1
|
Yang Z, Guo Y, Tian T, Chen L, Zhang W, Jiang L, Huang Z, Wang H. Fabrication, characterization, and 3D printing of high-internal phase Pickering emulsion stabilized by heat-treated copra protein and calcium composite. Int J Biol Macromol 2024; 283:137670. [PMID: 39547640 DOI: 10.1016/j.ijbiomac.2024.137670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
HCP-Ca nanoparticles were prepared by incorporating varying concentrations of CaCl2 into heated copra protein (HCP). The results showed a positive correlation between Ca2+ concentration and turbidity, indicating greater HCP aggregation with increasing Ca2+ levels. Microscopy analysis revealed that HCP-Ca nanoparticles had a rough surface morphology. Intermolecular forces such as disulfide bonds, hydrophobic interactions, and hydrogen bonds were key in the conformation of HCP aggregates, with calcium ions enhancing stability by forming salt bridges. HCP-Ca nanoparticle-based high internal phase Pickering emulsions (HIPPEs) were also fabricated using homogenization-centrifugation treatment. The nanoparticles showed contact angles of 87.8° to 98.3°, particle sizes between 80.42 and 80.95 nm, and the HIPPEs had zeta potentials ranging from -23 to -39 mV. The addition of Ca2+ enhanced stability by forming salt bridges, reducing particle size, and altering size distributions. Rheological and texture analysis showed that Ca2+ addition significantly improved the viscoelasticity of HCP-Ca nanoparticle-based HIPPEs, as well as increasing hardness and adhesiveness. Optical microscopy and magnetic imaging techniques revealed details about emulsion formation and oil-water distribution in HCP-Ca nanoparticle-based HIPPEs. The excellent printing stability and structural versatility of HCP-Ca nanoparticle-based HIPPEs allowed the formation of complex 3D structures, offering a valuable approach for fabricating processable and editable HIPPEs from waste materials. This paper aims to develop a food-grade copra protein-based Pickering HIPPE and explore differences in fabrication methods, providing new insights into the design of innovative Pickering stabilizers.
Collapse
Affiliation(s)
- Zhen Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yujie Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tian Tian
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for High Value Processing of Tropical Protein Resources, Haikou 570228, China.
| | - Hong Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Wang Y, Guo H, Zhao T, Chen J, Cheng D. Ca 2+-promoted free radical grafting of whey protein to EGCG: As a novel nanocarrier for the encapsulation of apigenin. Food Chem 2024; 460:140554. [PMID: 39053280 DOI: 10.1016/j.foodchem.2024.140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Whey protein (WP) is often used as a delivery carrier due to its superior biological activity and nutritional value. Covalent binding of WP to epigallocatechin gallate (EGCG) can significantly improve the performance of WP in encapsulated materials. Nevertheless, the preparation of WP-EGCG covalent complexes still suffers from low grafting rates. Studies have shown that calcium ions (Ca2+) can modify the structure of proteins. We therefore explored the effect of calcium chloride (CaCl2) on the free radical grafting of EGCG and WP. The experimental results showed that the grafting rate of free radicals increased by 17.89% after adding Ca2+. Furthermore, the impact of WP-EGCG-Ca2+ covalent complex on the entrapment efficiency of apigenin (AP) was further examined, and the results revealed that the entrapment rate could reach 93.66% at an apigenin concentration of 0.2 mg/mL. Simulated gastrointestinal digestion showed that WP-EGCG-Ca2+ covalent complex could significantly improve the bioavailability of AP. The study provides new ideas to broaden the application of WP as a carrier for delivering bioactive substances.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Heliang Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tingting Zhao
- Shanxi Technology and Business University, Taiyuan, 030000, China
| | - Jinlong Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Chen Y, Gu J, Sun Y, Ding Y, Yang X, Lan S, Ding J, Ding Y. Insight into low methoxyl pectin enhancing thermal stability and intestinal delivery efficiency of algal oil nanoemulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8356-8367. [PMID: 38989609 DOI: 10.1002/jsfa.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Algae oil has garnered widespread acclaim due as a result of its high purity of docosahexaenoic acid (DHA) and excellent safety profile. The present study aimed to develop stable nanoemulsions (NEs) systems containing DHA from algae oil through thermal sterilization by combining modified whey protein concentrate (WPC) with low methoxyl pectin (LMP), as well as to investigate the impact of LMP concentration on the thermal stability and the gastrointestinal delivery efficiency of DHA NEs. RESULTS The addition of LMP enhanced the stability of the emulsion after sterilization, at the same time as improving the protective and sustained release effects of DHA in the gastrointestinal tract. Optimal effect was achieved at a LMP concentration of 1% (10 g kg-1 sample), the stability