1
|
Pan W, Qi X, Huang Z, Shen M, Wen H, Xie J. Effect of three polysaccharides with different charge characteristics on the properties of highland barley starch gel. Int J Biol Macromol 2024; 281:136267. [PMID: 39366626 DOI: 10.1016/j.ijbiomac.2024.136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Highland barley, a nutritious whole grain, faces limited market utilization due to the poor heating stability of its starch. The aim of this study was to investigate the effects of three differently charged ionic polysaccharides-guar gum (GG), xanthan gum (XG), and carboxymethyl chitosan (CMC)-on the gel properties of highland barley starch (HBS). GG and XG notably increased pasting viscosity, viscoelasticity, hardness, and strength of HBS gels. Conversely, CMC resulted in decreased gel properties. All three polysaccharides enhanced OH tensile vibration (3000-3800 cm-1), with GG and XG promoting denser honeycomb network structures and lower spin-spin relaxation time (T2), indicating improved structural integrity. In contrast, low concentrations of CMC led to disorder and loose structure. Hydrogen bonding and electrostatic interactions were the main forces by which polysaccharides influenced the properties of starch gels. This research contributes to enhancing the properties of HBS gel during heating and expanding its commercial applications. It also provides some insights to understand the interaction between different charged polysaccharides and starch.
Collapse
Affiliation(s)
- Wentao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Yu S, Huang Q, Hu W, Hui F, Ren Y, Chen X, Cen Q, Zeng X, Tie H. Potential prebiotic effects of soy by-products as novel dietary fibre: Structure, function, in vitro simulation of digestion and fermentation properties. Int J Biol Macromol 2024; 278:134617. [PMID: 39127293 DOI: 10.1016/j.ijbiomac.2024.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to prepare soybean dregs dietary fibre (DF) using physically assisted chemical (KHMSO) modification and study its structure, function and vitro simulation experiments. The soluble dietary fibre (SDF) content in KHMSO increased and insoluble dietary fibre (IDF) content decreased. The modified DF surface becomes irregular and rough, and the results of XPS fitting indicated that the DF structure had different peak-splitting groups. The KHMSO-treated group had the lowest digestion rate in gastric fluid and the highest digestibility in intestine fluid. The OD600 of fecal cultures was increased to 0.915, and the increased abundance of microbiota was associated with the metabolism of SCFAs, such as Lachnospiraceae, as well as the higher n-butyric acid in the KHMSO-treated group compared to the other groups and lower than the inulin, suggesting KHMSO might enhance the production of functional foods aimed at promoting intestinal health.
Collapse
Affiliation(s)
- Shan Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Qiuhong Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Wenkang Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Yanjie Ren
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China.
| | - Huaimao Tie
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Liang X, Zhao Z, Zhang J, Kong B, Li X, Cao C, Zhang H, Liu Q, Shen L. Effect of microwave vacuum drying time on the quality profiles, microstructures and in vitro digestibility of pork chip snacks. Meat Sci 2024; 216:109555. [PMID: 38850886 DOI: 10.1016/j.meatsci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
In present study, the quality profiles, microstructures and in vitro digestibility of pork chip snacks (PCS) prepared by microwave vacuum drying (MVD) under different drying times (20, 21, 22, 23, and 24 min) were investigated. The results revealed significant decreases in the moisture content and L*-value of PCS, while the protein/ash contents, a*-value, and b*-value of PCS markedly increased with prolonged MVD time (P < 0.05). Additionally, as MVD time extended from 20 to 24 min, the textural characteristics of PCS, particularly brittleness and crunchiness, initially increased and then gradually decreased (P < 0.05). Scanning electron microscopy (SEM) images showed that a moderate MVD time (22 min) resulted in the formation of larger pores in PCS, enhancing brittleness and crunchiness. However, excessive MVD time (24 min) led to the melting of these pores, subsequently reducing the brittleness and crunchiness of PCS. Furthermore, in vitro protein digestibility of PCS gradually decreased with increasing MVD time, primarily attributed to increased protein aggregation, as indicated by changes in sulfhydryl contents. In summary, our findings highlight that PCS subjected to 22 min of MVD exhibited the highest overall acceptability. This study provides a novel strategy for the application of MVD in the processing of meat snacks.
