1
|
Li H, Liu Y, Tan H, Wu X, Wu W. Effect of ultrasonic pretreatment on the emulsion rheological properties and interface protein structure of epigallocatechin-3-gallate and rice bran protein complex. Food Chem 2025; 463:141406. [PMID: 39332355 DOI: 10.1016/j.foodchem.2024.141406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The effect of ultrasonic pretreatment on the emulsion rheological properties and the structural characteristics of interface-adsorbed protein (IAP) and interface-unabsorbed protein (IUP) of rice bran protein and epigallocatechin-3-gallate complex (RBP-EGCG) were studied. Compared to RBP-EGCG without ultrasonic pretreatment, appropriate ultrasonic pretreatment (ultrasonic power was 425 W) enhanced the IAP trypsin sensitivity (from 3.20 to 3.73), increased the IUP surface hydrophobicity (from 12.59 to 20.87), and decreased the ζ-potential (from -24.93 mV to -36.88 mV) and particle size (from 567.30 nm to 273.13 nm) of IUP, thereby increasing the viscosity and viscoelasticity of emulsion. Compared to appropriate ultrasonic pretreatment, high-power ultrasonic pretreatment (ultrasonic power was 500 W) attenuated the IAP trypsin sensitivity, and increased the ζ-potential and particle size of IUP, thereby decreasing the viscosity and viscoelasticity of emulsion. Overall, ultrasonic pretreatment changed the EGCG-RBP emulsion viscoelasticity by regulating spatial structural characteristics and flexibility of interface protein.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yu Liu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Li T, Kong X, Shao Z, Zhang Y, Yang C, Liu K, Xin Y, Chen F, Dong Y. Characteristic and stability changes of peanut oil body emulsion during the process of demulsification using heptanoic acid. Food Chem 2024; 460:140301. [PMID: 39067429 DOI: 10.1016/j.foodchem.2024.140301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
In this paper, the changes in oil body emulsion (OBE) during heptanoic acid demulsification (HD) were investigated from the macro and microscopic points of view. Specifically, the OBE particle size increased from 3.04 to 8.41 µm, while the zeta potential absolute decreased to 2.89 mV. The interfacial tension and apparent viscosity of OBE were reduced significantly. Heptanoic acid could contribute to oil droplets aggregation. The findings indicated that high-molecular proteins, including lipoxygenase (97.58 kDa) and arachin (70.28 kDa), detached from the OBs' interface. HD caused alterations in the secondary structure of protein and the environment around proteins changed. The HD mechanism was speculated that the addition of heptanoic acid resulted in the reduction in pH and changes of environment surrounding OBE, which triggered polymerization and the phase transformation of the oil droplets. Overall, this study is vital for solving the problem of demulsification during aqueous enzymatic extraction (AEE).
Collapse
Affiliation(s)
- Tianci Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangrui Kong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihua Shao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiyang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Xin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yifan Dong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Xu W, Bao Y, Zhou Y, Hong H, Gao R. Effect of protein oxidation on the structure and emulsifying properties of fish gelatin. Food Res Int 2024; 195:114963. [PMID: 39277235 DOI: 10.1016/j.foodres.2024.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
This study aimed to investigate the effect of oxidation on fish gelatin and its emulsifying properties. Fish gelatin was oxidized with varying concentrations of H2O2 (0-30 mM). Increased concentrations of the oxidant led to a decrease in amino acids in the gelatin, including glycine, lysine, and arginine. Additionally, the relative content of ordered secondary structure and triple helix fractions decreased. Zeta potential decreased, while particle size, surface hydrophobicity, and water contact angle increased. Regarding emulsifying behavior, oxidation promoted the adsorption of gelatin to the oil-water interface and reduced interfacial tension. With increased degrees of oxidation, the zeta potential and size of the emulsion droplets decreased. The oxidized gelatin exhibited better emulsifying activity but worse emulsifying stability. Based on these results, a mechanism for how oxidation affects the emulsifying properties of gelatin was proposed: the increase in gelatin's hydrophobicity and the decrease in triple helix structure induced by oxidation reduced the interfacial tension at the oil-water interface. This promoted protein adsorption at the oil-water interface, allowing the formation of smaller oil droplets and enhancing gelatin's emulsifying activity. However, the decrease in electrostatic repulsion between emulsion droplets and the decrease in solution viscosity increased the flocculation and aggregation of oil droplets, ultimately weakening the emulsifying stability of gelatin.
