1
|
Cheng Q, Liu C, Zhao J, Guo F, Qin J, Wang Y. Hyaluronic acid promotes heat-induced gelation of ginkgo seed proteins. Food Chem 2025; 463:141114. [PMID: 39243628 DOI: 10.1016/j.foodchem.2024.141114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate how varying concentrations (0.01-0.5 %, w/v) and molecular weights (50, 500, 1500 kDa) of hyaluronic acid (HA) affect the physicochemical properties of heat-induced ginkgo seed protein isolate (GSPI)-HA composite gel. Incorporating HA increased viscosity (up to 14 times) and charge (up to 23 %) of GSPI-HA aggregates, while reducing particle size (up to 31 %) and improving gel texture, particularly with high molecular weight HA. However, high concentrations (0.5 %, w/v) of HA weakened gel texture. Non-covalent bonds primarily drive the formation of a continuous gel network between HA and GSPI, resulting in small pores and enhanced hydration properties. With increasing HA molecular weight, non-covalent interactions between GSPI and HA increased, leading to improved gel thermal stability. Overall, the study suggests that manipulating the molecular weight and concentration of HA can enhance the gelling properties of GSPI, leading to the development of a diverse array of GSPI-HA composite gels with varied properties.
Collapse
Affiliation(s)
- Qiao Cheng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Fengxian Guo
- Fujian Province Key Laboratory for Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jiawei Qin
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Li J, Li L. Physical modification of vegetable protein by extrusion and regulation mechanism of polysaccharide on the unique functional properties of extruded vegetable protein: a review. Crit Rev Food Sci Nutr 2024; 64:11454-11467. [PMID: 37548410 DOI: 10.1080/10408398.2023.2239337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Development and utilization of high quality vegetable protein resources has become a hotspot. Food extrusion as a key technology can efficiently utilize vegetable protein. By changing the extrusion conditions, vegetable protein can obtain unique functional properties, which can meet the different needs of food processing. However, extrusion of single vegetable protein also exposes many disadvantages, such as low degree functional properties, poor quality stability and lower tissue fibrosis. Therefore, addition of polysaccharide has become a new development trend to compensate for the shortcomings of extruded vegetable protein. The unique functional properties of vegetable protein-polysaccharide conjugates (Maillard reaction products) can be achieved after extrusion due to regulation of polysaccharides and adjustment of extrusion parameters. However, the physicochemical changes caused by the intermolecular interactions between protein and polysaccharide during extrusion are complex, so control of these changes is still challenging, and further studies are needed. This review summarizes extrusion modification of vegetable proteins or polysaccharides. Next, the effect of different types of polysaccharides on vegetable proteins and its regulation mechanism during extrusion is mainly introduced, including the extrusion of starch polysaccharide-vegetable protein, and non-starch polysaccharide-vegetable protein. Finally, it also outlines the development perspectives of extruded vegetable protein-polysaccharide.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
3
|
Ma N, Duan J, Zhou G, Wang X. Study of the mechanism of non-covalent interactions between chlorogenic acid and soy protein isolate: Multi-spectroscopic, in vitro, and computational docking analyses. Food Chem 2024; 457:140084. [PMID: 38905842 DOI: 10.1016/j.foodchem.2024.140084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
This study investigated the interaction mechanism between chlorogenic acid (CA) and soy protein isolate (SPI) through multi-spectroscopic and computational docking and analyzed the changes in its functional properties. The results showed that the interaction of CA with SPI changed its UV and fluorescence absorption, and the fluorescence quenching mechanism was static quenching. At the same time, the secondary structure of the protein was altered, with a reduction in α-helix, β-sheet and β-turn. Computer docking analysis showed that CA binds to SPI through hydrophobic interactions, van der Waals forces, and hydrogen bonding to form a more compact complex. In addition, the dose-dependent enhancement of CA improved the functional properties of the complexes, including foaming, emulsification, and antioxidant properties. This study systematically investigated the mechanism of interaction between CA and SPI, which supports further research on food complex systems containing CA and SPI, as well as the application of the complex.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jiahui Duan
- Shared Service Platform for Large Instruments and Equipment, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Guowei Zhou
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
4
|
An D, Li L. Effects of molecular weight of hydrolysate on the formation of soy protein isolate hydrolysate nanofibrils: Kinetics, structures, and interactions. Food Chem 2024; 456:139687. [PMID: 38889496 DOI: 10.1016/j.foodchem.2024.139687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Enzymatic hydrolysis prior to protein fibrillation was an effective way to facilitate the formation of nanofibrils. This study aimed to investigate the effects of molecular weights of hydrolysate on the kinetics, structures, and interactions of soy protein isolate (SPI) hydrolysate nanofibrils. The results showed that hydrolysate with molecular weight > 10 kDa showed a distinct fibrillation kinetics curve and a higher apparent rate constant (27.72) during fibrillation, indicating their vital role in determining the fibrillation. Hydrolysate with molecular weight > 10 kDa could form nanofibrils with higher radius gyration (17.11 ± 0.77 Å) due to stronger hydrophobic interaction, showing a stronger fibrillation ability. Hydrolysate with molecular weight within 5-10 kDa exhibited enhanced π-π stacking interactions during fibrillation, thereby promoting the extension of nanofibrils, and contributing to the formation of more nanofibrils. Hydrolysate with molecular weight < 5 kDa tended to randomly aggregate during fibrillation, resulting in a significant loss of cross-β structures in nanofibrils. Therefore, hydrolysate with different molecular weights exhibited synergistic effects during fibrillation.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Ke C, Zhang S, Yang X, Li L. Comparative study of Maillard reaction and blending between soybean protein isolate and soluble soybean polysaccharide: Physicochemical, structure and functional properties. Int J Biol Macromol 2024:137101. [PMID: 39486709 DOI: 10.1016/j.ijbiomac.2024.137101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Soybean protein isolate-soluble soybean polysaccharide (SPI-SSPS) complexes and mixtures with varying SPI/SSPS concentration ratios (1: 1, 2:1, 4:1, 8:1) were prepared by Maillard reaction and blending, respectively, and their physicochemical, structure, and functional properties were compared studied. The physical stability of SPI-SSPS complex, which consisted of CN and CS bonds, was better than that of the SPI/SSPS mixture with electrostatic interactions and hydrogen bonds, and both were superior SPI alone. The complex with SPI/SSPS concentration ratio of 8:1 had the highest grafting degree (33.25 %) and a more ordered structure, making its solubility and emulsifying property lower than the SPI/SSPS mixture; however, the physical and thermal stability of the SPI-SSPS complex was higher than that of the SPI and SPI/SSPS mixture. In particular, the SPI-SSPS complex with a high grafting degree showed a higher thermal denaturation temperature (194.06 °C). This study aimed to provide effective modification methods to utilize soybean processing by-products by modifying soybean protein isolate with soluble soybean polysaccharide.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shaoqi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Jiang S, Xie H, Zuo Y, Sun J, Wu D, Shu X. Structural and functional properties of polysaccharides extracted from three Dioscorea species. Int J Biol Macromol 2024; 281:136469. [PMID: 39396596 DOI: 10.1016/j.ijbiomac.2024.136469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dioscorea has a history spanning over 2000 years for both medicinal and edible purposes in China. It contains rich polysaccharides, which are frequently utilized as thickening and stabilizing agents in the food industry. However, there has been relatively little focus on polysaccharides from common Dioscorea species besides D. opposita, such as D. alata and D. esculenta. In this study, non-starch crude polysaccharides were isolated from D. opposita (BD), D. alata (WC), and D. esculenta (GZ). Their structures, physicochemical compositions, and functional properties were characterized and compared. The results indicated three polysaccharides all exhibited characteristic peaks of polysaccharides and possessed triple-helix structures. The Glc (36.78-83.90 %), Man (6.71-26.68 %), and GalA (8.54-10.22 %) were identified as the primary monosaccharide components. In terms of functionality, three polysaccharide solutions demonstrated non-Newtonian flow characteristics and displayed commendable thermal stability. It is worth noting that the antioxidant and emulsifying properties of polysaccharides isolated from D. opposita (BD) and D. alata (WC) were superior to those of D. esculenta (GZ), making them more suitable for use as antioxidants and stabilizers. By comparing polysaccharides derived from different Dioscorea species, this study provides valuable insights into the food, cosmetic, and pharmaceutical industries based on the unique properties of these different polysaccharides.