Collapse
Affiliation(s)
- Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Xiong Z, Liu J, Tian Y, Wang Z, Wang X, Shi T, Jin W, Yuan L, Gao R. Structural and aggregation changes of silver carp myosin induced with alcohols: Effects of ethanol, 1,2-propanediol, and glycerol. Food Chem 2024; 452:139542. [PMID: 38728898 DOI: 10.1016/j.foodchem.2024.139542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
This study investigated the effects of ethanol, 1,2-propanediol, and glycerol on the structure and aggregation behavior of silver carp (Hypophthalmichthys molitrix) myosin. All alcohols induced extensive alteration in the tertiary structure of myosin. Both ethanol and 1,2-propanediol further promoted an increase in the content of β-sheets in myosin and induced myosin aggregation. While glycerol had almost no impact on the secondary structure of myosin. Molecular dynamics simulations revealed that increasing the concentration of ethanol and 1,2-propanediol affected the overall structural changes in the myosin heavy chain (MHC), while glycerol exerted a more pronounced effect on the MHC tail when compared to the MHC head. Disruption of the hydration layers induced by ethanol and 1,2-propanediol contributed to local structural changes in myosin. Glycerol at a concentration of 20% induced the formation of a larger hydration layer around the MHC tail, which facilitated the stabilization of the protein structure.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jiaxin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ying Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhiyu Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinyue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
5
|
Yang J, Shao J, Duan Y, Geng F, Jin W, Zhang H, Peng D, Deng Q. Insights into digestibility, biological activity, and peptide profiling of flaxseed protein isolates treated by ultrasound coupled with alkali cycling. Food Res Int 2024; 190:114629. [PMID: 38945621 DOI: 10.1016/j.foodres.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to β-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.
Collapse
Affiliation(s)
- Jing Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiaqi Shao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Weiping Jin
- School of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Dengfeng Peng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| |
Collapse
|
6
|
Huang P, Zhao W, Cai L, Liu Y, Wu J, Cui C. Enhancement of functional properties, digestive properties, and in vitro digestion product physiological activity of extruded corn gluten meal by enzymatic modification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3477-3486. [PMID: 38133859 DOI: 10.1002/jsfa.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Enzymatic modification is an effective means of improving the functional properties, digestive properties, and in vitro digestion product physiological activity of proteins, thus significantly expanding protein uses in various food applications. RESULTS In this study, the addition of chymotrypsin (CT) at pH 9.0 and 11.0 was found to significantly improve the functional properties (solubility, foaming properties, water holding capacity, oil holding capacity, etc.) and digestive properties of extruded corn gluten meal (ECGM). Similar changes were observed when treating ECGM with glutaminase, protein glutaminase, and papain. These changes were likely due to the increase in number of carboxyl groups and the multiple effects of change in protein net charge and conformation caused by enzymatic deamidation. Of note, ECGM deamidated by CT showed the highest degree of deamidation, solubility, and gastrointestinal digestibility at pH 11.0, up to 44.92%, 43.75%, and 82.22%, respectively. In addition, CT-ECGM digestion product exhibited strong antioxidant activity and potential to promote alcohol metabolism in both a static digestion model and dynamic digestion model, even comparable to commercial corn peptides (CCP), while being inexpensive and of low bitterness compared to CCP. Meanwhile, the physiological activity enhanced as the molecular weight of digestion product decreased with the digested component having strongest activity. CONCLUSION This study may promote the application of ECGM as a food component in the food industry or even as a substitute for CCP. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wenke Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jing Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Wan W, Li W, Sun L, Liu H, Xia X. Effects of freeze-thaw cycles on in-vitro digestive properties of myofibrillar protein in mirror carp (Cyprinus carpio L.), based on protein degradation, oxidation, and structural properties. Food Chem 2024; 436:137662. [PMID: 37832412 DOI: 10.1016/j.foodchem.2023.137662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The in-vitro digestive properties of myofibrillar protein (MP) in mirror carp (Cyprinus carpio L.) after freeze-thaw (F-T) cycles were analyzed in terms of the relationship between protein degradation, oxidation, and structural properties. The F-T samples exhibited a significant increase in glucosidase activity, N-acetyl-β-d-glucosidase activity, total protease activity, and non-protein nitrogen content. α-aminoadipate semialdehyde and γ-glutamate semialdehyde contents increased by 23.17% and 123.12%, respectively. Furthermore, 53.97% decrease in the total nitrogen content and changes in the content of different soluble proteins were observed. X-ray diffraction intensity, thermal stability, free amine content, hydrolysis degree, and digestibility of the MP samples decreased, and the 2θ angle and zeta potential were reversed. Besides, changes in the amide band wavenumbers were also detected. Therefore, the protein structure was unfolded and aggregates were formed through degradation and oxidation induced by the F-T cycles, ultimately making the in-vitro digestion of MP difficult.
