introducing egg white-derived peptides (EWDP) into protein-polysaccharide complexes to trigger the self-assembly of EWDP for encapsulating curcumin (Cur) via the pH-driven method. In this system, EWDP could cooperate with protein-polysaccharide complexes to exert superior colloidal properties with excellent Cur aqueous solubility, redispersibility, and physical stability and act as a bioactivity amplifier to endow the delivery system with the synergistic antioxidant activity. This phenomenon was ascribed to the additional hydrophobic cavities, hydrogen bonding, and electrostatic interactions organized by EWDP. Additionally, the presence of EWDP could considerably boost the cellular antioxidant activity of Cur by decreasing reactive oxygen species (ROS) levels, improving free radical scavenging capacity, and recovering the activity of endogenous antioxidant enzymes. These findings might open up an avenue to reinforce lipophilic nutraceuticals' physicochemical properties and functionalities based on the co-assembly of food-derived peptides and protein-polysaccharide complexes.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
27
|
Wang C, Cui B, Sun Y, Wang C, Guo M. Preparation, stability, antioxidative property and in vitro release of cannabidiol (CBD) in zein-whey protein composite nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Guan T, Zhang Z, Li X, Cui S, McClements DJ, Wu X, Chen L, Long J, Jiao A, Qiu C, Jin Z. Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods 2022; 11:foods11111562. [PMID: 35681312 PMCID: PMC9180007 DOI: 10.3390/foods11111562] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
As a renewable resource, the market trend of plant protein has increased significantly in recent years. Compared with animal protein, plant protein production has strong sustainability factors and a lower environmental impact. Many bioactive substances have poor stability, and poor absorption effects limit their application in food. Plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems. In this review, we present a detailed and concise summary of the effects and advantages of various plant protein-based carriers in the encapsulation, protection, and delivery of bioactive substances. Furthermore, the research progress of food-grade bioactive ingredient delivery systems based on plant protein preparation in recent years is summarized, and some current challenges and future research priorities are highlighted. There are some key findings and conclusions: (i) plant proteins have numerous functions: as carriers for transportation systems, a shell or core of a system, or food ingredients; (ii) plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems; and (iii) plant protein-based carriers stabilize bioactive substances with potential applications in the food and nutrition fields.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaoning Cui
- Department of Food, Yantai Nanshan University, Yantai 264005, China;
| | | | - Xiaotian Wu
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
- Correspondence: ; Tel.: +86-5108-5327-006
| |
Collapse
|
29
|
Yuan Y, Xu W, Ma M, Zhang S, Wang D, Xu Y. Effect of fish sperm deoxyribonucleic acid encapsulation on stability, bioaccessibility, redispersibility, and solubilization of curcumin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Liu J, Li Y, Zhang H, Liu S, Yang M, Cui M, Zhang T, Yu Y, Xiao H, Du Z. Fabrication, characterization and functional attributes of zein-egg white derived peptides (EWDP)-chitosan ternary nanoparticles for encapsulation of curcumin: Role of EWDP. Food Chem 2022; 372:131266. [PMID: 34628117 DOI: 10.1016/j.foodchem.2021.131266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
The food-derived peptides hydrolyzed from native food protein matrix exhibited various bioactivities and multimeric structures, which make them the promising well-defined nanoplatforms candidates to co-deliver themselves with other bioactive compounds. In this study, zein-egg white derived peptides-chitosan (Z-EWDP-CS) ternary nanoparticles (NPs) were successfully fabricated by the spontaneous assembly to enhance the stability and bioactivity of curcumin (Cur). The novel ternary NPs exhibited a typical nano-spherical structure (138.63 nm, 40.50 mV), and adorable encapsulation efficiency (EE, 93.87%) for Cur. FTIR, XRD and DSC results verified that Cur changed from a crystalline state to an amorphous state, and was successfully entrapped in the cavity of Z-EWDP-CS NPs. Furthermore, the thermal stability, photochemical stability, salt stability, and antioxidant activity were considerably improved in the NPs after the addition of EWDP. Our results demonstrate that the food-derived peptides could be an ideal affinity agent for the co-delivery of themselves with hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shitong Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Meiyan Cui
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
31
|
Zhao Y, Han X, Yin H, Li Q, Zhou J, Zhang H, Zhang W, Zhao C, Liu J. Preparation and characterisation of curcumin‐loaded pea protein‐zein nanocomplexes using pH‐driven method. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yilin Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Xinxin Han
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Huanhuan Yin
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Qi Li
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Jingyi Zhou
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Hao Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Wenge Zhang
- Particle Laboratory Center for Environmental Metrology National Institute of Metrology Beijing 100022 China
| | - Chengbin Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Jingsheng Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| |
Collapse
|
32
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
33
|
Yuan Y, Zhang S, Ma M, Wang D, Xu Y. Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Co-assembly of foxtail millet prolamin-lecithin/alginate sodium in citric acid-potassium phosphate buffer for delivery of quercetin. Food Chem 2022; 381:132268. [PMID: 35121326 DOI: 10.1016/j.foodchem.2022.132268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
Foxtail millet nanoparticles with smaller mean size at ∼130 nm and narrower polydispersity index at ∼0.05 were prepared in citric acid-potassium phosphate buffer (pH 8.0). Through lecithin (Lec)/sodium alginate (Alg) coating, a hydrophobic FP core, a Lec monolayer, and a hydrophilic Alg shell were formed spontaneously. Dissociation experiment revealed that electrostatic interaction and hydrogen bonding were main driving forces for the formation and maintenance of stable FP-Lec/Alg NPs. In addition, Lec/Alg coated NPs exerted an important role in sustaining the controlled release of the encapsulated quercetin under simulated gastrointestinal tract conditions. Cellular uptake test exhibited that FP-Lec-Alg NPs cold enter epithelial cells in a time-dependent manner, showing the maximum uptake efficiency were 22% and 24%, respectively, after 2 h of incubation. About 220 nm NPs can be recovered by adding 10% (w/v) sucrose. FP-Lec-Alg NPs were found to be promising delivery materials to deliver quercetin and improve its bioavailability.