Collapse
Affiliation(s)
- Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yue Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
4
|
Li H, Wu X, Wu W. Natural protein-polysaccharide-phenol complex particles from rice bran as novel food-grade Pickering emulsion stabilizers. Int J Biol Macromol 2024; 277:134314. [PMID: 39094879 DOI: 10.1016/j.ijbiomac.2024.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 μm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
5
|
Zhao M, Wu X, Tan H, Wu W. Protein oxidation affected the encapsulation properties of rice bran protein fibril-high internal phase pickering emulsions: Enhanced stability and bioaccessibility of β-carotene. Food Res Int 2024; 192:114779. [PMID: 39147467 DOI: 10.1016/j.foodres.2024.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with β-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Zhao M, Li F, Li H, Lin Q, Zhou X, Wu X, Wu W. Effects of rice bran rancidity on the interfacial adsorption properties of rice bran protein fibril aggregates and stability of high internal phase Pickering emulsions. Food Chem 2024; 443:138611. [PMID: 38309025 DOI: 10.1016/j.foodchem.2024.138611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The effects of rice bran rancidity-induced protein oxidation and heating time on the stability of rice bran protein fibril aggregates (RBPFA)-high internal phase Pickering emulsions (HIPPEs) were investigated. The optimal conditions for RBPFA-HIPPEs were 8 mg/mL RBPFA with an oil phase volume fraction of 75 %. Moderate oxidation (rice bran stored for 3 d) and moderate heating (8 h) enhanced the wettability, flexibility, diffusion rate, and adsorption rate of RBPFA, meanwhile, the rheological properties of RBPFA-HIPPEs increased. RBPFA-HIPPEs could be stably stored for 50 d at 25 °C. Moderate oxidized and moderate heated RBPFA-stabilized HIPPEs could remain stable after heat treatment and could be re-prepared after freeze-thaw (3 cycles). Additionally, the stability of RBPFA-HIPPEs was significantly related to the structural characteristics and interfacial properties of RBPFA. Overall, moderate oxidation and moderate heating enhanced the storage, thermal, and freeze-thaw stability of RBPFA-HIPPEs by improving the interfacial properties of RBPFA.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fang Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoling Zhou
- Chen Keming Food Manufacturing Co., Ltd, Changsha, Hunan 414000, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
7
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
8
|
Wei X, Li H, Liu Y, Lin Q, Wu X, Wu W. Effect of epigallocatechin-3-gallate modification on the structure and emulsion stability of rice bran protein in the presence of soybean protein isolate. Int J Biol Macromol 2024; 263:130269. [PMID: 38387630 DOI: 10.1016/j.ijbiomac.2024.130269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
For improving the emulsion stability of rice bran protein (RBP), RBP was modified by different concentrations of epigallocatechin-3-gallate (EGCG) in the presence of soybean protein isolate (SPI), and RBP-EGCG-SPI conjugate was prepared by alkaline pH-shifting. The results showed that the addition of EGCG led to an increase in the bound phenol content and the flexibility of the secondary structure, a decrease in the free sulfhydryl and disulfide bond content of the RBP-EGCG-SPI conjugate. EGCG covalently bound to RBP and SPI through non-disulfide bonds. When the concentration of EGCG was 10 % (w/v), the emulsifying activity index and emulsion stability index of conjugate reached the maximum value (36.61 m2/g and 255.61 min, respectively), and the conjugate had the best emulsion stability. However, an EGCG concentration above 10 % (w/v) negatively affected the emulsion stability, with increasing particle size due to protein aggregation. Summarily, the modification of EGCG improved the emulsion stability of conjugate by regulating the spatial structure of RBP-EGCG-SPI conjugate. The work provided an important guide to further improve the emulsion stability of RBP.
Collapse
Affiliation(s)
- Xialing Wei
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yu Liu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Zhang F, Li X, Liang X, Kong B, Sun F, Cao C, Gong H, Zhang H, Liu Q. Feasibility of Tenebrio molitor larvae protein to partially replace lean meat in the processing of hybrid frankfurters: Perspectives on quality profiles and in vitro digestibility. Food Res Int 2024; 176:113846. [PMID: 38163692 DOI: 10.1016/j.foodres.2023.113846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the effect of replacing different amounts (5 %, 10 %, 15 %, 20 % and 25 %) of lean meat with Tenebrio molitor larvae protein (TMLP) on the quality profiles of hybrid frankfurters. The results showed that there were no obvious differences in moisture, protein or fat content of all the hybrid frankfurters (P > 0.05), only a higher substitution rate (from 10 % to 25 %) resulted in a higher ash content than the control group (P < 0.05). With the increasing replacement rate (5 %, 10 % and 15 %), the cooking loss of the hybrid frankfurters showed the similar effects as the control group (P > 0.05), whereas the higher replacement rates of 20 % and 25 % obviously decreased the emulsion stability of the hybrid frankfurters. Moreover, with lower substitution rate (5 %, 10 % and 15 %) there were no significant differences in cooking loss between the hybrid frankfurters and the control group (P > 0.05), whereas the higher substitution rates (20 % and 25 %) obviously increased the cooking loss of the hybrid frankfurters (P < 0.05). Meanwhile, as the level of substitution increased, the hybrid frankfurters had higher digestibility, poorer texture than the standard frankfurters, as well as the rheological behaviour of hybrid meat batters (P < 0.05). The results showed that a moderate level (15 %) of TMLP was used to replace lean pork could be potentially and successfully be used to produce hybrid frankfurters.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