Collapse
Affiliation(s)
- Wei Wan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liang Sun
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison WI 53726, USA
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Shan H, Guo Y, Li J, Liu Z, Chen S, Dashnyam B, McClements DJ, Cao C, Xu X, Yuan B. Impact of Whey Protein Corona Formation around TiO 2 Nanoparticles on Their Physiochemical Properties and Gastrointestinal Fate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4958-4976. [PMID: 38381611 DOI: 10.1021/acs.jafc.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.
Collapse
Affiliation(s)
- Honghong Shan
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jin Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zimo Liu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Badamkhand Dashnyam
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
9
|
Wei S, Liang X, Xu Y, Kong B, Li X, Zhang H, Liu Q, Wang H. In-depth insight into the effects of tapioca or corn acetylated distarch phosphate on the gel properties and in vitro digestibility of kung-wan. Int J Biol Macromol 2023; 253:126997. [PMID: 37729994 DOI: 10.1016/j.ijbiomac.2023.126997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Modified starch is increasingly applied in the meat industry as an effective functional ingredient to provide meat products with the desired textural properties and appearance. This study aimed to investigate the effects of incorporating tapioca acetylated distarch phosphate (TADSP) or corn acetylated distarch phosphate (CADSP) on the gel properties and in vitro digestibility of Chinese-style meatballs known as kung-wan. The results showed that TADSP and CADSP significantly enhanced the textural properties of kung-wan in a dose-dependent manner (P < 0.05), as well as enhanced the rheological behavior of meat batters. TADSP resulted in a denser meat protein gel network compared to CADSP, primarily because the lower pasting temperature of TADSP made it gelatinize earlier and more completely during heating than CADSP and subsequently filled in the meat protein gel network. The intermolecular forces observed in kung-wan with TADSP or CADSP were hydrogen bonds and hydrophobic interactions. Furthermore, the protein digestibility of kung-wan was increased with higher levels of TADSP and CADSP (P < 0.05). Notably, kung-wan with TADSP exhibited significantly higher protein digestibility than those with CADSP at the same level (P < 0.05). Our results offer valuable insights into the potential application of acetylated distarch phosphate in kung-wan.
Collapse
Affiliation(s)
- Sumeng Wei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Effect of Milk Origin and Seasonality of Yogurt Acid Whey on Antioxidant Activity before and after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:2130. [PMID: 38136249 PMCID: PMC10740864 DOI: 10.3390/antiox12122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well as those resulting from further hydrolysis during the digestion process, have been linked to enhanced biological activities. In this study, the antioxidant capacity of 33 samples of YAW obtained from Greek dairy companies of bovine, ovine or caprine origin was investigated using both cell-free and cell-based assays. The YAW samples, their in vitro digestion products (YAW-Ds) and a fraction of the digests (less than 3 kDa; YAW-D-P3) were assessed using four biochemical assays, namely ORAC, ABTS, FRAP and P-FRAP. Our data revealed a higher antioxidant capacity for digested samples compared with undigested samples, with all four methods. ORAC values after in vitro digestion were higher for the ovine samples compared to their bovine (YAW-D and YAW-D-P3) and caprine (YAW-D-P3) counterparts. Furthermore, the YAW-D-P3 fraction derived from samples collected in the summer months exhibited higher ORAC values when compared to the respective fraction from the winter months' samples. The cellular antioxidant activity of ovine YAW-D-P3 was improved in H2O2-treated HT29 cells compared to the control H2O2-treated cells. However, YAW-D-P3 could not trigger either the pathways involving the transcription factors NF-κB or NFE2L2 or the gene expression of SOD1, CAT and HMOX1 in LPS-challenged THP-1-derived macrophages. These results suggest that YAW, and particularly YAW from ovine origin, could be used as a natural source for its antioxidant potential in human and animal nutrition.
