1
|
Wilkinson NM, Niaz T, Tann E, Croden F, Boyle NB, Mackie A, Dye L. Novel Fibre-Rich Breads Yield Improved Glucose Release Curves and Are Well Accepted by Children in Primary School Breakfast Clubs. Nutrients 2025; 17:308. [PMID: 39861438 PMCID: PMC11767593 DOI: 10.3390/nu17020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The average fibre consumption of 4-10-year-old children in the UK is 14.6 g per day, with only 14% of these children reaching the 20 g recommended by the SACN (UK Scientific Advisory Committee on Nutrition), and this 'fibre gap' may be most pronounced in communities with the lowest socioeconomic status. School breakfast clubs target children from disadvantaged communities, but their provision may favour lower-fibre foods, due to perceptions that children will reject higher-fibre foods. Our research programme aims to increase the fibre density, digestive-metabolic quality and acceptability of school breakfast provision. METHODS In Study 1, we examined the in vitro digestion of four novel bread products, to determine the relationship between fibre content and glucose release profile, and assess their suitability for sustaining school activity. In Study 2, we introduced the Prograins breads, alongside higher-fibre breakfast cereals and fresh fruit, to primary school breakfast clubs. RESULTS The Prograins bread products yielded lower peaks and more sustained glucose release curves than the 'standard' white bread control. Many children liked and chose the intervention foods, and the average fibre content of children's breakfasts increased. CONCLUSIONS We conclude from this study that nutritious, fibre-rich bread products can be acceptable to children and that higher-fibre breakfast provision is feasible, and we recommend larger-scale intervention and assessment to validate these real-world findings.
Collapse
Affiliation(s)
- Nicholas M. Wilkinson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (T.N.); (E.T.); (A.M.)
| | - Taskeen Niaz
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (T.N.); (E.T.); (A.M.)
| | - Eloise Tann
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (T.N.); (E.T.); (A.M.)
| | - Fiona Croden
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK;
| | - Neil B. Boyle
- School of Psychology, University of Sheffield, Sheffield S10 2TN, UK;
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (T.N.); (E.T.); (A.M.)
| | - Louise Dye
- School of Psychology, University of Sheffield, Sheffield S10 2TN, UK;
| |
Collapse
|
2
|
Wu K, Zhang H, Lou X, Wu X, Wang Y, Zhao K, Du X, Xia X. Analysis of NADES and its water tailoring effects constructed from inulin and L-proline based on structure, physicochemical and antifreeze properties. Int J Biol Macromol 2024; 277:134049. [PMID: 39038572 DOI: 10.1016/j.ijbiomac.2024.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The structure, physicochemical and anti-freeze properties of natural deep eutectic solvent (NADES) composed of inulin and L-proline (molar ratio of 1:11) were investigated. Proton nuclear magnetic resonance (1H NMR), Fourier infrared spectroscopy (FTIR), and Raman spectroscopy revealed extensive hydrogen bonding in the pure NADES system, and the addition of water weakens the hydrogen bonding interactions between the components. The smaller transverse relaxation time (T2) represents the stronger hydrogen bond strength, and NADES+40 % H2O exhibited a large T2 (71.68 ms). When 10 % water was added, the viscosity decreased from 3620 mPa·s to 1777 mPa·s, but the conductivity increased to approximately twice the original value. Furthermore, adding 10 % water lowered the glass transition temperature (Tg) of NADES by 5.6 °C. NADES+10 % H2O exhibited favorable thermal stability and freezing resistance, as evidenced by the fact that approximately 82.61 % of the ice crystals area <200 μm2 after 30 min of crystallization. The changes in the structure, physicochemical, and anti-freezing properties of water-tailored NADES are expected to enable the design of novel antifreeze agents.