of the emulsion after centrifugation increased by 17.21 ± 5.65% compared to the group without LMP, and the loss of DHA after sterilization decreased by only 0.92 ± 0.09%. Furthermore, the addition of 1% LMP resulted in a substantial reduction in the release of fatty acids from the NEs after gastrointestinal digestion simulation, achieving the desired sustained-release effect. However, excessive addition of 2% (20 g kg-1 sample) LMP negatively impacted all aspects of the NEs system, primarily because of the occurrence of depletion effects. CONCLUSION The construction of the LMP/WPC-NEs system is conducive to the protection of DHA in algae oil and its sustained-release in the gastrointestinal tract. The results of the present study can provide reference guidance for the application of algae oil NEs in the food field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jipeng Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuan Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Siqi Lan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiayue Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Wang P, Wang J, Yang Y, Liang K, Chen X, Wu F, Fang G, Liu X, Wu C. Fabrication of the W 1/O/W 2 emulsions loaded with Torreya grandis protein hydrolysate/polysaccharide complexes in the internal water: Characterization and stability. Int J Biol Macromol 2024; 280:136002. [PMID: 39326593 DOI: 10.1016/j.ijbiomac.2024.136002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this study, the effect of Torreya grandis protein enzymatic hydrolysates (TGPH)/alginate dialdehyde (ADA) complexes in the internal aqueous phase on the physical stability of the water-in-oil-in-water (W1/O/W2) emulsions was studied. In the case of TGPH/ADA emulsions, the presence of ADA decreased the apparent viscosity of the emulsions and changed the flow behavior from shear thinning to Newtonian, leading to a decrease in volume-weighted average droplet diameter (D43) of the emulsions. Additionally, the emulsions at the TGPH/ADA ratios of 1:1 showed a lower turbiscan stability index (TSI) value, and smaller change in delta backscattering signal, compared to the emulsions. The enhanced pH stability and storage stability of the emulsions at the TGPH/ADA ratios of 1:1 was due to the formation of Schiff bases between TGPH and ADA. These results suggested that the covalent cross-linking of TGPH with ADA could significantly improve the stability of the emulsions, which provided an effective means for the development of new food-grade protein-polysaccharide complexes stabilized emulsions.
Collapse
Affiliation(s)
- Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jiawei Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ye Yang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Kaiyun Liang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xinyu Chen
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fenghua Wu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Guanyu Fang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Changling Wu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Zhang C, Yang Y, Ma C, Wang B, Bian X, Zhang G, Liu X, Song Z, Zhang N. High freeze-thaw stability of Pickering emulsion stabilized by SPI-maltose particles and its effect on frozen dough. Int J Biol Macromol 2024; 276:133778. [PMID: 38992541 DOI: 10.1016/j.ijbiomac.2024.133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Pickering emulsions with good freeze-thaw stability are essential in frozen food applications. This study developed a high freeze-thaw stabilized soy protein isolate (SPI)-maltose (M) Pickering emulsion and applied it to frozen doughs to investigate and reveal its impacts on the processing properties of the frozen dough. The results showed that after the freeze-thaw cycle, with a volume ratio of 1:2 of SPI to M, the appropriate amount of M changed the structure of SPI. This resulted in the Pickering emulsion prepared by the SPI exhibiting the least droplet coalescence and the best freeze-thaw stability. The results of dough rheological properties, textural properties, and binding capacity with water demonstrated that Pickering emulsions effectively inhibited the loss of gluten protein network structure in the dough after freeze treatment and increased the binding capacity of gluten proteins with starch and water in the dough. The best results were obtained with the incorporation of 3 % SPI-M high freeze-thaw stability, where the amount of bound water following three freeze-thaw cycles was 4.27 times higher than in doughs without Pickering emulsion. Overall, this study is significant for enhancing the freeze-thaw stability of Pickering emulsions stabilized by proteins and providing a new application route for Pickering emulsions.
Collapse
Affiliation(s)
- Can Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Ziyue Song
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
6
|
Yao X, Teng W, Wang J, Wang Y, Zhang Y, Cao J. Polyglycerol polyricinoleate and lecithin stabilized water in oil nanoemulsions for sugaring Beijing roast duck: Preparation, stability mechanisms and color improvement. Food Chem 2024; 447:138979. [PMID: 38518617 DOI: 10.1016/j.foodchem.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.
