1
|
Wang Y, Wang Q, Shi X, Yang S, Chen J, Hong T, Ni H, Li T, Su W, Wang Y. Fabrication of oat β-glucan-starch composite systems by sequential extraction as batters for deep-fried mushrooms to prevent oil penetration. Food Chem 2025; 472:142976. [PMID: 39848041 DOI: 10.1016/j.foodchem.2025.142976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential. In this study, oat starch (OS), oat β-glucan (OBG), and OS-OBG composite systems were prepared and evaluated for their effects on the processing characteristics and oil-repellent capacity of DF mushrooms. Results from 13C solid-state NMR and microstructures demonstrated that incorporating OBG into OS restricted the expansion of OS and reduced moisture migration, thereby forming continuous layers with enhanced cohesive strength. Confocal laser scanning microscopy (CLSM) and gas chromatography-mass spectrometry (GC-MS) further confirmed that OS-OBG decreased oil uptake, improved the nutritional quality and desirable aroma typically associated with fried mushrooms. This study offers scientific and economic guidance for the large-scale production of low-fat fried foods using oat starch-β-glucan system as coatings.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Qifeng Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Xueying Shi
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Shuanglong Yang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Jianan Chen
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Tao Hong
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian Province, China
| | - Hui Ni
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian Province, China
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China.
| |
Collapse
|
2
|
Zhang S, Nie Q, Sun Y, Zuo S, Chen C, Li S, Yang J, Hu J, Zhou X, Yu Y, Huang P, Lian L, Xie M, Nie S. Bacteroides uniformis degrades β-glucan to promote Lactobacillus johnsonii improving indole-3-lactic acid levels in alleviating colitis. MICROBIOME 2024; 12:177. [PMID: 39300532 DOI: 10.1186/s40168-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intake of dietary fiber is associated with a reduced risk of inflammatory bowel disease. β-Glucan (BG), a bioactive dietary fiber, has potential health-promoting effects on intestinal functions; however, the underlying mechanism remains unclear. Here, we explore the role of BG in ameliorating colitis by modulating key bacteria and metabolites, confirmed by multiple validation experiments and loss-of-function studies, and reveal a novel bacterial cross-feeding interaction. RESULTS BG intervention ameliorates colitis and reverses Lactobacillus reduction in colitic mice, and Lactobacillus abundance was significantly negatively correlated with the severity of colitis. It was confirmed by further studies that Lactobacillus johnsonii was the most significantly enriched Lactobacillus spp. Multi-omics analysis revealed that L. johnsonii produced abundant indole-3-lactic acid (ILA) leading to the activation of aryl hydrocarbon receptor (AhR) responsible for the mitigation of colitis. Interestingly, L. johnsonii cannot utilize BG but requires a cross-feeding with Bacteroides uniformis, which degrades BG and produces nicotinamide (NAM) to promote the growth of L. johnsonii. A proof-of-concept study confirmed that BG increases L. johnsonii and B. uniformis abundance and ILA levels in healthy individuals. CONCLUSIONS These findings demonstrate the mechanism by which BG ameliorates colitis via L. johnsonii-ILA-AhR axis and reveal the important cross-feeding interaction between L. johnsonii and B. uniformis. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yongkang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
da Silva VT, Mateus N, de Freitas V, Fernandes A. Plant-Based Meat Analogues: Exploring Proteins, Fibers and Polyphenolic Compounds as Functional Ingredients for Future Food Solutions. Foods 2024; 13:2303. [PMID: 39063388 PMCID: PMC11275277 DOI: 10.3390/foods13142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.
