1
|
Karabulut G. Advancing sustainable packaging through self-assembly induced amyloid fibrillization of soy and pea protein nanofilms. Food Chem 2025; 463:141302. [PMID: 39298847 DOI: 10.1016/j.foodchem.2024.141302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study explored protein fibrillization and characterization, demonstrating significant enhancements in the structural, mechanical, and functional properties of soy and pea protein fibrils for biodegradable food packaging. The fibrillizationprocess increased β-sheet alignment by 1.3-fold for soy protein fibrils (SPF) and 1.2-fold for pea protein fibrils (PPF). ThT fluorescence assays revealed higher β-sheet alignment in SPF compared to PPF. Structural analysis showed flexible, worm-like fibrils in SPF and PPF. Mechanical tests indicated significant improvements: tensile strength increased to 4.88 MPa for SPF and 3.83 MPa for PPF films, with elongation at break reaching 221 % for SPF and 101.62 % for PPF films. Amyloid fibrillation reduced water solubility and water vapor permeability while increasing the swelling degree of protein films. Optical analysis revealed decreased lightness, intensified green and yellow hues, and increased transparency. These findings highlight the potential of amyloid fibrillation to enhance protein films for sustainable packaging applications.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54187, Sakarya, Türkiye.
| |
Collapse
|
2
|
Wang J, Niu J, Ji H, Li X, McClements DJ, Jin Z, Jiang L, Wen J, Qiu C. Regulation of Adsorption Properties of Whey Protein Isolate Fibril-Calcium Alginate Aerogels by Controlling Protein Fibrillation Time. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23230-23242. [PMID: 39453631 DOI: 10.1021/acs.langmuir.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Amyloid-like fibrils have a relatively high specific surface area, which makes them suitable as absorbents. In this study, we prepared absorbent composite aerogels from whey protein isolate fibril (WPIF) and calcium alginate (CA). The impact of protein fibrillation time (4-24 h) on the adsorption properties of these aerogels was assessed, as this influences the nature of the WPIFs formed. Fourier transform infrared spectroscopy analysis indicated that hydrogen bonding, hydrophobic interactions, and electrostatic interactions were the main molecular interactions in the composite aerogels. Then, the adsorption properties of the aerogels were investigated using crystal violet as a model compound. The adsorption properties of all composite aerogels were significantly improved compared to CA aerogels, which was mainly attributed to the numerous functional groups of the surfaces of the WPIFs, as well as the rougher surface topology of the composite aerogels. The adsorption capacity of the composite aerogels first increased and then decreased with increasing fibrillation time, with 8 h fibrillation leading to the largest adsorption capacity (1886.11 mg/g). Thioflavin T fluorescence, atomic force microscopy, light extinction, average particle size, and zeta potential analysis indicated that the high fibril content, mature fibril morphology, large number of available functional groups on the surface, and relatively low zeta potential of WPIF8 might be the main reasons. Adsorption kinetics and isothermal adsorption profile analysis suggested that monolayer adsorption occurred through chemical adsorption processes. The edible aerogel with high adsorption properties developed in this work has potential application in food and biomedical fields.
Collapse
Affiliation(s)
- Jilong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingxian Niu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01060, United States
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Zhang Y, Lin X, Wang Y, Ye W, Lin Y, Zhang Y, Zhang K, Zhao K, Guo H. The non-covalent and covalent interactions of whey proteins and saccharides: influencing factor and utilization in food. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38961829 DOI: 10.1080/10408398.2024.2373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
During the application of Whey proteins (WPs), they often have complex interactions with saccharides (Ss), another important biopolymer in food substrate. The texture and sensory qualities of foods containing WPs and Ss are largely influenced by the interactions of WPs-Ss. Moreover, the combination of WPs and Ss is possible to produce many excellent functional properties including emulsifying properties and thermal stability. However, the interactions between WPs-Ss are complex and susceptible to some processing conditions. In addition, with different interaction ways, they can be applied in different fields. Therefore, the non-covalent interaction mechanisms between WPs-Ss are firstly summarized in detail, including electrostatic interaction, hydrogen bond, hydrophobic interaction, van der Waals force. Furthermore, the existence modes of WPs-Ss are introduced, including complex coacervates, soluble complexes, segregation, and co-solubility. The covalent interactions of WPs-Ss in food applications are often formed by Maillard reaction (dry or wet heat reaction) and occasionally through enzyme induction. Then, two common influencing factors, pH and temperature, on non-covalent/covalent bonds are introduced. Finally, the applications of WPs-Ss complexes and conjugations in improving WP stability, delivery system, and emulsification are described. This review can improve our understanding of the interactions between WPs-Ss and further promote their wider application.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoya Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenhui Ye