Collapse
Affiliation(s)
- Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinjiang Lou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Kuangyu Zhao
- Fang zheng comprehensive Product quality inspection and testing center, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Li Q, Meng Z, Hu J, Li Q, Dong Y, Cai C, Zhu Y. Impact of Flammulina velutipes polysaccharide on properties and structural changes of pork myofibrillar protein during the gel process in the absence or presence of oxidation. Food Chem 2024; 450:139300. [PMID: 38640525 DOI: 10.1016/j.foodchem.2024.139300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
The present study aimed to investigate the impact of Flammulina velutipes polysaccharide (FVSP) on the rheological properties and structural alterations of myofibrillar protein (MP) and oxidized MP (OMP), utilizing techniques such as rhehometer, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In the unoxidized system, the addition of 5.00% FVSP significantly improved (p < 0.05) the storage and loss moduli of the composite gel and promoted the α-helix to β-sheet transformation. These effects enhanced the protein's gel strength and water-holding capacity (WHC). In the oxidation system, 5.00% FVSP had significant effects (p < 0.05) on repair and improvement of the oxidized MP. These effects inhibited the cross-linking aggregation and degradation of the protein. In addition, the addition of FVSP significantly improved the gel properties of MPs after oxidation (p < 0.05), hindered fracture of the protein gel network structure. In summary, polysaccharides have a substantial effect on the functional characteristics of MP, and FVSP could potentially be applied in meat products.
Collapse
Affiliation(s)
- Qi Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhiming Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jingrong Hu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yingying Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Güven Ö, Şensoy İ. Effect of fibers on starch structural changes during hydrothermal treatment: multiscale analyses, and evaluation of dilution effects on starch digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5724-5734. [PMID: 38380826 DOI: 10.1002/jsfa.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Dietary fibers (DFs) may influence the structural, nutritional and techno-functional properties of starch within food systems. Moreover, DFs have favorable effects on the digestive system and potentially a lower glycemic index. These potential benefits may change depending on DF type. Starch processed in the presence of soluble and insoluble fibers can undergo different structural and functional changes, and the present study investigated the effects of short-chain and long-chain inulin and cellulose on the structural and digestive properties of wheat starch. RESULTS The combined use of differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) provided insights into the structural changes in starch and inulin at different levels. Short-chain and long-chain inulin had higher water retention capacity and a potential to limit starch gelatinization. The FTIR results revealed an interaction between starch and inulin. Scanning electron microscopy analysis showed morphological changes in starch and inulin after the hydrothermal treatment. Cellulose fiber was not affected by the hydrothermal treatment and had no influence on starch behavior. The structural differences observed through XRD, FTIR and scanning electron microscopy analyses between starch with and without inulin fibers did not significantly impact starch digestibility, except for the dilution effect caused by adding DFs. CONCLUSION The present study highlights the importance of utilizing different analytical tools to assess changes in food samples at different scales. Although short-chain and long-chain inulin could potentially limit starch gelatinization, the duration of the heat treatment (90 °C for 10 min) was sufficient to ensure complete starch gelatinization. The dilution effect caused by adding fibers was the primary reason for the effect on starch digestibility. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Özge Güven
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - İlkay Şensoy
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
5
|
Huang Y, Liu L, Sun B, Zhu Y, Lv M, Li Y, Zhu X. A Comprehensive Review on Harnessing Soy Proteins in the Manufacture of Healthy Foods through Extrusion. Foods 2024; 13:2215. [PMID: 39063299 PMCID: PMC11276047 DOI: 10.3390/foods13142215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The global development of livestock production systems, accelerated by the growing demand for animal products, has greatly contributed to land-use change, greenhouse gas emissions, and pollution of the local environment. Further, excessive consumption of animal products has been linked with cardiovascular diseases, digestive system diseases, diabetes, and cancer. On the other hand, snacks, pasta, and bread available on the market are made from wheat, fat, salt, and sugar, which contribute to the risk of cardiovascular diseases. To counter these issues, a range of plant protein-based food products have been developed using different processing techniques, such as extrusion. Given the easy scalability, low cost of extrusion technology, and health benefits of soy proteins, this review focuses on the extrusion of soy protein and the potential application of soy protein-based extrudates in the manufacture of healthy, nutritious, and sustainable meat analogs, snacks, pasta products, and breakfast cereals. This review discusses the addition of soy protein to reformulate hypercaloric foods through extrusion technology. It also explores physical and chemical changes of soy proteins/soy protein blends during low and high moisture extrusion. Hydrogen bonds, disulfide bonds, and hydrophobic interactions influence the properties of the extrudates. Adding soy protein to snacks, pasta, breakfast cereals, and meat analogs affects their nutritional value, physicochemical properties, and sensory characteristics. The use of soy proteins in the production of low-calorie food could be an excellent opportunity for the future development of the soybean processing industry.