Collapse
Affiliation(s)
- Vasco Trincão da Silva
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Xu Y, Liu X, Ma M, Wang M, Hua W, Yao T, Sui Z. Structural and rheological characterization of water-soluble and alkaline-soluble fibers from hulless barley. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2897-2906. [PMID: 38018273 DOI: 10.1002/jsfa.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Highland hulless barley has garnered attention as a promising economic product and a potential healthy food ingredient. The present study aimed to comprehensively investigate the molecular structure of extractable fibers obtained from a specific highland hulless barley. Water-soluble fiber (WSF) and alkaline-soluble fiber (ASF) were extracted using enzymatic digestion and an alkaline method, respectively. The purified fibers underwent a thorough investigation for their structural characterization. RESULTS The monosaccharide composition revealed that WSF primarily consisted of glucose (91.7%), whereas ASF was composed of arabinose (54.5%) and xylose (45.5%), indicating the presence of an arabinoxylan molecule with an A/X ratio of 1.2. The refined structural information was further confirmed through methylation, 1 H NMR and Fourier-transform infrared spectroscopy analyses. WSF fiber exclusively exhibited α-anomeric patterns, suggesting it was an α-glucan. It has a low molecular weight of 5 kDa, as determined by gel permeation chromatography. Conversely, ASF was identified as a heavily branched arabinoxylan with 41.55% of '→2,3,4)-Xylp-(1→' linkages. ASF and WSF exhibited notable differences in their morphology, water absorption capabilities and rheological properties. CONCLUSION Based on these findings, molecular models of WSF and ASF were proposed. The deep characterization of these fiber structures provides valuable insights into their physicochemical and functional properties, thereby unlocking their potential applications in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoning Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Hua
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Sun Y, Zhang S, He H, Chen H, Nie Q, Li S, Cheng J, Zhang B, Zheng Z, Pan S, Huang P, Lian L, Hu J, Nie S. Comprehensive evaluation of the prebiotic properties of Dendrobium officinale polysaccharides, β-glucan, and inulin during in vitro fermentation via multi-omics analysis. Int J Biol Macromol 2023; 253:127326. [PMID: 37820907 DOI: 10.1016/j.ijbiomac.2023.127326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Dietary fiber is crucial for human health mainly due to its impact on gut microbiota structure and metabolites. This study aimed to investigate the impact of Dendrobium officinale polysaccharides (DOP) and two common fibers (β-glucan and inulin) on the gut microbiome structure and metabolic profile in vitro. Fecal samples were obtained from 30 healthy volunteers, which were then individually subjected to fermentation with each type of fiber. The results revealed that all fibers were efficiently degraded by gut microbiota, with DOP exhibiting a slower fermentation rate compared to β-glucan and inulin. The fermentation of all fibers led to a significant increase in the production of short-chain fatty acids (SCFAs) and a reduction in branched-chain fatty acids (BCFAs), sulfides, phenols, and indole. Moreover, the abundance of unclassified Enterobacteriaceae, which was positively correlated with sulfide, phenols, and indole levels, was significantly reduced by all fibers. Additionally, DOP specifically promoted the growth of Parabacteroides, while β-glucan and inulin promoted the growth of Bifidobacterium and Faecalibacterium. Taken together, these findings enhance our understanding of the role of DOP, β-glucan, and inulin in modulating gut microbiota and metabolites, where the fermentation with fecal bacteria from different volunteers could provide valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Huijun He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jiaobo Cheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Zhitian Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shijie Pan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Sun Y, Nie Q, Zhang S, He H, Zuo S, Chen C, Yang J, Chen H, Hu J, Li S, Cheng J, Zhang B, Zheng Z, Pan S, Huang P, Lian L, Nie S. Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a. Nat Commun 2023; 14:7740. [PMID: 38007572 PMCID: PMC10676405 DOI: 10.1038/s41467-023-43622-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
Gut microbiota plays a key role in insulin resistance (IR). Here we perform a case-control study of Chinese adults (ChiCTR2200065715) and identify that Parabacteroides distasonis is inversely correlated with IR. Treatment with P. distasonis improves IR, strengthens intestinal integrity, and reduces systemic inflammation in mice. We further demonstrate that P. distasonis-derived nicotinic acid (NA) is a vital bioactive molecule that fortifies intestinal barrier function via activating intestinal G-protein-coupled receptor 109a (GPR109a), leading to ameliorating IR. We also conduct a bioactive dietary fiber screening to induce P. distasonis growth. Dendrobium officinale polysaccharide (DOP) shows favorable growth-promoting effects on P. distasonis and protects against IR in mice simultaneously. Finally, the reduced P. distasonis and NA levels were also validated in another human type 2 diabetes mellitus cohort. These findings reveal the unique mechanisms of P. distasonis on IR and provide viable strategies for the treatment and prevention of IR by bioactive dietary fiber.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huijun He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jiaobo Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhitian Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shijie Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China.