- Inner Mongolia Yili Industrial Group Company Limited, Hohhot, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Yuning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei, China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Kan X, Zhang S, Kwok E, Chu Y, Chen L, Zeng X. Granular hydrogels with tunable properties prepared from gum Arabic and protein microgels. Int J Biol Macromol 2024; 273:132878. [PMID: 38844277 DOI: 10.1016/j.ijbiomac.2024.132878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/17/2024]
Abstract
Granular hydrogels have emerged as a new class of materials for 3D printing, tissue engineering, and food applications due to their extrudability, porosity, and modularity. This work introduces a convenient method to prepare granular hydrogel with tunable properties by modulating the interaction between gum Arabic (GA) and whey protein isolate (WPI) microgels. As the concentration of GA increased, the appearance of the hydrogel changed from fluid liquid to moldable solid, and the microstructure changed from a macro-porous structure with thin walls to a dense structure formed by the accumulation of spherical particles. At a GA concentration of 0.5 %, the hydrogels remained fluid. Granular hydrogels containing 1.0 % GA showed mechanical properties similar to those of tofu (compressive strength: 10.8 ± 0.5 kPa, Young's modulus: 16.7 ± 0.4 kPa), while granular hydrogels containing 1.5 % GA showed mechanical properties similar to those of hawthorn sticks and sausages (compressive strength: 300.4 ± 5.8 kPa; Young's modulus: 200.5 ± 3.4 kPa). The hydrogel with 2.0 % GA was similar to hawthorn sticks, with satisfactory bite resistance and elasticity. Such tunability has led to various application potentials in the food industry to meet consumer demand for healthy, nutritious, and diverse textures.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Alberta, Canada
| | - Sitian Zhang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Alberta, Canada
| | - Esther Kwok
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Alberta, Canada
| | - Yifu Chu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Alberta, Canada
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Alberta, Canada.
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
5
|
Qiu L, Zhang M, Ghazal AF, Chu Z, Luo Z. Development of 3D printed k-carrageenan-based gummy candies modified by fenugreek gum: Correlating 3D printing performance with sol-gel transition. Int J Biol Macromol 2024; 265:130865. [PMID: 38490387 DOI: 10.1016/j.ijbiomac.2024.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Temperature-responsive inks were formulated using k-carrageenan, fenugreek gum (FG), rose extracts, and sugar, of which the first two were used as the gelling agents. The interactions among components in these mixed ink formulations were investigated. Sol-gel transition and rheological properties of these inks were also correlated with extrusion, shape formation, and self (shape)-supporting aspects of 3D printing. Results indicated that incorporating FG increased inks' gelation temperature from 39.7 °C to 44.7-49.6 °C, affecting the selection of printing temperature (e.g., 0 % FG: 40 °C, 0.15 % FG: 45 °C, 0.3 % FG-0.6 % FG: 50 °C). Inks in solution states with lower viscosity (<5 Pa·s) were amenable to ensure their smooth extrusion through the tip of the printing nozzle. A shorter sol-gel transition time (approximately 100 s) during the shape formation stage facilitated the solidification of inks after extrusion. The addition of FG significantly (p<0.05) improved the mechanical properties (elastic modulus, hardness, etc.) of the printed models, which facilitated their self-supporting behavior. Low field nuclear magnetic resonance indicated that the inclusion of FG progressively restricted water mobility, consequently reducing the water syneresis rate of the mixed inks by 0.86 %-3.6 %. FG enhanced hydrogen bonding interactions among the components of these mixed inks, and helped to form a denser network.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhaoyang Chu
- Golden Monkey Food Co., 466300 Shenqiu County, Henan Province, China
| | - Zhenjiang Luo
- Haitong Foods Ninghai Co., Ltd., 315000 Ninghai, Zhejiang, China
| |
Collapse
|
6
|
Dong Y, Lan T, Wang L, Wang X, Xu Z, Jiang L, Zhang Y, Sui X. Development of composite electrospun films utilizing soy protein amyloid fibrils and pullulan for food packaging applications. Food Chem X 2023; 20:100995. [PMID: 38144716 PMCID: PMC10739858 DOI: 10.1016/j.fochx.2023.