Collapse
|
36
|
Enhanced Stability and Oral Bioavailability of Cannabidiol in Zein and Whey Protein Composite Nanoparticles by a Modified Anti-Solvent Approach. Foods 2022; 11:foods11030376. [PMID: 35159526 PMCID: PMC8833932 DOI: 10.3390/foods11030376] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Wide applications of cannabidiol (CBD) in the food and pharmaceutical industries are limited due to its low bioavailability, sensitivity to environmental pressures and low water solubility. Zein nanoparticles were stabilized by whey protein (WP) for the delivery of cannabidiol (CBD) using a modified anti-solvent approach. Particle size, surface charge, encapsulation efficiency, and re-dispersibility of nanoparticles were influenced by the zein to WP ratio. Under optimized conditions at 1:4, zein–WP nanoparticles were fabricated with CBD (200 μg/mL) and further characterized. WP absorbed on zein surface via hydrogen bond, hydrophobic forces, and electrostatic attraction. The zein–WP nanoparticles showed excellent storage stability (4 °C, dark) and effectively protected CBD degradation against heat and UV light. In vivo pharmacokinetic study demonstrated that CBD in zein–WP nanoparticles displayed 2-times and 1.75-fold enhancement in maximum concentration (C max) and the area under curve (AUC) as compared to free-form CBD. The data indicated the feasibility of developing zein–WP based nanoparticles for the encapsulation, protection, and delivery of CBD.
Collapse
|
37
|
pH-driven self-assembly of alcohol-free curcumin-loaded propylene glycol alginate nanoparticles. Int J Biol Macromol 2022; 195:302-308. [PMID: 34920055 DOI: 10.1016/j.ijbiomac.2021.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this paper was to explore the application of propylene glycol alginate (PGA) alone in alcohol-free curcumin-loaded nanoparticles (PGA/Cur) prepared by a pH-driven method to solve the curcumin shortcomings of low water solubility, stability and bioavailability. One of the bright spots of PGA/Cur was its extremely high loading capacity. PGA/Cur formed a spherical structure mainly by hydrophobic interaction and hydrogen bonding, making curcumin amorphous. PGA/Cur exhibited stability at pH 4.0-8.0 due to its high surface charges. PGA/Cur still showed a unimodal size distribution even under 3000 mM ionic strength. Heating caused uneven size distribution, but the smaller size still presented its thermostability. PGA/Cur exhibited good physical stability and slowed down the curcumin degradation with t1/2 of 37.47 days during storage. PGA/Cur could maintain structural integrity in gastric acid and released curcumin in the intestine, thus improving the bioaccessibility of curcumin. Additionally, PGA/Cur displayed the solubilization after lyophilization.