Collapse
Affiliation(s)
- Shuo Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xie
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Youming Zuo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Dianxing Wu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
7
|
Xie H, Sha XM, Shan S, Hu ZZ, Tu ZC. Thermal stability of γ-PGA modified fish gelatin emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39373620 DOI: 10.1002/jsfa.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Emulsions are thermally unstable systems. This research aimed to investigate the thermal stability of fish gelatin (FG) oil-in-water emulsions in the presence of poly-γ-glutamic acid (γ-PGA) as an additive after heat treatment. The study assessed how γ-PGA influences the thermal stability of FG emulsions over time, focusing on their properties, structure, and food application potential. RESULTS The incorporation of γ-PGA significantly enhanced the thermal stability of FG emulsions, preserving their morphology after heating. Emulsions containing 0.1% γ-PGA showed no significant changes after 24 h at 90 °C, while emulsions without γ-PGA experienced noticeable delamination. Rheological evaluations revealed that the energy storage modulus and loss modulus of FG-γ-PGA emulsions remained consistently higher than those of FG emulsions, regardless of heating duration. Particle size analysis indicated minimal changes for FG-γ-PGA emulsions (413 nm after 24 h) compared to a substantial increase for FG emulsions (1598 nm). After heating, FG-γ-PGA emulsions demonstrated significantly higher emulsifying activity index (EAI) (74 m2 g-1 versus 22.7 m2 g-1) and emulsifying stability index (ESI) (97% versus 76%). Additionally, the texture properties of meat mince formulated with FG-γ-PGA emulsions were comparable to those containing fat, showcasing their potential as a fat replacement. CONCLUSION The study concludes that γ-PGA enhances the thermal stability of FG emulsions, maintaining their integrity and improving functional properties under heat treatment. These findings offer valuable insights for the formulation of thermally stable emulsions, presenting promising opportunities for innovative applications in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Xie
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Shan Shan
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zi-Zi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Chen Y, Gu J, Sun Y, Ding Y, Yang X, Lan S, Ding J, Ding Y. Insight into low methoxyl pectin enhancing thermal stability and intestinal delivery efficiency of algal oil nanoemulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8356-8367. [PMID: 38989609 DOI: 10.1002/jsfa.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Algae oil has garnered widespread acclaim due as a result of its high purity of docosahexaenoic acid (DHA) and excellent safety profile. The present study aimed to develop stable nanoemulsions (NEs) systems containing DHA from algae oil through thermal sterilization by combining modified whey protein concentrate (WPC) with low methoxyl pectin (LMP), as well as to investigate the impact of LMP concentration on the thermal stability and the gastrointestinal delivery efficiency of DHA NEs. RESULTS The addition of LMP enhanced the stability of the emulsion after sterilization, at the same time as improving the protective and sustained release effects of DHA in the gastrointestinal tract. Optimal effect was achieved at a LMP concentration of 1% (10 g kg-1 sample), the stability of the emulsion after centrifugation increased by 17.21 ± 5.65% compared to the group without LMP, and the loss of DHA after sterilization decreased by only 0.92 ± 0.09%. Furthermore, the addition of 1% LMP resulted in a substantial reduction in the release of fatty acids from the NEs after gastrointestinal digestion simulation, achieving the desired sustained-release effect. However, excessive addition of 2% (20 g kg-1 sample) LMP negatively impacted all aspects of the NEs system, primarily because of the occurrence of depletion effects. CONCLUSION The construction of the LMP/WPC-NEs system is conducive to the protection of DHA in algae oil and its sustained-release in the gastrointestinal tract. The results of the present study can provide reference guidance for the application of algae oil NEs in the food field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jipeng Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuan Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Siqi Lan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiayue Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Han Y, Zhu L, Zhang H, Liu T. Mechanism of sucrose improving the mechanical characteristics of foams stabilized by soy protein isolate/gellan gum/guar gum ternary complex. Int J Biol Macromol 2024; 280:135845. [PMID: 39313058 DOI: 10.1016/j.ijbiomac.2024.135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Sucrose shows the potential of stabilizing foam system. This study systematically evaluated the mechanism by which sucrose improved foaming properties and mechanical characteristics of foams stabilized by soy protein isolate/gellan gum/guar gum ternary complex. Results showed that sucrose could bond to the surface of ternary complex or self-aggregate within the continuous phase, resulting in the neutralization of charges (nearly zero) and an increase in particle size (up to 62.54 μm). The addition of 30 % sucrose reinforced foam system with an increased foamability (305.99 %) but a longer foaming time (10 min) during foaming process. Moreover, the mechanical characteristics, including hardness, elastic strength (Power-law constant) and solid characteristic (frequency exponent), were also significantly enhanced to 1.26 N, 354.7956 and 2.5873, respectively, which were 1.65, 1.94 and 1.11 times than those of foams without sucrose. The microscopic mechanism lied in the reduced water freedom degree caused by sucrose, which generated a compact structural network around bubbles for providing a stable and stiff structure to foams. These findings will provide clear theoretical guidance for regulating mechanical characteristics of aerated foods by using sucrose as structural building blocks.
Collapse
Affiliation(s)
- Yameng Han
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Tongtong Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Binzhou Zhongyu Food Company Limited, Binzhou Zhongyu Academy of Agricultural Sciences, National Industry Technical Innovation Center for Wheat Processing, Binzhou 256603, Shandong, China; Bohai Advanced Technology Institute, Binzhou 256606, Shandong, China
| |
Collapse
|
10
|
Zhu Q, Qiu Y, Zhang L, Lu W, Pan Y, Liu X, Li Z, Yang H. Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Res Int 2024; 191:114675. [PMID: 39059937 DOI: 10.1016/j.foodres.2024.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
In present study, whey protein isolate fibrils and sodium alginate complexes (WPIFs-SA) were prepared and further used to stabilize Pickering emulsions for lycopene delivery. The optimal interaction between WPIFs and SA occurred at pH 3.0, with a mass ratio of 2:1. Increasing the oil fractions and the content of WPIFs-SA complexes significantly improved Pickering emulsions' stability, concurrently reducing droplet size and increasing viscoelasticity. Meanwhile, it facilitated the formation of a thicker protective layer and a compact network structure around the oil droplets, offering better protection for lycopene against thermal and photo degradation. In vitro digestion studies revealed that as the oil fractions and complex contents increased, the lipolysis degree decreased. The engineered WPIFs-SA Pickering emulsion could be used as an innovative delivery system for the protection and delivery of lycopene.