Collapse
Affiliation(s)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
11
|
Wang S, Cheng Y, Wang J, Ding M, Fan Z. Antioxidant Activity, Formulation, Optimization and Characterization of an Oil-in-Water Nanoemulsion Loaded with Lingonberry ( Vaccinium vitis-idaea L.) Leaves Polyphenol Extract. Foods 2023; 12:4256. [PMID: 38231701 DOI: 10.3390/foods12234256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
The active ingredients in lingonberry leaves and their beneficial properties to the human body have been well confirmed. In order to improve the stability and antioxidant activity of the active ingredients in lingonberry leaves, the response surface optimization method was used to prepare an oil-in-water nanoemulsion of polyphenol extract from lingonberry leaves. The active components in the extract were analyzed by ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UPLC-TQ-MS), and bioactive compounds such as apigenin, sorbitol, and hesperidin were mainly found. Nanoemulsion droplets of 120 nm in diameter were prepared using ultrasonic emulsification. The optimal nanoemulsion formulation was determined through rigorous testing, and it was determined to be 10% (w/w) lingonberry extract and 20% (w/w) medium chain triglyceride (MCT). Additionally, a surfactant mixture was used, which combined soy protein isolate (SPI) and whey protein isolate (WPI) at 4% (w/w). The preparation method utilized ultrasonic emulsification, applying an ultrasonic power of 360 W for a duration of 300 s. The antioxidant activity (DPPH inhibition rate, ABTS inhibition rate and total reducing power) of the lingonberry nanoemulsion was significantly higher than that of the lingonberry polyphenol (LBP) extract. The nanoemulsion prepared using the optimal formulation had an entrapping efficiency of 73.25% ± 0.73% and a diameter of 114.52 ± 0.015 nm, with a satisfactory particle size of nanoscale and a PDI of 0.119 ± 0.065, demonstrating good stability of the emulsion.
Collapse
Affiliation(s)
- Siyu Wang
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Yuan Cheng
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Jingyi Wang
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Miao Ding
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
| | - Ziluan Fan
- School of Forestry, Northeast Forestry University, 26 HeXing Road, XiangFang District, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization, Harbin 150040, China
| |
Collapse
|
12
|
Fallahasghari EZ, Højgaard Lynge M, Espholin Gudnason E, Munkerup K, Mendes AC, Chronakis IS. Carbohydrate Core-Shell Electrosprayed Microcapsules for Enhanced Oxidative Stability of Vitamin A Palmitate. Pharmaceutics 2023; 15:2633. [PMID: 38004611 PMCID: PMC10675355 DOI: 10.3390/pharmaceutics15112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Vitamin A is an essential micronutrient that is readily oxidized. In this study, the encapsulation of vitamin A palmitate (AP) within a core-shell carbohydrate matrix by co-axial electrospray and its oxidative stability was evaluated. The electrosprayed core-shell microcapsules consisted of a shell of octenyl succinic anhydride (OSA) modified corn starch, maltose (Hi-Cap), and a core of ethyl cellulose-AP (average diameter of about 3.7 µm). The effect of different compounds (digestion-resistant maltodextrin, soy protein hydrolysate, casein protein hydrolysate, and lecithin) added to the base core-shell matrix formulation on the oxidative stability of AP was investigated. The oxidative stability of AP was evaluated using isothermal and non-isothermal differential scanning calorimetry (DSC), and Raman and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy methods. The core-shell carbohydrate matrix minimizes the amount of AP present at the microparticle surface, thus protecting AP from oxidation. Furthermore, the most effective oxidation protection was achieved when casein protein hydrolysate was added to the core of the microcapsule due to hydrophobic and hydrogen bond interactions with AP and by the resistant maltodextrin in the shell, which acted as a filler. The utilization of ethanol as a solvent for the dispersion of the core compounds increased the hydrophobicity of the hydrolyzed proteins and contributed to the enhancement of their antioxidant ability. Both the carbohydrate core-shell microcapsule prepared by co-axial electrospray and the addition of oxidation protection compounds enhance the oxidative stability of the encapsulated AP.