Collapse
Affiliation(s)
- Xinshuo Yao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
7
|
Hashim SBH, Tahir HE, Mahdi AA, Al-Maqtari QA, Shishir MRI, Mahunu GK, Aalim H, Khan S, Zhai X, Xiaobo Z, Jiyong S. Fabrication of biopolymer stabilized microcapsules for enhancing physicochemical stability, antioxidant and antimicrobial properties of cinnamon essential oil. Int J Biol Macromol 2024; 271:132336. [PMID: 38744371 DOI: 10.1016/j.ijbiomac.2024.132336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The current study entails the encapsulation validity to enclose naturally occurring food preservatives, such as cinnamon essential oil (CM), within various wall materials. This approach has demonstrated enhanced encapsulated compounds' stability, efficiency, and bioactivity. The base carrier system consisted of a solid lipid (Berry wax, RW) individually blended with whey protein (WYN), maltodextrin (MDN), and gum Arabic (GMC) as wall materials. The resulting formulations were freeze-dried: WYN/RW/CM, MDN/RW/CM, and GMC/RW/CM. The study comprehensively analyzed encapsulation efficiency, morphology, crystallinity, thermal, and physiochemical properties. When RW was combined with WYN, MDN, and GMC, the microcapsule WYN/RW/CM showed the highest efficiency at 93.4 %, while the GMC/RW/CM exhibited the highest relative crystallinity at 46.54 %. Furthermore, the investigation assessed storage stability, release of bioactive compounds, and oxidative stability during storage at 4 °C/ 25 % RH ± 5 % and 25 °C/40 % RH ± 5 % for 55 days, revealing optimal stability in the WYN/RW/CM microcapsule. Additionally, the antimicrobial activity was assessed at various concentrations of microcapsules, revealing their inhibitory effect against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) bacteria. The WYN/RW/CM microcapsule exhibited the highest inhibition activity in both strains, reaching 40 mm. This study demonstrates that combining WYN with RW as a wall material has greater efficiency in encapsulation and potential uses in various industrial sectors.
Collapse
Affiliation(s)
- Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Food Technology, Faculty of Agricultural Technology and Fish Sciences, Alneelain University, Khartoum, Sudan.
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Qais Ali Al-Maqtari
- Micro-Pollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat 86400, Johor, Malaysia
| | | | - Gustav Komla Mahunu
- Department of Food Science & Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Halah Aalim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Suliman Khan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Tong Q, Yi Z, Ma L, Tan Y, Cao X, Liu D, Li X. Influences of carboxymethyl chitosan upon stabilization and gelation of O/W Pickering emulsions in the presence of inorganic salts. Carbohydr Polym 2024; 331:121902. [PMID: 38388045 DOI: 10.1016/j.carbpol.2024.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The objective of this study was to investigate the effects of carboxymethyl chitosan (CMCS) on the stabilization and gelation of oil-in-water (O/W) Pickering emulsions (PEs) with polyphenol-amino acid particles in the presence of inorganic salts. The results revealed that the CMCS-induced depletion interactions contributed to improving the emulsification ability and interfacial adsorption efficiency of polyphenol-amino acid particles as well as constructing the network structures in the continuous phase. These relevant changes collectively resulted in elevating stability, viscosity and moduli of PEs. The additional effects of different inorganic salts with varying additions were further investigated, and the addition-dependent phenomena were observed. At low additions of inorganic salts, the occurrence of the chelation of inorganic salts with CMCS consolidated the constructed network structure, favorable to the gelation of PEs. With increasing additions, this chelation effect became stronger which compromised the CMCS-induced depletion, gradually leading to destabilization of PEs. In terms of ion species, the more pronounced effect on emulsion stability was achieved with calcium ions than with potassium and iron ions. This study expects to provide a new perspective on the extending application of cationic CMCS for improving the stability of O/W PEs in the food industry.
Collapse
Affiliation(s)
- Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
9
|
Wang Z, Tang W, Sun Z, Liu F, Wang D. An innovative Pickering W/O/W nanoemulsion co-encapsulating hydrophilic lysozyme and hydrophobic Perilla leaf oil for extending shelf life of fish products. Food Chem 2024; 439:138074. [PMID: 38091791 DOI: 10.1016/j.foodchem.2023.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
A Pickering water-in-oil-in-water nanoemulsion co-encapsulating lysozyme (LYS) and Perilla leaf oil (PO) was prepared using whey protein isolate-tannin acid conjugated nanoparticles (WPI-TA NPs) as emulsifiers, called LYS-PO-NE, and subsequently analyzed. The nano size and multiple phases was confirmed based on the results of confocal laser scanning microscope, scanning electron microscope, and droplet size analysis. LYS-PO-NE had high encapsulation efficiencies of 89.36 % (PO) and 43.91 % (LYS) and both could be released at a slow and continuous rate. The PO addition increased the droplet size, and the LYS addition delayed the release of PO. LYS-PO-NE also showed good storage, pH, thermal, and salt stability, and an effective combined bactericidal activity of LYS and PO against spoilage bacteria. Furthermore, the results of chilled salmon storage experiments indicated that LYS-PO-NE could extend the shelf life of chilled salmon to at least 6 days, demonstrating the potential in the shelf life for fish products.