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Electrospun films (ESF) are gaining attention for active delivery due to their biocompatibility and biodegradability. This study investigated the impact of adding soy protein amyloid fibrils (SAFs) to ESF. Functional ESF based on SAFs/pullulan were successfully fabricated, with SAFs clearly observed entangled in the electrospun fibers using fluorescence microscopy. The addition of SAFs improved the mechanical strength of the ESF threefold and increased its surface hydrophobicity from 24.8° to 49.9°. Moreover, the ESF demonstrated antibacterial properties against Escherichia coli and Staphylococcus aureus. In simulated oral disintegration tests, almost 100% of epigallocatechin gallate (EGCG) dissolved within 4 min from the ESF. In summary, the incorporation of SAFs into ESF improved their mechanical strength, hydrophobicity, and enabled them to exhibit antibacterial properties, making them promising candidates for active delivery applications in food systems. Additionally, the ESF showed efficient release of EGCG, indicating their potential for controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Luying Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Rathod G, Beckman S, Amamcharla JK. Production and functional evaluation of nonfat dry milk with whey proteins as fibrils. J Dairy Sci 2023; 106:8479-8492. [PMID: 37641309 DOI: 10.3168/jds.2023-23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/28/2023] [Indexed: 08/31/2023]
Abstract
Commercial manufacturing of dairy products involves the addition of dairy ingredients (such as nonfat dry milk and milk protein concentrates), as well as nondairy additives (such as gums, stabilizers, emulsifiers, and texture modifiers) to get the best product appearance, maintain the product quality, and extend shelf life. Though these nondairy additives are not harmful, consumers do not prefer them in dairy food formulations. Therefore, the dairy industry is working on improving the inherent functionality of dairy ingredients using different processes. Recently, fibrillation emerged as a new technique to convert globular proteins such as whey proteins into fibrils, which provide enhanced viscosity, foaming, and emulsification capacity. Therefore, skim milk was subjected to microfiltration followed by ultrafiltration of microfiltration permeate to fractionate whey proteins. Then, whey proteins were selectively fibrillated and mixed back with other streams of microfiltration and ultrafiltration to get fibrillated skim milk. Fibrillated skim milk was spray-dried to get fibrillated nonfat dry milk (NDM). Visible whey protein fibrils were observed in reconstituted fibrillated NDM, which showed survival of fibrils in fibrillated NDM. Fibrillated NDM showed significantly higher viscosity than control NDM. Fibrillated NDM also showed higher emulsification capacity, foaming capacity, and stability than the control NDM but lower gel strength. Considering the improved functionality of fibrillated NDM, they can be used in product formulations such as ice cream mix, where the thickening of a solution, good emulsification, and foaming properties are required.
Collapse
Affiliation(s)
- Gunvantsinh Rathod
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506
| | - Steven Beckman
- Department of Dairy and Food Science, Davis Dairy Plant, South Dakota State University, Brookings, SD 57007
| | - J K Amamcharla
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506.
| |
Collapse
|
8
|
Rathee S, Ojha A, Upadhyay A, Xiao J, Bajpai VK, Ali S, Shukla S. Biogenic engineered nanomaterials for enhancing bioavailability via developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food Funct 2023; 14:9083-9099. [PMID: 37750182 DOI: 10.1039/d3fo02473c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, South Korea.
| | - Shruti Shukla
- Department of Nanotechnology, North Eastern Hill University (NEHU), East Khasi Hills, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
9
|
Dehnad D, Ghorani B, Emadzadeh B, Emadzadeh M, Assadpour E, Rajabzadeh G, Jafari SM. Recent advances in iron encapsulation and its application in food fortification. Crit Rev Food Sci Nutr 2023; 64:12685-12701. [PMID: 37703437 DOI: 10.1080/10408398.2023.2256004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Iron (Fe) is an important element for our body since it takes part in a huge variety of metabolic processes. However, the direct incorporation of Fe into food fortification causes a number of problems along with undesirable organoleptic properties. Thus, encapsulation has been suggested to alleviate this problem. This study first sheds more light on the Fe encapsulation strategies and comprehensively explains the results of Fe encapsulation studies in the last decade. Then, the latest attempts to use Fe (in free or encapsulated forms) to fortify foods such as bakery products, dairy products, rice, lipid-containing foods, salt, fruit/vegetable-based products, and infant formula are presented. Double emulsions are highly effective at keeping their Fe content and display encapsulation efficiency (EE) > 88% although it decreases upon storage. The encapsulation by gel beads possesses several advantages including high EE, as well as reduced and great Fe release in gastric and duodenal conditions, respectively. Cereals, particularly bread and wheat, are common staple foods globally; they are very suitable for food fortification by Fe derivatives. Nevertheless, the majority of Fe in flour is available as salts of phytic acid (IP6) and phytates, reducing Fe bioavailability in the human body. The sourdough process degrades IP6 completely while Chorleywood Bread Making Process and conventional processes decrease it by 75% in comparison with whole meal flour.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
10
|