Collapse
Affiliation(s)
- Elnaz Z. Fallahasghari
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | - Marie Højgaard Lynge
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | - Emma Espholin Gudnason
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | | | - Ana C. Mendes
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | - Ioannis S. Chronakis
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| |
Collapse
|
13
|
Han G, Zhao S, Liu Q, Xia X, Chen Q, Liu H, Kong B. High-intensity ultrasound combined with glycation enhances the thermal stability and in vitro digestion behaviors of myofibrillar protein aqueous solution. Int J Biol Macromol 2023; 251:126301. [PMID: 37573906 DOI: 10.1016/j.ijbiomac.2023.126301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
The low thermal stability of myofibrillar proteins (MPs) is a technological barrier to them being applied in beverage formulas. In this study, we investigated the effect of high-intensity ultrasound (HIU) pretreatment combined with glycation on the thermal stability, structural characteristics, and in vitro digestion behavior of MPs in water. The results indicated that HIU pretreatment combined with glycation significantly inhibited thermal aggregation and reduced the particle size of MPs compared to using either HIU or glycation treatments individually. The grafting of dextran (DX) shielded the sulfhydryl (-SH) and hydrophobic groups and inhibited disulfide bond cross-linking and hydrophobic association. Moreover, HIU pretreatment facilitated the shielding effect of glycation by destroying the filamentous myosin structure and exposing the internal -SH and hydrophobic groups as well as the grafting sites, maximally inhibiting thermal aggregation. In addition, the smaller protein particles and more flexible structure caused by HIU pretreatment combined with glycation increased their binding affinity toward protease. Overall, these findings can promote the technological development of modulating the MP structure-digestion for formulating novel meat protein-based products.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
14
|
Wei S, Liang X, Kong B, Cao C, Zhang H, Liu Q, Wang H. Investigation of the effects and mechanism of incorporation of cross-linked/acetylated tapioca starches on the gel properties and in vitro digestibility of kung-wan. Meat Sci 2023; 204:109265. [PMID: 37379703 DOI: 10.1016/j.meatsci.2023.109265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The effects and mechanism of incorporation of cross-linked tapioca starch (CTS) or acetylated tapioca starch (ATS) on the gel properties and in vitro digestibility of kung-wan (a Chinese-style meatball) were evaluated. The results indicated that incorporation of either CTS or ATS significantly enhanced the gel properties of kung-wan in a dose-dependent manner (P < 0.05), as well as the rheological properties of meat batter. Moreover, hydrogen bonds and electrostatic interaction were the major intermolecular forces in kung-wan when incorporated with CTS or ATS. Meanwhile, CTS and ATS acted as fillers in the meat protein gel matrix, which was further verified by the microstructure of kung-wan. However, CTS produced a more uniform and dense meat protein gel network than ATS, which was mainly due to its limited swelling characteristics. In addition, the incorporation of CTS or ATS significantly increased the in vitro digestibility of protein in kung-wan with increasing level of addition (P < 0.05). However, no significant differences in protein digestibility were detected between the CTS and ATS groups at the same addition level (P > 0.05). Our results provided some critical points for the actual application of modified tapioca starch to promote the quality profiles of kung-wan.
Collapse
Affiliation(s)
- Sumeng Wei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Dalaka E, Politis I, Theodorou G. Antioxidant Activity of Sweet Whey Derived from Bovine, Ovine and Caprine Milk Obtained from Various Small-Scale Cheese Plants in Greece before and after In Vitro Simulated Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:1676. [PMID: 37759979 PMCID: PMC10525972 DOI: 10.3390/antiox12091676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Whey-derived peptides have been associated with different biological properties, but most peptides are usually further hydrolyzed during the digestive process. In the present study, the antioxidant capacity of 48 samples of sweet whey (SW) derived from cheeses obtained from small-scale cheese plants made with bovine, ovine, caprine or a mixture of ovine/caprine milk was assessed using both cell-free and cell-based assays. SW digestates (SW-Ds) and a fraction (<3 kDa; SW-D-P3) thereof were obtained after in vitro digestion and subsequent ultrafiltration. Antioxidant properties using four different assays were evaluated before and after digestion. Our data showed higher values (p < 0.05) for ORAC, ABTS, FRAP and P-FRAP after in vitro digestion (SW-Ds and SW-D-P3) when compared with the corresponding values before digestion. In the non-digested SW, ORAC values were higher (p < 0.05) for the bovine SW compared with all the other samples. In contrast, the ABTS assay indicated a higher antioxidant activity for the ovine SW both before digestion and for SW-D-P3 compared with the bovine SW. The fraction SW-D-P3 of the ovine SW, using HT29 cells and H2O2 as an oxidizing agent, increased (p < 0.05) the cellular antioxidant activity. Furthermore, the same fraction of the ovine/caprine mixed SW increased, through the NF-κB pathway, the expression of SOD1 and CAT, genes implicated in the oxidative response in macrophage-like THP-1 cells. These findings indicate that SW, and particularly bovine and ovine SW, could be a candidate source for physical antioxidants in human and animal nutrition.