Collapse
Affiliation(s)
- Zaitian Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Wenxiang Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
10
|
Gao Y, He W, Zhao Y, Yao Y, Chen S, Xu L, Wu N, Tu Y. The Effect of Ionic Strength on the Formation and Stability of Ovalbumin-Xanthan Gum Complex Emulsions. Foods 2024; 13:218. [PMID: 38254519 PMCID: PMC10814777 DOI: 10.3390/foods13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Protein-polysaccharide complexes have been widely used to stabilize emulsions, but the effect of NaCl on ovalbumin-xanthan gum (OVA-XG) complex emulsions is unclear. Therefore, OVA-XG complex emulsions with different XG concentrations at pH 5.5 were prepared, and the effects of NaCl on them were explored. The results indicated that the NaCl significantly affected the interaction force between OVA-XG complexes. The NaCl improved the adsorption of proteins at the oil-water interface and significantly enhanced emulsion stability, and the droplet size and zeta potential of the emulsion gradually decreased with increasing NaCl concentrations (0-0.08 M). In particular, 0.08 M NaCl was added to the OVA-0.2% XG emulsion, which had a minimum droplet size of 18.3 μm. Additionally, XG as a stabilizer could improve the stability of the emulsions, and the OVA-0.3% XG emulsion also exhibited good stability, even without NaCl. This study further revealed the effects of NaCl on emulsions, which has positive implications for the application of egg white proteins in food processing.
Collapse
Affiliation(s)
- Yuanxue Gao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; (Y.G.); (W.H.); (Y.Z.); (Y.Y.); (S.C.); (L.X.); (Y.T.)
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Lu F, Chi Y, Chi Y. High-temperature glycosylation of saccharides to modify molecular conformation of egg white protein and its effect on the stability of high internal phase emulsions. Food Res Int 2024; 176:113825. [PMID: 38163687 DOI: 10.1016/j.foodres.2023.113825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
This paper investigates the freeze-thaw stability of oil-in-water emulsions stabilized by high-temperature wet heating glycosylation products. Glucose (Glu), D-fructose (Fru), xylose (Xyl), maltodextrin (MD), oligofructose (FO), and oligomeric isomaltulose (IMO) were chosen as sugar sources for the glycosylation reaction with egg white proteins (EWPs) at 120 °C to prepare the GEWPs. The study reveals that the type of sugar significantly influences the Maillard reactions with EWPs. The degree of glycosylation was highest in the Xyl group with the greatest reducing capacity and lowest in the MD, FO, and IMO groups. High-temperature wet glycosylation treatment induced changes in the secondary and tertiary structures of EWP. Elevated temperature exposed hydrophobic groups within the protein, while covalent binding of hydrophilic carbohydrates via the Maillard reaction decreased the protein's H0 value. Improved foaming and emulsifying properties were attributed to the increase in α-helix content, disulfide bond formation, and reduced surface tension. Emulsions prepared from GEWPs exhibited higher apparent viscosity and G' compared to those from natural EWPs, with the GEWP/Xyl group showing the highest values. After freeze-thaw treatment, the GEWP/Fru and GEWP/FO groups demonstrated superior stability and reduced freezing point, along with minimal microstructural alterations. These findings underscore the importance of sugar type in the stability of high internal phase emulsions (HIPEs) stabilized by GEWPs, indicating that a tailored Maillard reaction can yield stabilizers with exceptional freeze-thaw stability for emulsions.
Collapse
Affiliation(s)
- Fei Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Luo J, Liu S, Lu H, Wang Y, Chen Q, Shi Y. Improvement of kefir fermentation on rheological and microstructural properties of soy protein isolate gels. Food Res Int 2023; 174:113489. [PMID: 37986495 DOI: 10.1016/j.foodres.2023.113489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023]
Abstract
Soy protein isolate (SPI) has become a promising plant-based material as an animal protein products alternative. However, its application was limited due to the weak gelling properties. To investigate the effect of kefir fermentation on SPI gels properties, SPI-polysaccharide gels was produced by unfermented and kefir-fermented SPI using different concentration of KGM, chitosan, and calcium chloride in this study. Characterization of fermented SPI gels showed that fermentation by kefir grains can be applied to improve the textural strength, mechanical structure, and thermal characteristics of SPI gels. Compared to unfermented SPI gels, the water-holding capacity was remarkably enhanced to 63.11% and 65.71% in fermented SPI-chitosan gels. Moreover, the hardness of fermented SPI-KGM gels were significantly increased to 13.43 g and 27.11 g. And the cohesiveness and resilience of fermented-KGM gels were also improved than unfermented samples. Results of rheological characterization and thermogravimetric analysis revealed the strengthened mechanical features and higher thermal stability of fermented SPI gels. Additionally, the main role of hydrophobic interactions and secondary structure variations of SPI gels were demonstrated by intermolecular force measurements, Fourier-transform infrared spectroscopy, and X-ray diffraction. Moreover, the network structure was observed more compact and homogeneous performed by microstructural images in fermented SPI gels. Therefore, this research provided a novel approach combining multi-species fermentation with protein gelation to prepare SPI gel materials with improved nutrition and structural properties.