Collapse
Affiliation(s)
- Qiaomei Zhu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Yihua Qiu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lujia Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenjing Lu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yijun Pan
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Zhenjing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hua Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Keruiheng Biotechnology Co., Ltd., Tianjin 300450, PR China.
| |
Collapse
|
11
|
Han Y, Zhu L, Zhang H, Liu T, Wu G. Synergistic effect of gellan gum and guar gum on improving the foaming properties of soy protein isolate-based complexes: Interaction mechanism and interfacial behavior. Carbohydr Polym 2024; 339:122202. [PMID: 38823898 DOI: 10.1016/j.carbpol.2024.122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Interactions among multi-component play a critical role in modulating the foaming properties of aerated foods. This study evaluated the mechanisms of synergistic improvement of gellan gum (GEG) and guar gum (GUG) on the foaming properties of soy protein isolate (SPI)-based complex. The results showed that the GEG/GUG ratio was closely related to the intermolecular interactions of SPI-based ternary complex and the dynamical changing of its foaming properties. The SPI/GEG/GUG ternary complex with a GEG/GUG ratio of 2/3 exhibited the highest foamability (195 %) and comparable foam stability (99.17 %), which were 32.95 % and 2.99 % higher than that of SPI/GEG binary complex. At this ratio, GUG promoted the interactions between SPI and GEG, and bound to complex's surface through hydrogen bonding, resulting in the increase of particle size and surface charge, and the decrease of surface hydrophobicity. Although this reduced the diffusion of complex onto the air/water interface, it increased permeation rate and molecular rearrangement behavior, which were the potential mechanisms to improve the foaming properties. Additionally, the synergistic effect of GEG and GUG also enhanced the elastic strength and solid characteristics of foam systems. This study provided a theoretical guidance for the targeted modulation of foaming properties of multi-component aerated foods.
Collapse
Affiliation(s)
- Yameng Han
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Tongtong Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Binzhou Zhongyu Food Company Limited, Binzhou Zhongyu Academy of Agricultural Sciences, National Industry Technical Innovation Center for Wheat Processing, Binzhou 256603, Shandong, China; Bohai Advanced Technology Institute, Binzhou 256606, Shandong, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
12
|
Wang M, Bu G, Zhu T, Liu J, Li M, Rashid MT, Han M. Effects of enzymatic hydrolysis combined with glycation on the emulsification characteristics and emulsion stability of peanut protein isolate. Food Res Int 2024; 192:114722. [PMID: 39147546 DOI: 10.1016/j.foodres.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024]
Abstract
Peanut protein isolate (PPI) has high nutritional value, but its poor function limits its application in the food industry. In this study, peanut protein isolate was modified by enzymatic hydrolysis combined with glycation. The structure, emulsification and interface properties of peanut protein isolate hydrolysate (HPPI) and dextran (Dex) conjugate (HPPI-Dex) were studied. In addition, the physicochemical properties, rheological properties, and stability of the emulsion were also investigated. The results showed that the graft degree increased with the increase of Dex ratio. Fourier transform infrared spectroscopy (FTIR) confirmed that the glycation of HPPI and Dex occurred. The microstructure showed that the structure of HPPI-Dex was expanded, and the molecular flexibility was enhanced. When the ratio of HPPI to Dex was 1:3, the emulsifying activity and the interface pressure of glycated HPPI reached the highest value, and the emulsifying activity (61.08 m2/g) of HPPI-Dex was 5.28 times that of PPI. The HPPI-Dex stabilized emulsions had good physicochemical properties and rheological properties. In addition, HPPI-Dex stabilized emulsions had high stability under heat treatment, salt ion treatment and freeze-thaw cycle. According to confocal laser scanning microscopy (CLSM), the dispersion of HPPI-Dex stabilized emulsions was better after 28 days of storage. This study provides a theoretical basis for developing peanut protein emulsifier and further expanding the application of peanut protein in food industry.
Collapse
Affiliation(s)
- Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guanhao Bu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Tingwei Zhu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Lan T, Wang X, Dong Y, Jin M, Shi J, Xu Z, Jiang L, Zhang Y, Sui X. Fabrication of soy protein nanoparticles based on metal-phenolic networks for stabilization of nano-emulsions delivery system. Food Chem 2024; 448:139164. [PMID: 38574717 DOI: 10.1016/j.foodchem.2024.139164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The use of soy protein isolate (SPI) nanoparticles as a stabilizer in nano-emulsion systems has garnered significant interest. While metal-phenolic networks (MPNs) have been explored for their multifunctional surface modification capabilities, their integration with food protein-based delivery systems remains less explored. In this study, we attempt to develop a novel strategy to encapsulate cinnamaldehyde using MPNs (EGCG-Fe3+) with self-assembling soy protein nanoparticles (SE-Fe NPs) as a stabilizer for nano-emulsions. UV, Raman, and X-ray photoelectron spectroscopy analyses demonstrated that SE-Fe NPs were generated through metal-phenolic coordination and covalent interactions. SE-Fe NPs had a narrower particle size distribution and enhanced radical scavenging (up to 3.35-fold), as well as thermal stability. Furthermore, the smaller droplet size, higher modulus, higher cinnamaldehyde encapsulation efficiency (from 63.5% to 84.2%), and improved bio-accessibility of SE-Fe NPs stabilized nano-emulsions delivery system demonstrated in this study shows promising future applications in the food industry.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Manzhe Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Geng T, Pan L, Liu X, Dong D, Cui B, Guo L, Yuan C, Zhao M, Zhao H. Novel a-linolenic acid emulsions stabilized by octenyl succinylated starch -soy protein-epigallocatechin-3-gallate complexes: Characterization and antioxidant analysis. Food Chem 2024; 446:138878. [PMID: 38432138 DOI: 10.1016/j.foodchem.2024.138878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this study, octenyl succinylated starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes were designed to enhance the physical and oxidative stability of α-linolenic acid emulsions. Formations of OSAS-SP-EGCG complexes were confirmed via particle size, ξ-potential, together with fourier transform infrared (FTIR). A mixing ratio of 1:2 for OSAS to SP-EGCG resulted in ternary complexes with the highest contact angle (59.69°), indicating the hydrophobicity. Furthermore, the characteristics of α-linolenic acid emulsions (oil phase volume fractions (φ) of 10% and 20%) stabilized by OSAS-SP-EGCG complexes were investigated, including particle size, ξ-potential, emulsion stability, oxidative stability, and microstructure. These results revealed exceptional physical stability together with enhanced oxidative stability for these emulsions. Particularly, emulsions utilizing complexes having a 1:2 OSAS to SP-EGCG ratio exhibited superior emulsion stability. These findings provide theoretical support to the development of emulsions containing high levels of α-linolenic acid and for the broader application of α-linolenic acid in food products.
Collapse
Affiliation(s)
- Tenglong Geng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lidan Pan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaorui Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
15
|
Han C, Ren X, Shen X, Yang X, Li L. Improvement of physicochemical properties and quercetin delivery ability of fermentation-induced soy protein isolate emulsion gel processed by ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 107:106902. [PMID: 38797128 PMCID: PMC11139769 DOI: 10.1016/j.ultsonch.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to investigate the effects of ultrasonic treatment at different powers on the physicochemical properties, microstructure and quercetin delivery capacity of fermentation-induced soy protein isolate emulsion gel (FSEG). The FSEG was prepared by subjecting soy protein isolate (SPI) emulsion to ultrasonic treatment at various powers (0, 100, 200, 300, and 400 W), followed by lactic acid bacteria fermentation. Compared with the control group (0 W), the FSEG treated with ultrasound had higher hardness, water holding capacity (WHC) and rheological parameters. Particularly, at an ultrasonic power of 300 W, the FSEG had the highest hardness (101.69 ± 4.67 g) and WHC (75.20 ± 1.07%) (p < 0.05). Analysis of frequency sweep and strain scanning revealed that the storage modulus (G') and yield strains of FSEG increased after 300 W ultrasonic treatment. Additionally, the recovery rate after creep recovery test significantly increased from 18.70 ± 0.49% (0 W) to 58.05 ± 0.54% (300 W) (p < 0.05). Ultrasound treatment also resulted in an increased β-sheet content and the formation of a more compact micro-network structure. This led to a more uniform distribution of oil droplets and reduced mobility of water within the gel. Moreover, ultrasonic treatment significantly enhanced the encapsulation efficiency of quercetin in FSEG from 81.25 ± 0.62 % (0 W) to 90.04 ± 1.54% (300 W). The bioaccessibility of quercetin also increased significantly from 28.90 ± 0.40% (0 W) to 42.58 ± 1.60% (300 W) (p < 0.05). This study enriches the induction method of soy protein emulsion gels and provides some references for the preparation of fermented emulsion gels loaded with active substances.