Collapse
Affiliation(s)
| | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
16
|
Cao H, Huang Q, Shi J, Guan X, Song H, Zhang Y, Xie J, Fang Y. Effect of conventional and microwave heating treatment on antioxidant activity of quinoa protein after simulated gastrointestinal digestion. Food Chem 2023; 415:135763. [PMID: 36870208 DOI: 10.1016/j.foodchem.2023.135763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Effects of microwave and traditional water bath treatment at different temperatures (70, 80, 90 ℃) on in vitro digestion rate and antioxidant activity of digestion products of quinoa protein were investigated. The results indicated microwave treatment at 70 ℃ produced the highest quinoa protein digestion rate and the strongest antioxidant activities of its digestion products (P < 0.05), which was further verified by the results of free amino, sulfhydryl group, gel electrophoresis, amino acid profiles and the molecular weight distribution of the digestion products. However, limited exposure of active groups induced by water bath treatment might decrease the susceptibility of digestive enzymes and subsequently lower the digestibility and antioxidant activities of quinoa protein. The results suggested that a moderate microwave treatment could be used as a potential way to enhance the in vitro digestion rate of quinoa protein, as well as increase the antioxidant activities of its digestion products.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Qilong Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Junru Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jian Xie
- China Grain Wuhan Scientific Research & Design Institute Co. Ltd. Wuhan, PR China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China
| |
Collapse
|
17
|
Fu L, Gao S, Li B. Impact of Processing Methods on the In Vitro Protein Digestibility and DIAAS of Various Foods Produced by Millet, Highland Barley and Buckwheat. Foods 2023; 12:foods12081714. [PMID: 37107509 PMCID: PMC10137793 DOI: 10.3390/foods12081714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cereals are rich sources of dietary protein, whose nutritional assessments are often performed on raw grains or protein isolates. However, processing and gastrointestinal digestion may affect amino acid (AA) compositions, then change the protein quality. In this study, we determined the digestibility and AA compositions of various foods produced by whole grains (PG) or flour (PF) from three cereals (millet, highland barley and buckwheat) and analyzed the impact of processing methods on the digestible indispensable amino acid score (DIAAS) using the INFOGEST protocol. The in vitro protein digestibility of cereal-based foods was lower than raw grains, and PF showed a better digestion property than PG. The intestinal digestibility of individual AA within a food varied widely, and the digestibility of Cys and Ile was the lowest among all AAs. The DIAAS values of PG were lower than those of PF in each kind of cereal, and PF of buckwheat had the highest DIAAS value, followed by highland barley. The first limiting AA was still Lys for millet and highland barley compared to the raw grains; however, for buckwheat it was Leu. This study provided nutritional information on cereal products and helped to guide the collocation of different foods in diets.