Collapse
Affiliation(s)
- Jiaqi Luo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxi Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Sun M, Ma P, Chen C, Pang Z, Huang Y, Liu X, Wang P. Physiochemical characteristics, morphology, and lubricating properties of size-specific whey protein particles by acid or ion aggregation. Int J Biol Macromol 2023; 252:126346. [PMID: 37586622 DOI: 10.1016/j.ijbiomac.2023.126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
To investigate the influence of particle characteristics on their lubricating capacity, microparticles of controlled size (~300, ~700, and ~1900 nm) were prepared from whey proteins using two different approaches: reducing the pH and increasing the calcium ion concentration. The physiochemical, morphological, and tribological properties of the two types of particles were determined. Both treatments pronouncedly decreased the absolute value of zeta-potential and surface hydrophobicity of whey proteins, with calcium ions showing a more severe effect on zeta-potential. The viscosity of the particle suspensions increased with particle size, and ion-induced samples showed higher viscosity than acid-induced ones. Morphology investigation revealed that particle aggregation and irregularity increased with particle size increase. Distinct lubricating behaviors were observed for the two particle types within different size ranges. Viscosity played a more important role in lubrication when the particle size was small, while particle characteristics became more dominant for large particles.
Collapse
Affiliation(s)
- Mengya Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Peipei Ma
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Cunshe Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yating Huang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Synergistic effect of microfluidization and transglutaminase cross-linking on the structural and oil-water interface functional properties of whey protein concentrate for improving the thermal stability of nanoemulsions. Food Chem 2023; 408:135147. [PMID: 36527918 DOI: 10.1016/j.foodchem.2022.135147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Generally, whey protein concentrate (WPC) undergoes high-temperature denaturation and aggregation, which reduces its emulsifying properties and is not conducive to as an emulsifier to maintain the thermal stability of emulsions. In this study, dynamic high-pressure microfluidization technology (DHPM) combined with TGase (TG) cross-linking was applied to prepare DHPM-TG-WPC, and the thermal stabilization mechanism of nanoemulsions prepared with DHPM-TG-WPC was explored. Results showed DHPM treatment could promote the formation of TG-crosslinked WPC polymers. Compared to WPC, the free sulfhydryl and free amino group content of DHPM-TG-WPC was significantly decreased (P < 0.05), the surface hydrophobicity and interfacial tension of DHPM-TG-WPC were increased by 45.23 % and 62.34 %, respectively. And its emulsifying stability index and interface protein adsorption was significantly enhanced (P < 0.05). Furthermore, compared to WPC, DHPM-WPC and TG-WPC, DHPM-TG-WPC-stabilized nanoemulsions showed the best 15 days of storage stability after thermal sterilization. This study provides a theoretical basis for the application of modified-WPC emulsion.
Collapse
|
15
|
Lu F, Ma Y, Zang J, Qing M, Ma Z, Chi Y, Chi Y. High-temperature glycosylation modifies the molecular structure of ovalbumin to improve the freeze-thaw stability of its high internal phase emulsion. Int J Biol Macromol 2023; 233:123560. [PMID: 36746301 DOI: 10.1016/j.ijbiomac.2023.123560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
In this study, ovalbumins (OVAs) were glycosylated with fructo-oligosaccharide (FO) at different temperatures (80 °C, 100 °C, 120 °C, and 140 °C) and durations (1 h and 2 h) via wet-heating. The glycosylated OVAs (GOVAs) were characterized by the degree of glycosylation (DG), particle size, zeta potentials, and structural changes. GOVAs-stabilized high-internal-phase emulsions (HIPEs) were then prepared to compare their macro- and microstructure and freeze-thaw stability. The results showed that the DG of GOVAs increased with the increase in glycosylation temperature and the protein structure unfolded with it. Glycosylation decreased the particle size, zeta potential, and α-helical structures and increased the β-sheets and surface hydrophobicity (H0) of GOVAs compared with unmodified OVAs. Moreover, GOVAs-stabilized HIPEs exhibited smaller particle sizes, zeta potentials, agglomeration indexes, oil loss rates, and freezing points and higher viscoelasticity, centrifugal stabilities, flocculation indexes, and freeze-thaw stabilities. Notably, HIPEs prepared by GOVAs (glycosylated higher than 120 °C) showed the least changes in macro- and microscopic appearances after freeze-thawing. These findings will provide a novel method for improving and broadening the functionalities of OVAs and potentially develop HIPEs with enhanced freeze-thaw stabilities.
Collapse
Affiliation(s)
- Fei Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Liu L, Zhang Y, Dao L, Huang X, Qiu R, Pang J, Wu S. Efficient and accurate multi-scale simulation for viscosity mechanism of konjac glucomannan colloids. Int J Biol Macromol 2023; 236:123992. [PMID: 36898457 DOI: 10.1016/j.ijbiomac.2023.123992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The viscosity is a foundational parameter of biomacromolecule in the food industry. The viscosity of macroscopic colloids is closely related to the dynamical behaviors of mesoscopic biomacromolecule clusters, which are difficult to be investigated at molecular resolution by common methods. In this study, based on experimental data, multi-scale simulations combining microscopic molecular dynamics simulation, mesoscopic Brownian dynamics simulation, and macroscopic flow field construction were used to investigate the dynamical behaviors of mesoscopic clusters of konjac glucomannan (KGM) colloids (~500 nm) over a long time (~100 ms). Numerical statistical parameters of the mesoscopic simulation of macroscopic clusters were proposed and proved to represent the viscosity of colloids. Based on the intermolecular interaction and macromolecular conformation, the mechanism of the shear thinning effect was revealed as both the regular arrangement of macromolecules at low shear rates (<100 s-1) and structural collapse of macromolecules at high shear rates (>500 s-1). Then, the effect of molecular concentration, molecular weight, and temperature on the colloid viscosity and cluster structure of KGM colloids was investigated by experiments and simulations. This study provides a novel multi-scale numerical method and insight into the viscosity mechanism of biomacromolecule.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Dao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xin Huang
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
17
|
Zhong M, Ma L, Liu X, Liu Y, Wei S, Gao Y, Wang Z, Chu S, Dong S, Yang Y, Gao S, Li S. Exploring the influence of ultrasound on the antibacterial emulsification stability of lysozyme-oregano essential oil. ULTRASONICS SONOCHEMISTRY 2023; 94:106348. [PMID: 36871524 PMCID: PMC9988396 DOI: 10.1016/j.ultsonch.2023.106348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.