Collapse
|
38
|
Li S, Mu B, Yan P, Kang Y, Wang Q, Wang A. Incorporation of Different Metal Ion for Tuning Color and Enhancing Antioxidant Activity of Curcumin/Palygorskite Hybrid Materials. Front Chem 2021; 9:760941. [PMID: 34966719 PMCID: PMC8711651 DOI: 10.3389/fchem.2021.760941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Curcumin is one of the dietary dyes extracted from turmeric and used for prevention and treatment of various illnesses. However, the low bioavailability and poor stability of curcumin limits its relevant applications. Therefore, different metal ions including Cu2+, Zn2+, Mg2+, Al3+, or Fe3+ were incorporated to tune the color, enhance the environmental stability and antioxidant activity of curcumin in the presence of palygorskite in this study. The as-prepared samples were studied using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Zeta potential, and transmission electron microscopy. In addition, the density functional theory calculation was also performed to explore the possible interaction among metal ions, curcumin and palygorskite. It was found that the color changing and stability enhancing were ascribed to the curcumin-metal ions coordination as well as chemical interactions between curcumin-metal complex and palygorskite. Moreover, the as-prepared composites showed more excellent color, thermal stability, antioxidant activity, and fluorescence properties than that of the curcumin/palygorskite composites due to the presence of metal ions. The finding of this investigation may contribute to developing the multifunctional composites with different colors and good antioxidant activity for relevant applications based on curcumin and palygorskite.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Penji Yan
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Qin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
39
|
Yuan Y, Ma M, Xu Y, Wang D. Construction of biopolymer-based nanoencapsulation of functional food ingredients using the pH-driven method: a review. Crit Rev Food Sci Nutr 2021; 63:5724-5738. [PMID: 34969342 DOI: 10.1080/10408398.2021.2023858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy and organic solvent-free during the construction of biopolymer-based nanoencapsulation. This review summarized the fundamental knowledge of pH-driven biopolymer-based nanoencapsulation. The principle of the pH-driven method is the protonation reaction of functional food ingredients that change with pH. The stability of functional food ingredients in an alkaline environment is a prerequisite for the adoption of this method. pH regulator is also an important influencing factor. Different coating materials used to the pH-driven nanoencapsulation were discussed, including single and composite materials, mainly focusing on proteins. Besides, the application evaluations of pH-driven nanoencapsulation in food were analyzed. The future development trends will be the influence of pH regulators on the carrier, the design of new non-protein-based carriers, the quantification of driving forces, the absorption mechanism of encapsulated nutrients, and the molecular interaction between the wall material and the intestinal mucosa. In conclusion, pH-driven biopolymer-based nanoencapsulation of functional food ingredients will have broad prospects for development.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
40
|
Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin. Food Chem 2021; 364:130401. [PMID: 34174648 DOI: 10.1016/j.foodchem.2021.130401] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this paper was to overcome the challenges of curcumin by zein/tea saponin composite nanoparticles (Z/TSNPs) without any organic reagents and high-energy equipment. The spherical Z/TSNPs exhibited good physical stability, the conditions of which included pH at 5.0-8.0, heating at 80 ℃, ionic strength within 100 mM, and storage at 25 ℃ for 30 days. Meanwhile, Z/TSNPs showed excellent redispersibility. Z/TSNPs were used to encapsulate and deliver curcumin (Cur-Z/TSNPs), showing encapsulation efficiency and loading capacity of 83.73% and 22.33%, respectively. Cur-Z/TSNPs exhibited good chemical stability during storage, and the effect of light on Cur-Z/TSNPs was smaller than that of free curcumin. Furthermore, Cur-Z/TSNPs improved the solubilization and bioaccessibility of curcumin about 290 and 5 times, respectively. Besides, the encapsulation changed the crystalline state of curcumin to amorphous, and the pH-driven mechanism was probably related to hydrogen bonding, hydrophobic and electrostatic interactions.
Collapse
|
41
|
Yuan Y, Huang J, He S, Ma M, Wang D, Xu Y. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Food Funct 2021; 12:5719-5730. [PMID: 34115089 DOI: 10.1039/d1fo00942g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin, a polyphenolic compound isolated from turmeric, exhibits various biological activities. The application of this nutraceutical in foods, however, is limited due to its extreme hydrophobicity, inferior stability, and poor bioaccessibility. The purpose of this paper is to prepare alcohol-free curcumin-loaded zein/sophorolipid nanoparticles (Cur-Z/SNPs) by one-step self-assembly to overcome the abovementioned challenges of curcumin. In detail, Cur-Z/SNPs were formed by mixing curcumin, zein, and sophorolipid under neutral conditions without any organic reagents or high energy equipment. The encapsulation efficiency and loading capacity of Cur-Z/SNPs were 94.08% and 11.50%, respectively. The spherical shape of Cur-Z/SNPs was observed by using a transmission electron microscope. The self-assembly mechanism involved hydrogen bonding, hydrophobic and electrostatic interactions, and the crystalline nature of curcumin changed to amorphous during self-assembly. Cur-Z/SNPs enhanced the zein denaturation resistance. They exhibited complete redispersibility and improved the aqueous solubility by approximately 246 times compared with free curcumin. The fresh Cur-Z/SNPs exhibited physicochemical stability at pH 5.0-8.0, ionic strength within 250 mM, and storage at 25 °C and 4 °C for 30 days. Notably, Cur-Z/SNPs could achieve excellent storage stability at room temperature as compared to those at refrigeration. Furthermore, lyophilization had a positive effect on storage stability, did not change the pH stability, and slightly reduced the ionic strength stability. Besides, Cur-Z/SNPs increased the 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH˙) scavenging capacity compared to free curcumin. The bioaccessibility of curcumin was increased by about 6 times by Cur-Z/SNPs. These findings provided new insight into the application of hydrophobic nutrients in alcohol-free functional foods.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| | - Jiawei Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| | - Shuguang He
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| |
Collapse
|