Collapse
Affiliation(s)
- Lulu Fu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
18
|
Yuan D, Liang X, Kong B, Sun F, Li X, Cao C, Liu Q. In-Depth Insight into the Mechanism of Incorporation of Abelmoschus manihot Gum on the Enhancement of Gel Properties and In Vitro Digestibility of Frankfurters. Foods 2023; 12:foods12071507. [PMID: 37048328 PMCID: PMC10094229 DOI: 10.3390/foods12071507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to investigate the effects of different concentrations (0.1, 0.2, 0.3, 0.4, and 0.5% w/w) of Abelmoschus manihot gum (AMG) on the gel properties and in vitro digestibility of frankfurters. The results indicated that AMG incorporation significantly enhanced the emulsion stability and texture of frankfurters, as well as the dynamic rheological characteristics of raw meat batter, with the optimal concentration being 0.3% (p < 0.05). Furthermore, hydrogen bonds and disulphide bonds were the main molecular forces of the frankfurters in the presence of AMG. Microstructural images showed that more uniform and dense microstructures of frankfurters were formed due to AMG supplementation. In addition, AMG incorporation significantly increased the in vitro protein digestibility of frankfurters as the level of addition increased (p < 0.05). In conclusion, our results provided critical information for the practical application of AMG in the production of emulsified meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| |
Collapse
|
19
|
Zhang F, Yue Q, Li X, Kong B, Sun F, Cao C, Zhang H, Liu Q. Mechanisms underlying the effects of ultrasound-assisted alkaline extraction on the structural properties and in vitro digestibility of Tenebrio molitor larvae protein. ULTRASONICS SONOCHEMISTRY 2023; 94:106335. [PMID: 36821935 PMCID: PMC9982000 DOI: 10.1016/j.ultsonch.2023.106335] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/13/2023]
Abstract
Edible insects have been considered as a sustainable and novel protein source to replace animal-derived proteins. The present study aimed to extract Tenebrio molitor larvae proteins (TMP) using ultrasound-assisted alkaline extraction (UAE). Effects of different UAE times (10, 20, 30, 40, and 50 min) on the structural properties and in vitro digestibility of TMP were comparatively investigated with the traditional alkaline extraction method. The results revealed that ultrasonication could effectively alter the secondary/tertiary structures and thermal stability of TMP during UAE. The molecular unfolding and subsequent aggregation of TMP during UAE were mainly attributed to the formation of disulfide bonds and hydrophobic interactions. Moreover, TMP extracted by UAE had higher in vitro digestibility and digestion kinetics than those extracted without ultrasound, and the intermediate UAE time (30 min) was the optimal ultrasound parameter. However, longer UAE times (40 and 50 min) lowered the digestibility of TMP due to severe protein aggregation. The present work provides a potential strategy for the extraction of TMP with higher nutritional values.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Yue
- Heilongjiang Open University, Harbin, Heilongjiang 150080, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
20
|
Yang J, Duan Y, Zhang H, Huang F, Wan C, Cheng C, Wang L, Peng D, Deng Q. Ultrasound coupled with weak alkali cycling-induced exchange of free sulfhydryl-disulfide bond for remodeling interfacial flexibility of flaxseed protein isolates. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Characterization of whey protein isolate-gum Arabic Maillard conjugate and evaluation of the effects of conjugate-stabilized emulsion on microbiota of human fecal cultures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Feng Y, Yuan D, Kong B, Sun F, Wang M, Wang H, Liu Q. Structural changes and exposed amino acids of ethanol-modified whey proteins isolates promote its antioxidant potential. Curr Res Food Sci 2022; 5:1386-1394. [PMID: 36110385 PMCID: PMC9468495 DOI: 10.1016/j.crfs.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Whey protein isolates (WPI) were treated with different ethanol level (20, 40, 60, and 80%, v/v) to promote structural unfolding and subsequent aggregation. In general, protein aggregation gradually increased with increasing ethanol level in a dose-dependent manner, which was implied by notably increased turbidity and gradually decreased solubility. The formation of aggregates, which were confirmed by the results of circular dichroism spectrum and total sulfhydryl content, were promoted mainly through disulfide bonds and intra-molecular hydrogen bonds. Moreover, ethanol treated WPI (E-WPI) had significantly enhanced antioxidant activities over native WPI, which was mainly attribute to the higher contents of specific amino acids (such as hydrophobic amino acids, aromatic amino acids, and sulfur-containing amino acids), and E-WPI prepared with moderate ethanol concentration (40% in our present study) exhibited the highest antioxidant activities. These results reveal that antioxidant activities of WPI can be increased by ethanol treatment and are possibly achieved through molecular unfolding of native WPI. Ethanol treatment caused unfolding and aggregation of whey protein isolate (WPI). Aggregation enhanced with increasing ethanol concentration (EC). Medium EC (40%, v/v) rendered the highest antioxidant activities of WPI.
Collapse
Affiliation(s)
- Yangyang Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Meijuan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Corresponding author.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang, 150028, China
- Corresponding author. College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|