Collapse
Affiliation(s)
- Mengzhen Zhong
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xin Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shuaishuai Wei
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhan Wang
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shijian Dong
- Anhui Rongda Food Co., Ltd., Xuancheng 242000, China
| | - Yuping Yang
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
18
|
Wang S, Li Y, Yan G, Yuan D, Ji B, Zhou F, Li Y, Zhang L. Thickening mechanism of recombined dairy cream stored at 4 °C: Changes in the composition and structure of milk protein under different sterilization intensities. Int J Biol Macromol 2023; 227:903-914. [PMID: 36549627 DOI: 10.1016/j.ijbiomac.2022.12.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
This work elucidates the mechanism involved in the effect of varying sterilization intensities on RDC thickening via comparative analysis of the changes in the composition and structure of RDC interfacial protein after storage at 4 °C and at 25 °C. The results showed that pasteurized RDCs (75 °C for 16 s, 90 °C for 5 min) and high-temperature sterilized RDCs (105 °C for 3 min, 115 °C for 7 min and 121 °C for 7 min) did not thicken during storage at 25 °C, and had lower viscosities and higher Ca2+ concentrations than those stored at 4 °C. Whey protein (WP) aggregates were found to have been adsorbed at the interface of high-temperature treated RDCs stored at 4 °C, leading to the aggregation of fat globules and, consequently, reversible thickening. However, high-temperature sterilized RDCs underwent into irreversible thickening at 10 d, 7 d and 3 d. This phenomenon was attributed to the large amount of heat-induced whey protein and κ-casein complex that was absorbed on the oil-water interface, with Ca2+ bonded to form bridging flocculation, which altered the secondary structure of the interfacial protein to one with increased β-sheet content and decreased random coil content.
Collapse
Affiliation(s)
- Shiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guosen Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Liebing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Myofibrillar protein microgels stabilized high internal phase Pickering emulsions with heat-promoted stability. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Physicochemical characterization, rheological and antioxidant properties of three alkali-extracted polysaccharides from mung bean skin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Ali Mahdi A, Mohammed JK, Al‐Ansi W, Al‐Maqtari QA, Al‐Adeeb A, Cui H, Lin L. Stabilization of the water‐in‐oil emulsions of
Citrus reticulata
essential oil by different combinations of gum arabic/maltodextrin/whey protein. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amer Ali Mahdi
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
| | | | - Waleed Al‐Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | - Qais Ali Al‐Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | | | - Haiying Cui
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Lin Lin
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- State Key Laboratory of Utilization of Woody Oil Resource Hunan Academy of Forestry Changsha China
| |
Collapse
|
22
|
Guo Y, Li B, Cheng T, Hu Z, Liu S, Liu J, Sun F, Guo Z, Wang Z. Effect of cavitation jet on the structural, emulsifying properties and rheological properties of soybean protein‐oxidised aggregates. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yanan Guo
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Bailiang Li
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Tianfu Cheng
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd. Jiamusi Heilongjiang 154007 China
| | - Zhaodong Hu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Shuangqi Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Jun Liu
- Kedong Yuwang Soybean Protein Food Co., Ltd. Qiqihaer Heilongjiang 161000 China
| | - Fuwei Sun
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Zengwang Guo
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Zhongjiang Wang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| |
Collapse
|
23
|
Chen S, Qin L, Chen T, Yu Q, Chen Y, Xiao W, Ji X, Xie J. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int J Biol Macromol 2022; 207:81-89. [PMID: 35247426 DOI: 10.1016/j.ijbiomac.2022.02.170] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Starch is a copolymer with unique physicochemical characteristics, is known for its low cost, easy degradability, renewable and easy availability. However, natural starches have some undesirable properties such as poor solubility, poor functional properties, lower resistant starch content with reduced retrogradation, and poor stability under various temperatures, pH, which limit their application in food. Different modification methods are used to improve its performance and expand its application. Numerous studies have been conducted to investigate why the addition of small amounts of polysaccharides affects the properties of starch pastes and gels. The application of polysaccharide-modified starch can be seen in the pasting, rheology, texture and in vitro digestive properties of starch gels. The main influencing factors include different starches, different specific polysaccharides, and different methods of preparation of composite pastes and gels. This paper reviews the changes in the properties of starch in terms of pasting, rheology, texture and in vitro digestion after modification with polysaccharides and the mechanism of polysaccharide action on starch.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