Collapse
Affiliation(s)
- Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Bingyu Sun
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| |
Collapse
|
6
|
Akram W, Pandey V, Sharma R, Joshi R, Mishra N, Garud N, Haider T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int J Biol Macromol 2024; 259:129131. [PMID: 38181920 DOI: 10.1016/j.ijbiomac.2023.129131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In recent years, inulin has gained much attention as a promising multifunctional natural biopolymer with numerous applications in drug delivery, prebiotics, and therapeutics. It reveals a multifaceted biopolymer with transformative implications by elucidating the intricate interplay between inulin and the host, microbiome, and therapeutic agents. Their flexible structure, exceptional targetability, biocompatibility, inherent ability to control release behavior, tunable degradation kinetics, and protective ability make them outstanding carriers in healthcare and biomedicine. USFDA has approved Inulin as a nutritional dietary supplement for infants. The possible applications of inulin in biomedicine research inspired by nature are presented. The therapeutic potential of inulin goes beyond its role in prebiotics and drug delivery. Recently, significant research efforts have been made towards inulin's anti-inflammatory, antioxidant, and immunomodulatory properties for their potential applications in treating various chronic diseases. Moreover, its ability to reduce inflammation and modulate immune responses opens new avenues for treating conditions such as autoimmune disorders and gastrointestinal ailments. This review will attempt to illustrate the inulin's numerous and interconnected roles, shedding light on its critical contributions to the advancement of healthcare and biomedicine and its recent advancement in therapeutics, and conclude by taking valuable insights into the prospects and opportunities of inulin.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Vikas Pandey
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Rajeev Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Ramakant Joshi
- Department of Pharmaceutics, ShriRam college of Pharmacy, Banmore 476444, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior 474011, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 4774005, India.
| |
Collapse
|
7
|
Culețu A, Susman IE, Mulțescu M, Cucu ȘE, Belc N. Corn Extrudates Enriched with Health-Promoting Ingredients: Physicochemical, Nutritional, and Functional Characteristics. Processes (Basel) 2023. [DOI: 10.3390/pr11041108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The objective of this study was to evaluate the effects of different types of powder additions on the properties of corn extrudates. The following ingredients, which are good sources of bioactive compounds, were used to substitute corn flour: legume protein sources (2% pea, 5% broccoli, and 5% lucerne), plants (15% beetroot and 15% rosehip), and condiments (2% chili, 2% turmeric, 2% paprika, and 2% basil). The total polyphenolic content (TPC) and antioxidant activity (AA) increased when the corn flour was replaced with the different types of ingredients. The highest TPC was found for rosehip followed by the beet, basil, and broccoli additions. Compared to the raw formulations, all the extrudates, except the rosehip extrudate, showed a decrease in the TPC ranging from 11 to 41%, with the smallest loss (11%) occurring for basil and the highest loss (41%) occurring for the control extrudate, respectively. The same observation was recorded for the AA. For the extrudate enriched with rosehip, the TPC and AA increased by 20% and 16%, respectively. The highest level of protein digestibility was in the corn extrudate with the pea addition followed by broccoli and lucerne. The extruded corn samples with condiment additions had a lower glycemic index than the control extrudate. This study demonstrated the potential for the production of gluten-free corn extrudates enriched with ingredients from different sources with improved nutritional properties, conferring also a natural color in the final extrudates.
Collapse
Affiliation(s)
- Alina Culețu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | - Iulia Elena Susman
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | - Mihaela Mulțescu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | - Șerban Eugen Cucu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | - Nastasia Belc
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| |
Collapse
|
8
|
Cao Y, Zhao L, Huang Q, Xiong S, Yin T, Liu Z. Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Dias‐Faceto LS, Conti‐Silva AC. Texture of extruded breakfast cereals: Effects of adding milk on the texture properties and on the correlations between instrumental and sensory analyses. J Texture Stud 2022; 53:220-231. [DOI: 10.1111/jtxs.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Liara Silva Dias‐Faceto
- Department of Food Engineering and Technology São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto
| | - Ana Carolina Conti‐Silva
- Department of Food Engineering and Technology São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto
| |
Collapse
|
10
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Capriles VD, Conti-Silva AC, Gomes Arêas JA. Effects of oligofructose-enriched inulin addition before and after the extrusion process on the quality and postprandial glycemic response of corn-snacks. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|