Collapse
Affiliation(s)
- Chunpeng Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Chen H, Iqbal S, Wu P, Pan R, Wang N, Bhutto RA, Rehman W, Chen XD. Enhancing rheology and reducing lipid digestion of oil-in-water emulsions using controlled aggregation and heteroaggregation of soybean protein isolate-peach gum microspheres. Int J Biol Macromol 2024; 273:132964. [PMID: 38852719 DOI: 10.1016/j.ijbiomac.2024.132964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
There is a growing interest in developing highly viscous lipid foods using plant protein and polysaccharide gum-based emulsion technology. However, gaps remain in understanding the rheological, microstructural, and digestive properties of plant proteins like soybean protein isolate (SPI) in combination with various gums. This study investigates how combining SPI and peach gum (PG) affects rheology and lipolysis of oil-in-water (O/W) emulsions containing 20 wt% soybean oil. Emulsions with varying SPI and PG compositions including SPI-PG single and SPI/PG mixed droplet systems were prepared. Heating induced alterations in viscosity (e.g., SPI-PG from 14.88 to 90.27 Pa·s and SPI/PG from 9.66 to 85.32 Pa·s) and microstructure revealing aggregate formation at oil-water interface. The viscosity decreased significantly from the oral to intestinal phase (SPI-PG: 28.10 to 0.19 Pa·s, SPI/PG: 21.27 to 0.10 Pa·s). These changes affected lipid digestion, notably in SPI-PG and SPI/PG emulsions where a compact interface hindered lipolysis during digestion. Interestingly, free fatty acid (FFA) release during small intestinal phase followed a different order: SPI (82.51 %) > SPI-PG (70.77 %) > SPI/PG (63.60 %) > PG (56.09 %). This study provides insights into creating highly viscous O/W spreads with improved rheology, stability, and delayed lipid digestion, offering potential benefits in food product formulation.
Collapse
Affiliation(s)
- Haozhi Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shahid Iqbal
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Myddelton College Jinhua, Rongguang Road, Wucheng, Jinhua, Zhejiang 321025, China.
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ronggang Pan
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ni Wang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rizwan Ahmed Bhutto
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
17
|
Xie M, Zhou C, Li X, Ma H, Liu Q, Hong P. Preparation and characterization of tilapia protein isolate - Hyaluronic acid complexes using a pH-driven method for improving the stability of tilapia protein isolate emulsion. Food Chem 2024; 445:138703. [PMID: 38387313 DOI: 10.1016/j.foodchem.2024.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
This study aimed to investigate the non-covalent complexation between hyaluronic acid (HA) and tilapia protein isolate (TPI) on the stability of oil-in-water (O/W) TPI emulsion. The results showed that HA binds to TPI through electrostatic, hydrophobic, and hydrogen bonding interactions, forming homogeneous hydrophilic TPI-HA complexes. The binding of HA promoted the structural folding of TPI and altered its secondary structure during pH neutralization. The TPI-HA complexes presented significantly improved EAI and ESI (P < 0.05) when the HA concentration was 0.8 % (w/v). Emulsion characterization showed that HA promoted the transfer of TPI to the O/W interface, forming an emulsion with excellent stability, which, combined with the high surface charge and strong spatial site resistance effect of HA, improved TPI emulsion stability. Therefore, non-covalent complexation with HA is an effective strategy to improve the stability of TPI emulsion.
Collapse
Affiliation(s)
- Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China.
| |
Collapse
|
18
|
Chen Z, Wang C, Su J, Liang G, Tan S, Bi Y, Kong F, Wang Z. Extraction of Pithecellobium clypearia Benth polysaccharides by dual-frequency ultrasound-assisted extraction: Structural characterization, antioxidant, hypoglycemic and anti-hyperlipidemic activities. ULTRASONICS SONOCHEMISTRY 2024; 107:106918. [PMID: 38772313 PMCID: PMC11137586 DOI: 10.1016/j.ultsonch.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
In this research, the extraction process of polysaccharides from Pithecellobium clypearia Benth (PCBPs) was optimized using dual-frequency ultrasound-assisted extraction (DUAE). The biological activities of PCBPs were investigated by in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic assay. High-performance anion-exchange chromatography, high-performance gel permeation chromatography, SEM, UV-Vis spectroscopy, and FT-IR spectra were used to analyze the monosaccharide composition, molecular weight, microscopic morphology, and characteristic structure of PCBPs. The results showed that the maximum extraction rate of PCBPs was 9.90 ± 0.16% when the ultrasonic time was 8 min, the liquid-to-material ratio was 32 mL/g, and the ultrasonic power was 510 W. The PCBPs also possessed excellent in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic activities. In addition, the average molecular weight of PCBPs was 15.07 kDa. PCBPs consisted of rhamnose, arabinose, galactose, glucose, xylose, mannose, and glucuronic acid, with the molar ratios of 11.07%, 18.54%, 48.17%, 10.44%, 4.62%, 4.96%, and 2.20%, respectively. Moreover, the results of SEM showed that PCBPs mainly showed a fine spherical mesh structure. The above studies provided a valuable theoretical basis for the subsequent in-depth study of PCBPs.
Collapse
Affiliation(s)
- Zihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Chuanju Wang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Jiarong Su
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Guixin Liang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| |
Collapse
|
19
|
Wang L, Wang L, Wang N, Song C, Wen C, Yan C, Song S. Fucoidan alleviates the inhibition of protein digestion by chitosan and its oligosaccharides. Int J Biol Macromol 2024; 269:132072. [PMID: 38705339 DOI: 10.1016/j.ijbiomac.2024.132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chitosan (CTS) and chitosan oligosaccharides (COS) have been widely applied in food industry due to their bioactivities and functions. However, CTS and COS with positive charges could interact with proteins, such as whey protein isolate (WPI), influencing their digestion. Interaction among CTS/COS, FUC, and WPI/enzymes was studied by spectroscopy, chromatography, and chemical methods in order to reveal the role of FUC in relieving the inhibition of protein digestibility by CTS/COS and demonstrate the action mechanisms. As shown by the results, the addition of FUC increased degree of hydrolysis (DH) and free protein in the mixture of CTS and WPI to 3.1-fold and 1.8-fold, respectively, while raise DH value and free protein in the mixture of COS and WPI to 6.7-fold and 1.2-fold, respectively. The interaction between amino, carboxyl, sulfate, and hydroxyl groups from carbohydrates and protein could be observed, and notably, FUC could interact with CTS/COS preferentially to prevent CTS/COS from combining with WPI. In addition, the addition of FUC could also relieve the combination of CTS to trypsin, increasing the fluorescence intensity and concentration of trypsin by 83.3 % and 4.8 %, respectively. Thus, the present study demonstrated that FUC could alleviate the inhibitory effect of CTS/COS on protein digestion.