24
|
Ma T, Wang X, Chen J. In vitro stability study of saliva emulsions: The impact of time, calcium ion and pH. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Rong L, Shen M, Wen H, Xiao W, Li J, Xie J. Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Physicochemical, digestive and rheological properties of protein from tuna by subcritical dimethyl ether: Focus on process-related indexes. Food Chem 2022; 372:131337. [PMID: 34818745 DOI: 10.1016/j.foodchem.2021.131337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/29/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
The process-related physicochemical, digestive and rheological properties of protein prepared by subcritical dimethyl ether extraction (SDEE) were comprehensively investigated and compared with those obtained by pH-shift, to study the industrial potential of SDEE. Two different materials from tuna (meat and liver) were studied in parallel, and SDEE had similar effects on the proteins in them. The protein component was almost unchanged before and after SDEE, while the content of water-soluble protein and alkali-soluble protein was substantially reduced and increased after pH-shift, respectively. We also found that SDEE had superior ability to pH-shift to conserve light metals, remove lipids and heavy metals, and maintain protein structure. Furthermore, SDEE-produced protein powders were easier for humans to digest, and their gelation and emulsification were also superior to those prepared by pH-shift. The aforementioned results suggest that SDEE can remove more impurities, and the obtained protein has outstanding potential in industrial applications.
Collapse
|
27
|
Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu'datt MH. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chem 2022; 383:132386. [PMID: 35176718 DOI: 10.1016/j.foodchem.2022.132386] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/07/2022] [Accepted: 02/05/2022] [Indexed: 12/27/2022]
Abstract
Due to its high nutritional value and increasing consumption trends, plant-based proteins were used in a variety of dietary products, either in their entirety or as partial substitutions. There is indeed a growing need to produce plant-based proteins as alternatives to dairy-based proteins that have good functional properties, high nutritional values, and high protein digestibility. Among the plant-based proteins, both lentil and quinoa proteins received a lot of attention in recent years as dairy-based protein alternatives. To ensure plant-based proteins a success in food applications, food industries and researchers need to have a comprehensive scientific understanding of these proteins. The demand for proteins is highly dependent on several factors, mainly functional properties, nutritional values, and protein digestibility. Fermentation and protein complexation are recognised to be suitable techniques in enhancing the functional properties, nutritional values, and protein digestibility of these plant-based proteins, making them potential alternatives for dairy-based proteins.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia.
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
28
|
Zhang J, Jiang L, Yang J, Chen X, Shen M, Yu Q, Chen Y, Xie J. Effect of calcium chloride on heat-induced Mesona chinensis polysaccharide-whey protein isolation gels: Gel properties and interactions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Effects of the Incorporation of Calcium Chloride on the Physical and Oxidative Stability of Filled Hydrogel Particles. Foods 2022; 11:foods11030278. [PMID: 35159430 PMCID: PMC8834438 DOI: 10.3390/foods11030278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, the effects of calcium chloride (CaCl2) addition on the physical and oxidative stabilities of filled hydrogel were investigated. The results revealed that CaCl2 significantly enhanced the particle size, interfacial layer thickness, apparent viscosity, and viscoelastic behavior of filled hydrogels and decreased their light and whiteness values (p < 0.05). This phenomenon was mainly attributed to the strong binding ability between Ca2+ and protein/pectin mixtures, which were present in the interfacial area or aqueous phase, as verified by cryo-scanning electron microscopy results. Moreover, lower levels of CaCl2 (2 or 4 mM) significantly enhanced the oxidative stability of filled hydrogels (p < 0.05), particularly at a concentration of 4 mM. However, a higher level of CaCl2 (6 or 8 mM) resulted in an electrostatic shielding effect, which resulted in the aggregation of multiple droplets and the flocculation of the filled hydrogels, which negatively affected the oxidative stability of filled hydrogels. The findings of this study indicated that appropriate Ca2+ levels (4 mM) improved the physical and oxidative stability of filled hydrogel, and this finding may provide useful insights for the development of effective delivery systems for specific applications.