10
|
Zhou Q, Xu Z, Wei Z. Precise control of aggregation morphology: Effective strategy to tune the properties of ovotransferrin particles. Int J Biol Macromol 2023; 253:126850. [PMID: 37703969 DOI: 10.1016/j.ijbiomac.2023.126850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Different aggregation morphologies of ovotransferrin (OVT) aggregates were successfully obtained through precise control, and the effects on structural, physical, liquid-liquid and gas-liquid interfacial characteristics as well as mechanisms were explored for the first time. It was observed that the surface hydrophobicity of OVT fibrils was higher than OVT spheres due to the acid-heat treatment. The exploration of liquid-liquid interface behaviors indicated that OVT fibrils possessed higher adsorption capacity at the interface, revealing the higher surface activity at the oil-water interface. During adsorption process, fibrils exhibited higher diffusion rate, while spheres were easier to penetrate and rearrange at the interface. The interfacial film composed of fibrils possessed more elastic solid-like behaviors owing to the higher surface activity of individual fibrous aggregates and rapid fibril-fibril interactions. The analysis of gas-liquid interface characteristics presented that OVT spheres possessed lower interfacial tension and higher interfacial viscoelasticity, and showed significantly higher FC and FS values in comparation to fibrils. These findings will facilitate the reader's understanding of the relationship between protein aggregate structure and properties, and lay a foundation for broadening the application of OVT and even other proteins.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ziyuan Xu
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
11
|
Zhou Q, Wang J, Li H, Wu X, Wu W. Effect of protein oxidation on the emulsion carrier prepared by rice bran protein for improving stability and bioavailability of β-carotene. Food Res Int 2023; 172:113166. [PMID: 37689915 DOI: 10.1016/j.foodres.2023.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
The emulsion carriers which prepared by rice bran protein (RBP) with different oxidation extents were utilized to deliver β-carotene (BC). The effects of RBP oxidation extent on stability and bioaccessibility of BC in rice bran protein emulsion (RBPE) were investigated by measuring the droplet size, microstructure, digestive stability, cellular antioxidant, and delivery property of BC-RBPE. The results showed that BC-RBPE prepared by moderately oxidized RBP (extracted from rice bran with a storage time of 5 d) presented excellent digestive stability and delivery property during gastrointestinal digestion. The particle size of initial BC-RBPE, BC-RBPE after gastric digestion, and BC-RBPE after intestinal digestion were 509.73, 2149.33, and 997.82 nm, respectively. Compared with free BC suspension, the BC retention after gastric digestion and the BC bioavailability of BC-RBPE prepared by moderately oxidized RBP increased by 23.50% and 27.54%, respectively. In addition, the BC cellular antioxidant activity and BC cellular uptake of BC-RBPE prepared by moderately oxidized RBP were significantly higher than that of free BC-suspension, which increased by 29.63% and 13.84%, respectively. In summary, the study showed that oil-in-water emulsion prepared by moderately oxidized protein is a potential delivery system of BC, which can provide a theoretical basis for improving the utilization of protein by adjusting the extent of protein oxidation.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Jianqiang Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Helin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China.
| |
Collapse
|
12
|
Yang BW, Ji SY, Zhao T, Wang ZT, Zhang YS, Pan QN, Huang W, Lu BY. Phytosterols photooxidation in O/W emulsion: Influence of emulsifier composition and interfacial properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
13
|
Study on oil body emulsion gels stabilized by composited polysaccharides through microgel particles compaction and natural gelation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Strategy and Mechanism of Rice Bran Protein Emulsion Stability Based on Rancidity-Induced Protein Oxidation: An Ultrasonic Case Study. Foods 2022; 11:foods11233896. [PMID: 36496706 PMCID: PMC9736135 DOI: 10.3390/foods11233896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To provide a strategy for improving the stability of rice bran protein emulsion (RBPE), rice bran proteins (RBPs) with different oxidation extents were prepared from fresh rice bran (RB) stored for different times (0, 1, 3, 5, 10 d), and RBPE was prepared with ultrasonic treatment. The ultrasonic conditions were optimized according to the results of the RBPE’s stability (when RB stored for 0, 1, 3, 5, 10 d, the optimal ultrasonic treatment conditions of RBPE were 500 w and 50 min, 400 w and 30 min, 400 w and 30 min, 300 w and 20 min, 500 w and 50 min, respectively). Additionally, the structural characteristics and the flexibility of RBPE interface protein were characterized, and the results showed that compared with native protein and excessive oxidized protein, the unfolded structure content and flexibility of interface protein of RBPE prepared by moderate oxidized protein under optimal ultrasonic intensity was higher. Furthermore, the correlation analysis showed that the RBPE stability was significantly correlated with the structural characteristics and flexibility of the RBPE interface protein (p < 0.05). In summary, ultrasonic treatment affected the interface protein’s structural characteristics and flexibility, improving the stability of RBPE prepared from oxidized RBP.
Collapse
|