Collapse
Affiliation(s)
- Linlin Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lilong Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Nan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chen Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunhong Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Yan Z, Wang X, Zhao P, He Y, Meng X, Liu B. The effect of octenyl succinic anhydride-modified chitosan coating on DHA-loaded nanoemulsions: Physichemical stability and in vitro digestibility. Food Chem 2024; 441:138289. [PMID: 38176141 DOI: 10.1016/j.foodchem.2023.138289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Octenyl succinic anhydride-modified chitosan (OSA-CS) was synthesized and applied as a coating material to enhance the stability of docosahexaenoic acid (DHA)-loaded nanoemulsion. Due to the presence of the positively charged OSA-CS coating, the nanoemulsion exhibited a high positive zeta potential and two different layers. Compared with natural CS-coated nanoemulsion, OSA-CS-coated nanoemulsion showed improved storage stability (physical and chemical stability) and stability against environmental stresses (ionic strengths, temperatures and pH). Besides, OSA-CS-coated nanoemulsion protected encapsulated DHA from simulated gastric fluid damage better than that of natural CS-coated nanoemulsion, suggesting that OSA-CS-coated nanoemulsion had the potential to deliver more DHA into the small intestine. In conclusion, based on the comparison of two coating materials, natural chitosan and OSA-CS, it was found that the encapsulated nutrient was better protected by the OSA-CS coating. Such a finding will provide insights to broaden the application of modified chitosan in food delivery systems.
Collapse
Affiliation(s)
- Zhaoju Yan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xin Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Pengcheng Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yangeng He
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xianghong Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingjie Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
21
|
Yan X, Bai X, Liu X, Liu F. Enhanced functional properties of pea protein isolate microgel particles modified with sodium alginate: Mixtures and conjugates. Food Chem 2024; 441:138358. [PMID: 38266315 DOI: 10.1016/j.foodchem.2024.138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/29/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Protein microgels are emerging as versatile soft particles due to their desirable interfacial activities and functional properties. In this study, pea protein isolate microgel particles (PPIMP) were prepared by heat treatment and transglutaminase crosslinking, and PPIMP were non-covalently and covalently modified with sodium alginate (SA). The effects of polymer ratio and pH on the formation of PPIMP-SA mixtures and conjugates were investigated. The optimal ratio of PPIMP and SA was found to be 20:1, with the optimal pH being 7 and 10, respectively. PPIMP-SA conjugates were prepared by Maillard reaction. It was found that ultrasound (195 W, 40 min) enhanced the degree of glycation of PPIMP, with a highest value of 37.21 ± 0.71 %. SDS-PAGE, browning intensity and FTIR data also confirmed the formation of PPIMP-SA conjugates. Compared with PPIMP and PPIMP-SA mixtures, PPIMP-SA conjugates exhibited better thermal stability, antioxidant, emulsifying and foaming properties, which opens up opportunities for protein microgel in various food applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangqi Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
22
|
Mengozzi A, Chiavaro E, Barbanti D, Bot F. Heat-Induced Gelation of Chickpea and Faba Bean Flour Ingredients. Gels 2024; 10:309. [PMID: 38786226 PMCID: PMC11121298 DOI: 10.3390/gels10050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to investigate the gelling behavior of faba bean (FB) and chickpea (CP) flour between 10 and 20% (w/w) concentration at pH 3.0, 5.0, and 7.0. Both sources formed at pH 3.0 and 5.0 self-standing gels with 12% (w/w) of flour, while 16% (w/w) of flour was required to obtain a gel at pH 7.0. During gelling between 40 and 70 °C, a sharp increase of the elastic modulus G' was observed in both flours, mainly due to water absorption and swelling of the starch, one of the major constituents in the ingredients. Increasing the temperature at 95 °C, G' increased due to the denaturation of globulins and therefore the exposure of their internal part, which allowed more hydrophobic interactions and the formation of the gel. After cooling, both FB and CP gels displayed a solid-like behavior (tan δ ranging between 0.11 and 0.18) with G' values at pH 3.0 and 5.0 significantly (p < 0.05) higher than those at pH 7.0, due to the lower electrostatic repulsions at pHs far from the isoelectric point. The rheological properties were supported by the water binding capacity values, confirming the better gels' strength described by rheological analysis. These results will enhance our understanding of the role of legume flours in formulating innovative and sustainable food products as alternatives to animal ones.
Collapse
Affiliation(s)
| | | | | | - Francesca Bot
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.M.); (E.C.); (D.B.)
| |
Collapse
|
23
|
Hu M, Gao Y, Wen W, Zhang P, Zhang F, Fan B, Wang F, Li S. The aggregation behavior between soybean whey protein and polysaccharides of diverse structures and their implications in soybean isoflavone delivery. Food Chem 2024; 439:138061. [PMID: 38064829 DOI: 10.1016/j.foodchem.2023.138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
The use of polysaccharides to recover soybean whey protein (SWP) from whey wastewater is recognized as an effective approach. However, the recovery rate can vary due to differences in the structure and compound ratios of the polysaccharides involved. The interaction between SWP and polysaccharides (sodium alginate, SA; chitosan, CHI; carrageenan, CAR) at different ratio was investigated. We harnessed these complexes to fabricate emulsions aimed at delivering soybean isoflavones. The results showed that the addition of polysaccharides unfolded the structure of SWP. The intermolecular hydrogen bonds within SWP-SA were stronger than those of the other complexes. These structural changes showed consistency across different ratios. The mean particle size of the complexes increased. SWP-SA exhibited the lowest interfacial tension. The emulsion with SWP-SA at 300 W demonstrated superior stability, and the bioavailability of soybean isoflavones increased by 3-6 %. These results shed light on the promising potential of polysaccharide-based strategies for SWP recovery and the effective delivery of soybean isoflavones.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Fengxia Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| |
Collapse
|
24
|
Meng R, Chen P, Feng R, Tao H, Zhang B, Su DL. Interfacial engineering method to regulate the performances of bilayer emulsions co-stabilized by casein/butyrylated dextrin nanoparticles and chitosan. Int J Biol Macromol 2024; 266:131160. [PMID: 38547946 DOI: 10.1016/j.ijbiomac.2024.131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
In present study, bilayer emulsions with different interfacial structures stabilized by casein/butyrylated dextrin nanoparticles (CDNP), chitosan (CS) and chitosan nanoparticles (CSNP) were prepared to overcome the limitations of conventional emulsions. The effects of chitosan morphology and incorporation sequences on the bilayer emulsions were examined. Bilayer emulsions prepared with CDNP as the inner layer and CS/CSNP as the outer layer were observed to have smaller droplet sizes (1.39 ± 86.74 um and 1.45 ± 7.87 um). Bilayer emulsions prepared with CDNP as the inner layer and CS as the outer layer exhibited the lowest creaming index (2.38 %) after 14 days of storage, indicating excellent stability. Furthermore, bilayer emulsion prepared with CDNP as the inner layer and CS as the outer layer also exhibited a uniform water distribution, excellent protein oxidative stability, and uniformly distributed droplets by the measurement of Low-field NMR, intrinsic tryptophan fluorescence and laser confocal laser scanning microscopy. These results indicated that the study provided a theoretical basis for the development and design of bilayer emulsions with different interfacial structures. This study also provides a new material for the preparation of delivery systems that protect biologically active compounds. Bilayer emulsions are promising for applications in traditional and manufactured food products.