Tan C, Karaca AC, Assadpour E, Jafari SM. Influence of different nano/micro-carriers on the bioavailability of iron: Focus on in vitro-in vivo studies. Adv Colloid Interface Sci 2023; 318:102949. [PMID: 37348384 DOI: 10.1016/j.cis.2023.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Anemia resulting from iron (Fe) deficiency is a global public health problem. The deficiency of Fe is usually due to insufficient dietary intake of iron, interaction of Fe with other food components, and thus low bioaccessibility/bioavailability. Fe encapsulation has the potential to tackle some major challenges in iron fortification of foods. Various nano/micro-carriers have been developed for encapsulation of Fe, including emulsions, liposomes, hydrogels, and spray-dried microcapsules. They could reduce the interactions of Fe with food components, increase iron tolerance and intestinal uptake, and decrease adverse effects. This article review covers the factors affecting the bioavailability of Fe along with emerging carriers that can be used as a solution of this issue. The application of Fe-loaded carriers in food supplements and products is also described. The advantages and limitations associated with the delivery efficiency of each carrier for Fe are highlighted.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
11
|
Application of Amyloid-Based Hybrid Membranes in Drug Delivery. Polymers (Basel) 2023; 15:polym15061444. [PMID: 36987222 PMCID: PMC10052896 DOI: 10.3390/polym15061444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The properties of amyloid fibrils, e.g., unique structural characteristics and superior biocompatibility, make them a promising vehicle for drug delivery. Here, carboxymethyl cellulose (CMC) and whey protein isolate amyloid fibril (WPI-AF) were used to synthesize amyloid-based hybrid membranes as vehicles for the delivery of cationic and hydrophobic drugs (e.g., methylene blue (MB) and riboflavin (RF)). The CMC/WPI-AF membranes were synthesized via chemical crosslinking coupled with phase inversion. The zeta potential and scanning electron microscopy results revealed a negative charge and a pleated surface microstructure with a high content of WPI-AF. FTIR analysis showed that the CMC and WPI-AF were cross-linked via glutaraldehyde and the interacting forces between membrane and MB or RF was found to be electrostatic interaction and hydrogen bonding, respectively. Next, the in vitro drug release from membranes was monitored using UV-vis spectrophotometry. Additionally, two empirical models were used to analyze the drug release data and relevant rate constant and parameters were determined accordingly. Moreover, our results indicated that in vitro drug release rates depended on the drug–matrix interactions and transport mechanism, which could be controlled by altering the WPI-AF content in membrane. This research provides an excellent example of utilizing two-dimensional amyloid-based materials for drug delivery.
Collapse
|
12
|
Correlating 3D printing performance with sol-gel transition based on thermo-responsive k-carrageenan affected by fructose. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Li D, Yao X, Gou Q, Cao G, Xu K, Yang Y. In vitro oxidation and digestibility profiles of iron-loaded whey protein isolate/gum Arabic complexes with different morphologies. Food Funct 2023; 14:1227-1237. [PMID: 36621532 DOI: 10.1039/d2fo03204j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the promotion of oxidation of lipids in oil-in-water (o/w) emulsions and digestive properties of the bionic dynamic gastrointestinal system of whey protein isolate (WPI) and gum arabic (GA) complexes loaded with iron ions, which were fabricated previously and shown as WPI/GAFe3+ nanoparticles (WGS) and WPI/GAFe3+ fibers (WGF). Compared with emulsions containing Fe3+ and GA-loaded complex (GAFe3+), WGS and WGF greatly improved the oxidative stability of lipids along with the reduced lipid oxidation products and volatile compounds, attributed to the encapsulation of iron ions. During the bionic dynamic gastrointestinal digestion, the iron ion release of WGF was significantly higher than that of WGS, probably due to different assembled internal structures. Accordingly, two proposed WPI/GAFe3+ complexes with different morphologies are expected to be developed as novel stable iron fortifiers with delayed lipid oxidation and controlled iron-ion release in food emulsions.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Qingxia Gou
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Kai Xu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Yongli Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| |
Collapse
|
14
|
Yang D, Yao X, Wang L, Xu K, Li D, Liu N, Midgley A, Liu D, Katsuyoshi N. Physicochemical stability of Pickering emulsion stabilized with spherical and fibrous iron ions loaded whey protein isolate/gum Arabic complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Liu Z, Chen X, Dai Q, Xu D, Hu L, Li H, Hati S, Chitrakar B, Yao L, Mo H. Pea protein-xanthan gum interaction driving the development of 3D printed dysphagia diet. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Effect of Maillard reaction conditions on the gelation and thermal stability of whey protein isolate/D-tagatose conjugates. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Recent advances of interfacial and rheological property based techno-functionality of food protein amyloid fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Correlating rheology with 3D printing performance based on thermo-responsive κ-carrageenan/Pleurotus ostreatus protein with regard to interaction mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|