- China-Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang, China.
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
7
|
Nie Q, Sun Y, Li M, Zuo S, Chen C, Lin Q, Nie S. Targeted modification of gut microbiota and related metabolites via dietary fiber. Carbohydr Polym 2023; 316:120986. [PMID: 37321707 DOI: 10.1016/j.carbpol.2023.120986] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Intake of dietary fiber has been proven to have several beneficial effects in maintaining host homeostasis and health. Here, we investigated the effects of different fibers on gut microbiota and related metabolites in rats. Healthy rats were supplemented with guar gum, carrageenan, glucomannan, β-glucan, arabinoxylan, apple pectin, xylan, arabinogalactan, and xanthan gum, and these dietary fibers exhibited commonality and specificity on gut microbiota and related metabolites. The abundance of Phascolarctobacterium, Prevotella, Treponema, Butyricimonas, Bacteroides, and Lactobacillus was selectively increased by different dietary fibers, whereas the abundance of Clostridium perfringens and Bacteroides fragilis were decreased by all of these fibers. Indole-3-lactic acid was significantly increased by β-glucan treatment, indicating the relationship between indole-3-lactic acid and Lactobacillus. Furthermore, Some species from Bacteroides were validated to produce indole-3-lactic acid, indole-3-acetic acid, and kynurenine (such as B. fragilis, B. ovatus, B. thetaiotaomicron, and B. xylanisolvens). These results provide important information on dietary guidelines based on the modification of gut microecology.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Qiongni Lin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Cui Y, Wang R, Cao S, Ismael M, Wang X, Lü X. A galacturonic acid-rich polysaccharide from Diospyros kaki peel: Isolation, characterization, rheological properties and antioxidant activities in vitro. Food Chem 2023; 416:135781. [PMID: 36871504 DOI: 10.1016/j.foodchem.2023.135781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This research elucidated the structural characteristics and antioxidant activity of a galacturonic acid-rich polysaccharide (PPP-2) isolated from Diospyros kaki peel. PPP-2 was extracted by subcritical water and subsequently purified by DEAE-Sepharose FF column. PPP-2 (12.28 kDa) mainly contained galacturonic acid, arabinose, and galactose with the molar ratios of 87.15: 5.86: 4.31. The structural characteristics of PPP-2 were revealed through FT-IR, UV, XRD, AFM, SEM, Congo red, methylation, GC/MS assay and NMR spectrum. PPP-2 owned the triple helical structure and degradation temperature of 251.09 ℃. The backbone of PPP-2 was formed by →4)-α-d-GalpA-6-OMe-(1→ and →4)-α-d-GalpA-(1→ with the side chains of →5)-α-l-Araf-(1→, →3)-α-l-Araf-(1→, →3,6)-β-d-Galp-(1→ and α-l-Araf-(1→. Moreover, the inhibitory concentration (IC50) of PPP-2 to ABTS•+, DPPH•, superoxide radical and hydroxyl radical were 1.96, 0.91, 3.63, and 4.08 mg/mL, respectively. Our results suggested that PPP-2 might be a novel candidate of natural antioxidant in pharmaceuticals or functional food.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Ruiling Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Siyue Cao
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Mohamedelfatieh Ismael
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
9
|
Li Q, Liu J, Zhai H, Zhang Z, Xie R, Xiao F, Zeng X, Zhang Y, Li Z, Pan Z. Extraction and characterization of waxy and normal barley β-glucans and their effects on waxy and normal barley starch pasting and degradation properties and mash filtration rate. Carbohydr Polym 2023; 302:120405. [PMID: 36604074 DOI: 10.1016/j.carbpol.2022.120405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Interactions between β-glucan and starch influence the health benefits of barley-based foods and barley brewing performance. Here, we characterized β-glucans from waxy and normal barley varieties and compared the effects of different β-glucans on the pasting and degradation of waxy and normal barley starches as well as the filterability of mashes from unmalted waxy and normal barley. Waxy barley Zangqing18 β-glucan displayed more compact micrographic features, higher molecular weight, larger particle size, higher thermal decomposition temperature and lower rheological viscosity than normal barley Zangqing2000 β-glucan. β-Glucan not only significantly decreased the pasting viscosities of waxy and normal starches but also lowered the pasting temperatures and peak times of normal starch, likely by inhibiting granule swelling and disrupting the integrity of the continuous phase. β-Glucan also decreased in vitro digestion extent of starch and increased the resistant starch. The unmalted waxy barley had a mash filtration rate much faster than normal barley because starch and β-glucan in waxy barley were rapidly and completely digested and formed more open filter passages. The effects of β-glucan on starch properties varied with the types and contents of β-glucans, whilst the types of starches showed more significant effects. CHEMICAL COMPOUNDS STUDIED: β-Glucan (Pubchem CID: 439262); Amylopectin (Pubchem CID: 439207); Starch (Pubchem CID: 156595876).