Collapse
Affiliation(s)
- Ran Meng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Pin Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Dong-Lin Su
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, PR China.
| |
Collapse
|
25
|
Wei Z, Dong Y, Si J. Ovotransferrin Fibril-Gum Arabic Complexes as Stabilizers for Oleogel-in-Water Pickering Emulsions: Formation Mechanism, Physicochemical Properties, and Curcumin Delivery. Foods 2024; 13:1323. [PMID: 38731695 PMCID: PMC11083342 DOI: 10.3390/foods13091323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This project aimed to explore the influence of the interaction between ovotransferrin fibrils (OTF) and gum arabic (GA) on the formation mechanism, physicochemical properties, and curcumin delivery of the oleogel-in-water Pickering emulsion. Cryo-scanning electron microscopy results showed that OTF-GA complexes effectively adsorbed on the oil-water interface, generating spatial hindrance to inhibit droplet coalescence. The texture analysis also proved that OTF-GA complexes endowed oleogel-in-water Pickering emulsion with preferable springiness (0.49 ± 0.03 mm), chewiness (0.43 ± 0.07 mJ), and adhesion (0.31 ± 0.01 mJ). By exploring the coalescence stability, droplet size, and rheological properties of OTF-GA complexes-stabilized oleogel-in-water Pickering emulsion (OGPE), the higher coagulation stability, larger average droplet size (46.22 ± 0.08 μm), and stronger gel strength were observed. The microrheological results also exhibited stronger attraction between the OGPE droplets, a more pronounced solid-like structure, and a slower speed of movement than OTF-stabilized oleogel-in-water Pickering emulsion (OPE). Meanwhile, OGPE significantly enhanced the extent of lipolysis, stability, and bioaccessibility of curcumin, suggesting that it possessed superior performance as a delivery system for bioactive substances. This project provided adequate theoretical references for protein-polysaccharide complexes-stabilized oleogel-in-water Pickering emulsion, and contributed to expanding the application of oleogel-in-water Pickering emulsion in the food industry.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | | | | |
Collapse
|
26
|
Jiang W, Yang X, Li L. Flavor of extruded meat analogs: A review on composition, influencing factors, and analytical techniques. Curr Res Food Sci 2024; 8:100747. [PMID: 38708099 PMCID: PMC11066600 DOI: 10.1016/j.crfs.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Meat analogs are anticipated to alleviate environmental and animal welfare concerns as the demand for meat rises. High moisture extrusion is commonly employed to produce meat analogs, and its flavor could influence consumers' choice. To improve the development and market demand of extruded meat analogs, flavor precursors and natural spices have been used in high moisture extrusion process to directly improve the flavor profile of extruded meat analogs. Although there have been many studies on the flavor of high moisture extruded meat analogs, flavor composition and influencing factors have not been summarized. Thus, this review systematically provides the main pleasant and unpleasant flavor-active substances with 79 compounds, as well as descriptive the influence of flavor-active compounds, chemical reactions (such as lipid oxidation and the Maillard reaction), and fiber structure formation (based on extrusion process, extrusion parameters, and raw materials) on flavor of extruded meat analogs. Flavor evaluation of extruded meat analogs will toward multiple assessment methods to fully and directly characterize the flavor of extruded meat analogs, especially machine learning techniques may help to predict and regulate the flavor characteristics of extruded meat analogs.
Collapse
Affiliation(s)
- Wanrong Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
27
|
Wang Y, Yang X, Li L. Formation of pH-responsive hydrogel beads and their gel properties: Soybean protein nanofibers and sodium alginate. Carbohydr Polym 2024; 329:121748. [PMID: 38286537 DOI: 10.1016/j.carbpol.2023.121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024]
Abstract
Hydrogel beads prepared from protein nanofibers are popular because of their safety, sleek appearance, and protection of biologically active substances. However, extreme external environmental variations, such as pH and temperature, can limit their practical application. To meet the application requirements of hydrogel beads in different environments, non-covalent mixtures of CaCl2 cross-linked soybean protein nanofibers (SNF) and sodium alginate (SA) were used to prepare hydrogel beads. In the present study, the hardness (782.48 g) and elasticity of hydrogel beads formed at SNF/SA = 7:3 and CaCl2 concentration of 0.1 mol/L were the maximum. Furthermore, the water content and pH swelling also reached a peak (98.68 %, 43.85 g/g) due to the best morphology and regular internal network structure. Meanwhile, the pH-responsive hydrogel beads with added anthocyanins were able to respond to the ambient pH under different temperatures and pH conditions and maintained color stability during 96 h of storage (ΔE < 5). In this experiment, a pH-responsive hydrogel bead based on soybean protein nanofiber (SNF) and sodium alginate (SA) was prepared by simple ionic crosslinking. It provides a theoretical and experimental basis for the future application of plant protein nanofibers as pH-responsive hydrogel materials.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Hwang W, Lee J, Choi MJ. Optimization and characterization of high internal phase double emulsion (HIPDE) stabilized by with soybean protein isolate, gallic acid and xanthan gum. Int J Biol Macromol 2024; 264:130562. [PMID: 38431022 DOI: 10.1016/j.ijbiomac.2024.130562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This study aims to formulate a stable high internal phase double emulsion (HIPDE) using soybean protein isolate (SPI), gallic acid (GA), and xanthan gum (XG). To prepare HIPDE, W1/O was formulated with the water phase dispersed in the oil phase using polyglycerol polyricinoleate (PGPR) as a stabilizer. Thereafter, W1/O dispersed in W2 (SPI solution) was used. To stabilize the HIPDE, GA was added in W1 (0 or 1 %), XG was added in W2 (0 or 1 %), and the pH of the W phases was adjusted to acidic, neutral, and basic. The samples containing GA in W1 and XG in W2 did not phase out during the storage periods and maintained a higher ζ-potential value, a higher apparent viscosity, and a more sustainable droplet compared to others. These results were derived by the interaction between SPI and XG, SPI and GA, or GA and PGPR. Physicochemical crosslinks were formed, such as gallate-derived groups, SPI-GA complexation (Michael addition, Shiff base reaction), and hydrogen bonding. In conclusion, applying the SPI, GA, and XG to HIPDE would contribute to various industries such as food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Woongjun Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, South Korea
| | - Jiseon Lee
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
29
|
Wang W, Sun R, Ji S, Xia Q. Effects of κ-carrageenan on the emulsifying ability and encapsulation properties of pea protein isolate-grape seed oil emulsions. Food Chem 2024; 435:137561. [PMID: 37776649 DOI: 10.1016/j.foodchem.2023.137561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
This work investigated the characteristics of pea protein isolate and κ-carrageenan complexes in stabilizing curcumin-loaded emulsions. The complexes structured by electrostatic attraction exhibited biphasic wettability with increased three-phase contact angles close to 90°. Morphological differences in the complexes were the critical factor influencing their emulsifying ability at various pH. As a steric barrier via increasing net negative charge (up to -54.7 ± 2.4 mV) and adsorbed protein content (92.57 %-97.61 %), the interfacial layer could retard droplet coalescence and improve emulsions stability. Rheological tests verified the higher viscoelasticity of emulsions by raising the oil fraction. After 4 weeks of heating treatment, the chemical stability of curcumin was prominently enhanced from 18.6 ± 0.2 % to 64.3 ± 5.7 %. The confirmed synergistic antioxidant activity between grape seed oil and curcumin in emulsions might facilitate the development of specific functional delivery systems in foods.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
30
|
Zhao Y, Wang D, Xu J, Tu D, Zhuang W, Tian Y. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. Int J Biol Macromol 2024; 262:129782. [PMID: 38281520 DOI: 10.1016/j.ijbiomac.2024.129782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The formation of a single soybean protein isolate (SPI) gel is limited by the processing conditions, and has the disadvantages of poor gel property, and it is usually necessary to add other biomacromolecules to improve its property. In this study, we investigated the effects of polysaccharide concentration on gel properties and interaction mechanisms of Tremella fuciformis polysaccharide (TFP)-SPI complexes. It was found that (1) the rheological properties, texture properties, water-holding properties, and thermal stability of TFP-SPI composite gels were improved with the addition of TFP (0.25-2.0 %, w/v) in a concentration-dependent manner; (2) hydrogen bond, the electrostatic interaction, hydrophobic interaction, and disulfide bond in the gel system increased with the increase of TFP concentration; (3) the electrostatic and hydrophobic interactions played an important role in the formation of the TFP-SPI composite gel while hydrogen bond formation was the least contributor to the binary composite gel network. Overall, TFP is not only a critical health food but also a promising structural component for improving the gel properties of SPI.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
31
|
Bai L, Geng S, Zhou Y, Ma H, Liu B. Ultrasound-assisted fabrication and stability evaluation of okra seed protein stabilized nanoemulsion. ULTRASONICS SONOCHEMISTRY 2024; 104:106807. [PMID: 38367307 PMCID: PMC10883816 DOI: 10.1016/j.ultsonch.2024.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The structure and functional properties of okra seed protein (OSP) were characterized, the ultrasonic homogenization process of OSP nano-emulsion was optimized by response surface methodology (RSM), and its stability was also evaluated in this study. The results suggested that OSP was a high-quality plant protein, rich in glutamic acid. The molecular weight of its main subunits distributed in the range of 10-55 kDa, and some subunits were connected by disulfide bonds. Although the water and oil holding capacities of OSP were inferior to those of soy protein isolate (SPI), its emulsifying ability was superior to that of SPI. And the OSP concentration, ultrasonic time and ultrasonic power had obvious effects on the droplet size of nanoemulsion. The optimum process of OSP emulsion was determined as follows: OSP concentration 2.4 %, ultrasonic power 600 W, ultrasonic time 340 s. Under these conditions, the median droplet size of the nanoemulsion was 192.03 ± 3.48 nm, close to the predicted value (191.195 nm). And the obtained nano-emulsion exhibited high stability to the changes of pH, temperature and ionic strength in the environment. Our results can provide reference for the application of OSP, and promote the development of plant protein-based nanoemulsions.