Collapse
|
30
|
Mahdi AA, Al-Maqtari QA, Mohammed JK, Al-Ansi W, Aqeel SM, Cui H, Lin L. Nanoencapsulation of Mandarin Essential Oil: Fabrication, Characterization, and Storage Stability. Foods 2021; 11:54. [PMID: 35010180 PMCID: PMC8750011 DOI: 10.3390/foods11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023] Open
Abstract
This study evaluates the combined efficiency of whey protein isolate (WPI) with maltodextrin (MD) and gum arabic (GA), as a delivery system for encapsulating Citrus reticulata essential oil (CEO). The wall materials blended at different rates were produced to obtain seven formulations of nanocapsules (NCEO), namely NCEO-GA, NCEO-MD, NCEO-WPI, NCEO-GA/MD, NCEO-GA/WPI, NCEO-MD/WPI, and NCEO-GA/MD/WPI. The interaction between CEO and WPI was simulated by molecular docking. Findings showed that the physicochemical characteristics and storage stability of formulations containing WPI were considerably improved. The NCEO-GA/MD/WPI formulation demonstrated the optimum values of encapsulation efficiency (92.08%), highest glass transition temperature (79.11 °C), high crystallinity (45.58%), high thermal stability (mass loss at 100 °C < 5%), and also had the highest antioxidant activity and lowest peroxide value after storage. This study demonstrated that combining WPI with MD and GA, as wall material encapsulation, can produce nanocapsules with superior properties to those created using polysaccharides individually.
Collapse
Affiliation(s)
- Amer Ali Mahdi
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (A.A.M.); (L.L.)
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana’a University, Sana’a 12544, Yemen; (Q.A.A.-M.); (W.A.-A.)
| | - Qais Ali Al-Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana’a University, Sana’a 12544, Yemen; (Q.A.A.-M.); (W.A.-A.)
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Jalaleldeen Khaleel Mohammed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Waleed Al-Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana’a University, Sana’a 12544, Yemen; (Q.A.A.-M.); (W.A.-A.)
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | | | - Haiying Cui
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (A.A.M.); (L.L.)
| | - Lin Lin
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (A.A.M.); (L.L.)
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| |
Collapse
|
31
|
Lekshmi RK, Tejpal C, Anas K, Chatterjee N, Mathew S, Ravishankar C. Binary blend of maltodextrin and whey protein outperforms gum Arabic as superior wall material for squalene encapsulation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Qu D, Hua M, Chen JB, Li SS, Wen LK, Sun YS. Formation and Characterization of Irreversible Sediment of Ginseng Extract. Foods 2021; 10:2714. [PMID: 34828995 PMCID: PMC8621104 DOI: 10.3390/foods10112714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Sediment is a key issue in the beverage industry. This study confirmed that reversible and irreversible sediments were formed during low-temperature storage of ginseng extract. The first 30 days of storage are the critical period for sediment formation. As the time of storage extends, the chemical composition changes. The composition interaction model verified that the cross-linking of protein-pectin, protein-oxalic acid and Ca2+-pectin was the main cause of the turbidity of ginseng extract. Based on the characterization of irreversible sediment (IRS), there are typical structures of proteins, polysaccharides and calcium oxalate dihydrate (COD) crystals. Glucose, galacturonic acid, aspartate, glutamic acid, leucine, Ca, K, Al, Mg, Na and Fe are the main monomer components. Effective regulation of these ingredients will greatly help the quality of ginseng beverages.
Collapse
Affiliation(s)
- Di Qu
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.H.); (J.-B.C.); (S.-S.L.)
| | - Mei Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.H.); (J.-B.C.); (S.-S.L.)
| | - Jian-Bo Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.H.); (J.-B.C.); (S.-S.L.)
| | - Shan-Shan Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.H.); (J.-B.C.); (S.-S.L.)
| | - Lian-Kui Wen
- Institute of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (M.H.); (J.-B.C.); (S.-S.L.)
| |
Collapse
|
33
|
Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106835] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Du Q, Wang S, Lyu F, Liu J, Ding Y. The interfacial covalent bonding of whey protein hydrolysate and pectin under high temperature sterilization: Effect on emulsion stability. Colloids Surf B Biointerfaces 2021; 206:111936. [PMID: 34214839 DOI: 10.1016/j.colsurfb.2021.111936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
In this study, the effect of high-pressure steam sterilization (121 °C for 15 min) on whey protein hydrolysate-pectin solutions and emulsions was studied. The interaction and emulsification characteristics of pectin and whey protein concentrate (WPC) were evaluated from the solution system to the emulsion system. Enzymatic hydrolysis of WPC (WPH, 2 % and 8 % degree of hydrolysis) increased the covalent binding with pectin, which reduced the heat-induced aggregation of protein and improved emulsification. The thermodynamic incompatibility between WPC and pectin was not conducive to the covalent bonding under high temperature sterilization and produced serious aggregates, which also made a rapid increase in particle size (up to ∼3 μm), compared to WPH-pectin emulsion (∼ 400 nm). In addition, if emulsion was stirred during the sterilization, the creaming and protein aggregation could be avoided. By comparing low methoxy pectin (LMP) and high methoxy pectin (HMP), it was found that the whey protein-HMP complex had better emulsification stability, and the steric stabilization played a more important role in emulsion stability than the electrostatic repulsion. The changes of whey protein and pectin at the oil-water interface of the emulsion during the sterilization process may provide a reference for the sterilized bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Shunyu Wang
- Liziyuan Food Limited Liability Company, Zhejiang, 321031, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| |
Collapse
|