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Juan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Huisheng Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Rong Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Futong Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Yuhong Zhang
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| |
Collapse
|
10
|
Purification, structural characterization and antioxidant activities of two neutral polysaccharides from persimmon peel. Int J Biol Macromol 2023; 225:241-254. [PMID: 36332822 DOI: 10.1016/j.ijbiomac.2022.10.257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Two neutral polysaccharides (PPP1-1 and PPP1-2) were purified from persimmon peel. PPP1-1 (21.84 kDa) was mainly composed of arabinose (22.92 %), galactose (21.09 %), glucose (35.13 %), and xylose (19.09 %), while PPP1-2 (10.42 kDa) mainly contained arabinose (32.98 %), galactose (20.81 %), glucose (26.86 %), xylose (10.46 %), and mannose (7.63 %). Methylation and NMR spectra analysis demonstrated that the backbone of PPP1-1 appeared to be →6)-α-D-Glcp-(1→, →2,6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Manp-(1→, and α-L-Araf-(1 → residues. The main chain of PPP1-2 was composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →1,2)-α-D-Glcp-(6→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →4,6)-α-D-Glcp-(1→, and →4)-β-D-Manp-(1 → residues and terminal of α-L-Araf-(1 → residue. PPP1-2 exhibited stronger antioxidant activities and better thermal stability than PPP1-1. Our results provided the foundation for further investigating the structure and biological activities of persimmon peel polysaccharides and highlighted their potential to become potential antioxidants in functional food.
Collapse
|
11
|
Reidzane S, Gramatina I, Galoburda R, Komasilovs V, Zacepins A, Bljahhina A, Kince T, Traksmaa A, Klava D. Composition of Polysaccharides in Hull-Less Barley Sourdough Bread and Their Impact on Physical Properties of Bread. Foods 2022; 12:foods12010155. [PMID: 36613370 PMCID: PMC9818821 DOI: 10.3390/foods12010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The complex of polysaccharides of the grain transforms during processing and modifies the physical and chemical characteristics of bread. The aim of the research was to characterize the changes of glucans, mannans and fructans in hull-less barley and wholegrain wheat breads fermented with spontaneous hull-less barley sourdough, germinated hull-less barley sourdough and yeast, as well as to analyze the impact of polysaccharides on the physical parameters of bread. By using the barley sourdoughs for wholegrain wheat bread dough fermentation, the specific volume and porosity was reduced; the hardness was not significantly increased, but the content of β-glucans was doubled. Principal component analysis indicates a higher content of β-glucans and a lower content of starch, total glucans, fructans and mannans for hull-less barley breads, but wholegrain wheat breads fermented with sourdoughs have a higher amount of starch, total glucans, fructans and mannans, and a lower content of β-glucans. The composition of polysaccharides was affected by the type of flour and fermentation method used.