Collapse
Affiliation(s)
- Lu Bai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yingxuan Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
32
|
Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, Sun Y, He J, Pan D, Cai Z, Xia Q. Tunability of Pickering particle features of whey protein isolate via remodeling partial unfolding during ultrasonication-assisted complexation with chitosan/chitooligosaccharide. Carbohydr Polym 2024; 325:121583. [PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
Collapse
Affiliation(s)
- Hongmei Yu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yangyin Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jun He
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
33
|
Kamer DDA. Synergistic formulation approach for developing pea protein and guar gum enriched olive oil-in-water emulsion gels as solid fat substitutes: Formulation optimization, characterization, and molecular simulation. Int J Biol Macromol 2024; 257:128718. [PMID: 38101676 DOI: 10.1016/j.ijbiomac.2023.128718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
This study aimed to optimize the formulation of olive oil-in-water (O/W) emulsion gels by incorporating Pea Protein (PP) and Guar Gum (GG) as alternative options for solid fats. The optimum rheological (consistency index, apparent viscosity, recovery) and texture (firmness) properties of the emulsion gels were obtained using a mixture of 2 % PP, 1 % GG, 60 % Olive Oil (OO), and 37 % Water (W). The blend of PP2/GG1 showed the highest results for recovery and firmness, 111.27 % and 33.89 g, respectively. PP/GG blend emulsion gels exhibited higher absolute ζ-potential values, ranging between -72.3 and -77.4 mV. The polydispersity index (PDI) ranged from 0.185 to 0.535, with the most uniform distributions found in the PP/GG blend emulsion gels. Strong phase separation resistance indicated strong stability of PP-GG complex emulsion gels. Higher PP concentrations decreased emulsion oxidation. FTIR and XRD research showed that PP and GG interact strongly, indicating good compatibility. The free binding energy of the most stable configuration of the molecules was -6.8 kcal mol-1, indicating a high affinity. PP interacted with GG through 9 amino acid residues, with notable residues being Asp 224, Thr 235, Ala 332, Ile 334, and Arg 336, and their respective interaction distances ranged between 2.69 Å and 3.87 Å.
Collapse
|
34
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
35
|
He S, Li M, Sun Y, Pan D, Zhou C, Lan H. Effects of limited enzymatic hydrolysis and polysaccharide addition on the physicochemical properties of emulsions stabilized with duck myofibrillar protein under low-salt conditions. Food Chem 2024; 430:137053. [PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
Collapse
Affiliation(s)
- Shufeng He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Mengmeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| |
Collapse
|
36
|
Zhang Z, Li T, Zhang Y, Shao J, Ye C, Wang H, Zhu B, Zhang Y. Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. Int J Biol Macromol 2023; 253:126890. [PMID: 37716302 DOI: 10.1016/j.ijbiomac.2023.126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to investigate the effect of different polysaccharides on the binding behavior and functional properties of soybean protein isolate (SPI)-quercetin (Que) complex. The binding behavior was assessed using multi-spectral technique with the Stern-Volmer equation, which confirmed the presence of static fluorescence quenching in Que and SPI. The addition of sodium alginate (SA) resulted in a reduction of the binding affinity between SPI and Que, while dextran (DX) exhibited some promoting effect. A slight blue shift was observed in amide I and amide II bands, indicating the presence of hydrophobic and electrostatic interactions. Circular dichroism spectra revealed the ordered structures transformed into a more disordered state when polysaccharides were added, leading to an increase in random coils (SA: 18.5 %, DX: 15.4 %). Docking and dynamic simulations demonstrated that SA displayed greater stability within the hydrophobic compartments of SPI than DX, increased rigidity and stability of the SPI structure in SPI-Que-SA complexes. Electrostatic forces played a significant role between SPI and SA, while van der Waals forces were the main driving forces in SPI-DX complexes. Overall, the introduction of SA led to a looser and stable structure of SPI-Que complexes, resulting in an improvement of their emulsifying, foaming, and antioxidant properties.
Collapse
Affiliation(s)
- Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
37
|
Gu C, Dong P, Jiang F, Fu H, Lyu B, Li H, Li Y, Yu H, Dai W. The influence of α and α' subunits on SPI Pickering emulsions based on natural hybrid breeding varieties. Food Chem X 2023; 20:100931. [PMID: 38144728 PMCID: PMC10740028 DOI: 10.1016/j.fochx.2023.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 12/26/2023] Open
Abstract
In this study, food-grade protein nanoparticles (Wild-NPs, α-lack-NPs, α'-lack-NPs, and (α + α')-lack-NPs) were organized as emulsion stabilizers via thermal induction. The effects of α and α' subunits in soybean protein isolate (SPI) on Wild nanoparticle Pickering emulsion (Wild-NPPEs), α-lack nanoparticle Pickering emulsion (α-lack-NPPEs), α'-lack nanoparticle Pickering emulsion (α'-lack-NPPEs) and (α + α')-lack nanoparticle Pickering emulsion ((α + α')-lack-NPPEs) were investigated. The Pickering emulsion stabilization mechanism indicated that the α'-lack-NPs particle size, surface hydrophobicity, and contact angle were mostly comparatively large. Therefore, the absence of the α' subunit made the desorption of protein nanoparticles at the oil and water interface require higher energy. Through the hydrophobic interaction between molecules, the structure and properties of the emulsion were improved, showing good stability. The existence of α'-lack-NPPEs leads to the formation of a gel-like network in the emulsion, which increases the viscosity of the emulsion and makes the network structure of the emulsion more uniform and denser.