Collapse
Affiliation(s)
- Sanita Reidzane
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
- Correspondence:
| | - Ilze Gramatina
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Ruta Galoburda
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Vitalijs Komasilovs
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Aleksejs Zacepins
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Anastassia Bljahhina
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tatjana Kince
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Anna Traksmaa
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Dace Klava
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| |
Collapse
|
12
|
Yang W, Huang G. Preparation and properties of purple sweet potato polysaccharide. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Zhao L, Lin S, Lin J, Wu J, Chen H. Effect of acid hydrolysis on the structural and antioxidant characteristics of β-glucan extracted from Qingke (Tibetan hulless barley). Front Nutr 2022; 9:1052901. [PMID: 36438764 PMCID: PMC9691401 DOI: 10.3389/fnut.2022.1052901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2023] Open
Abstract
In this study, we explored the effect of acid hydrolysis on the molecular, structural, rheological, thermal, and antioxidant characteristics of Qingke β-glucan. The acid hydrolysis reduced the molecular weights of β-glucans from 510 to 155 KDa. The results of the structural analysis by nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, and fourier transforms infrared (FTIR) spectroscopy indicated that acid hydrolysis did not change the primary functional groups of β-glucans. The rheological behavior of β-glucan without and with acid hydrolysis can be described as pseudoplastic and Newtonian, respectively. The DSC curves of the β-glucans with high molecular weights showed the highest transition temperature. The 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity and the reducing power of soluble β-glucans in Qingke showed a dose-dependent pattern. Meanwhile, the antioxidant activities of Qingke β-glucan of different molecular weights were similar. This study demostrated that the acid hydrolysis almost have no effect on antioxidant activity of Qingke β-glucans.
Collapse
Affiliation(s)
- Lan Zhao
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shuwei Lin
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jingying Lin
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jia Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huibin Chen
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Khalid W, Arshad MS, Jabeen A, Muhammad Anjum F, Qaisrani TB, Suleria HAR. Fiber-enriched botanicals: A therapeutic tool against certain metabolic ailments. Food Sci Nutr 2022; 10:3203-3218. [PMID: 36249968 PMCID: PMC9548355 DOI: 10.1002/fsn3.2920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Plant-based foods are natural sources including vegetables, fruits, cereals and legumes. These foods consist of various types of nutrients in which carbohydrate is the basic component. However, some plant-based diets contain carbohydrates in the form of fiber. The fiber is usually a nondigestible polysaccharide that is not digested in the human body. It is present in the form of soluble or insoluble in different part of foods like peel, bran, pulp and grain. Pectin, beta-glucan, mucilage, psyllium, resistant starch and inulin are soluble fiber, and cellulose, hemicellulose and lignin are insoluble fiber attained from plant foods. The major function enhances immunity by creating gastrointestinal barrier, mucus production, immune cell activity and IgA level. Previous evidences showed that peoples with strong immunity have fewer chances of viral disease. A recent viral disease named COVID-19 spread in the world and millions of peoples died due to this viral disease. Coronavirus mostly attacks humans that suffer with weak immune system. It is due chronic diseases like diabetes and CVD (cardiovascular disease). The current review shows that fiber-containing plant-based foods boost immunity and aid human against COVID-19. The therapeutic role of fiber in the human body is to control the risk of hypertension and diabetes because a high-fiber diet has the ability to lower cholesterol, blood pressure and blood sugar. Fibers aid in GIT (gastrointestinal tract) and prevent constipation because it absorbs water and adds bulk to stool.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Jabeen
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faqir Muhammad Anjum
- University of the GambiaBanjulThe Gambia
- IFANCA Halal Apex (Pvt.) LimitedFaisalabadPakistan
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and TechnologyGhazi UniversityDera Ghazi KhanPakistan
| | | |
Collapse
|
15
|
Green Husk of Walnuts (Juglans regia L.) from Southern Italy as a Valuable Source for the Recovery of Glucans and Pectins. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Walnut green husk is an agricultural waste produced during the walnut (Juglans regia L.) harvest, that could be valued as a source of high-value compounds. In this respect, walnut green husks from two areas of Southern Italy (Montalto Uffugo and Zumpano), with different soil conditions, were investigated. Glucans and pectins were isolated from dry walnut husks by carrying out alkaline and acidic extractions, respectively, and then they were characterized by FT-IR, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The colorimetric method for the enzymatic measurement of α- and β-glucans was performed. The maximum total glucan yield was recovered from Montalto walnut husks (4.6 ± 0.2 g/100 g DM) with a β-glucan percentage (6.3 ± 0.4) higher than that calculated for Zumpano walnut husks (3.6 ± 0.5). Thermal analysis (DSC) confirmed the higher degree of crystallinity of glucans from Zumpano. The pectin content for Montalto husks was found to be 2.6 times that of Zumpano husks, and the esterification degree was more than 65%. The results suggested that J. regia L. green husks could be a source of glucans and pectins, whose content and morphological and thermal characteristics were influenced by different soil and climate conditions.
Collapse
|