Collapse
Affiliation(s)
- Chunmei Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Pengchao Dong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Feihong Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Haoming Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Youbao Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
38
|
Han M, Liu K, Liu X, Rashid MT, Zhang H, Wang M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023; 12:2999. [PMID: 37627998 PMCID: PMC10453113 DOI: 10.3390/foods12162999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.
Collapse
Affiliation(s)
- Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd., Zhengzhou 450001, China;
| | - Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
| |
Collapse
|
39
|
Ding Y, Xiao N, Tian X, Guo S, Jiang A, Ai M. Polysaccharide-addition order regulates sonicated egg white peptide stabilized nanoemulsions and β-carotene digestion in vitro. Food Res Int 2023; 169:112812. [PMID: 37254389 DOI: 10.1016/j.foodres.2023.112812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/04/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In this paper, the effects of the polysaccharide-addition order (before and after homogenisation) on the stability of nanoemulsion stabilised by sonicated egg white peptides and the in vitro digestive behaviour of loaded β-carotene were investigated. The pyrene fluorescence results showed that the concentration of micelles formed by flaxseed gum (FG) in complex with peptides was significantly higher than that of peach gum (PG). The order of polysaccharide-addition affected the emulsion properties and stability; adding polysaccharides before homogenisation led to protein bridging flocculation, low polysaccharide coverage and a higher interfacial adsorbed protein content of the emulsion. PG enhanced potential spatial resistance and electrostatic repulsion, effectively prevented emulsion flocculation and improved electrostatic stability. After homogenisation, FG was added to emulsions to improve environmental stability, including ionic, temperature and storage stability. Due to the viscosity of polysaccharides and the formed polysaccharide-protein-lipid aggregates, the increasing degree of bridging flocculation promoted the prominent of apparent viscosity, and the G' and G'' exhibited a frequency-dependent increase. The polysaccharide type and mode changed the surface loading charge and droplet interface thickness, delayed the destruction of the droplet structure by protease, and slowed the release of β-carotene to form micelles. In this study, a stable emulsion system and an efficient emulsion transport system for bioactive substances were obtained by regulating polysaccharides adding order, which is significant for constructing an efficient food emulsion delivery system.
Collapse
Affiliation(s)
- Yiwen Ding
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingguo Tian
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Jiang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
40
|
Wang K, Li Y, Sun J, Zhang Y. The physicochemical properties and stability of myofibrillar protein oil-in-water emulsions as affected by the structure of sugar. Food Chem X 2023; 18:100677. [PMID: 37077582 PMCID: PMC10106513 DOI: 10.1016/j.fochx.2023.100677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Different sugars (glucose, GL; fructose, FR; hyaluronic acid, HA; cellulose, CE) were added to a myofibrillar protein (MP) emulsion (MP: 1.2 w/v%, sugar: 0.1% w/v) to study the effect of sugar structure on the physicochemical properties and stability of the MP emulsions. The emulsifying properties of MP-HA were significantly (P < 0.05) higher than those of the other groups. The monosaccharide (GL/FR) exerted negligible effects on the emulsifying performance of the MP emulsions. The ζ-potential and particle size implied that HA introduced stronger negative charges, significantly reducing the final particle size (190-396 nm). Rheological examinations indicated that the introduction of polysaccharides considerably increased the viscosity and network entanglement; confocal laser scanning microscopy and creaming index revealed that MP-HA was stable during storage, whereas MP-GL/FR/CE exhibited severe delamination after long-term storage. HA, a heteropolysaccharide, is most suitable for improving MP emulsion quality.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
- College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China
- Corresponding authors at: College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China (J. Sun).
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
- Corresponding authors at: College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China (J. Sun).
| |
Collapse
|
41
|
Zhou L, Jiang J, Feng F, Wang J, Cai J, Xing L, Zhou G, Zhang W. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion. Carbohydr Polym 2023; 309:120679. [PMID: 36906362 DOI: 10.1016/j.carbpol.2023.120679] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
Improving the qualities of vegetable oil replaced animal fat meat products is particularly fascinating for the development of healthy meat products. This work was designed to investigate the effects of different carboxymethyl cellulose (CMC) concentrations (0.01 %, 0.05 %, 0.1 %, 0.2 %, and 0.5 %) on the emulsifying, gelation, and digestive properties of myofibrillar protein (MP)-soybean oil emulsions. The changes in MP emulsion characteristics, gelation properties, protein digestibility, and oil release rate were determined. Results demonstrated that CMC addition decreased the average droplet size and increased the apparent viscosity, storage modulus, and loss modulus of MP emulsions, and a 0.5 % CMC addition significantly increased the storage stability during 6 weeks. Lower CMC addition (0.01 % to 0.1 %) increased the hardness, chewiness, and gumminess of emulsion gel especially for the 0.1 % CMC addition, while higher CMC (0.5 %) content decreased the texture properties and water holding capacity of emulsion gels. The addition of CMC decreased protein digestibility during the gastric stage, and 0.01 % and 0.05 % CMC addition significantly decreased the free fatty acid release rate. In summary, the addition of CMC could improve the stability of MP emulsion and the texture properties of the emulsion gels, and decrease protein digestibility during the gastric stage.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jinyuan Jiang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Fan Feng
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jingyu Wang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jiaming Cai
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Guanghong Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| |
Collapse
|
42
|
Yang X, Cao D, Ji H, Xu H, Feng Y, Liu A. Physicochemical characterization, rheological properties, and hypolipidemic and antioxidant activities of compound polysaccharides in Chinese herbal medicines by fractional precipitation. Int J Biol Macromol 2023; 242:124838. [PMID: 37172701 DOI: 10.1016/j.ijbiomac.2023.124838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
This study aimed to investigate the effects of different compound polysaccharides (CPs) extracted from Folium nelumbinis, Fructus crataegi, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos (w/w, 2:4:2:1:1.5:1) by gradient ethanol precipitation on the physicochemical properties and biological activities. Three CPs (CP50, CP70, and CP80) were obtained and comprised rhamnose, arabinose, xylose, mannose, glucose, and galactose in different proportions. The CPs contained different amounts of total sugar, uronic acid, and proteins. These also exhibited different physical properties, including particle size, molecular weight, microstructure, and apparent viscosity. Scavenging abilities of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 1,1'-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and superoxide radicals of CP80 were more potent compared to those of the other two CPs. Furthermore, CP80 significantly increased serum levels of high-density lipoprotein cholesterol (HDL-C) and lipoprotein lipase (LPL), and hepatic lipase (HL) activity in the liver, while decreasing the serum levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), along with LPS activity. Therefore, CP80 may serve as a natural novel lipid regulator in the field of medicinal and functional food.
Collapse
Affiliation(s)
- Xu Yang
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China.
| | - Dongli Cao
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Haiyu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huijing Xu
- National Center of Inspection and Testing for Processed Food Quality, Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Yingying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
43
|
Fan H, Zhu P, Hui G, Shen Y, Yong Z, Xie Q, Wang M. Mechanism of synergistic stabilization of emulsions by amorphous taro starch and protein and emulsion stability. Food Chem 2023; 424:136342. [PMID: 37209438 DOI: 10.1016/j.foodchem.2023.136342] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Amorphous taro starch (TS)/whey protein isolate (WPI) mixtures were prepared using pasting treatment. The TS/WPI mixtures and their stabilized emulsions were characterized to determine the emulsion stability and the mechanism of synergistic stabilization of emulsions. As WPI content increased from 0% to 13%, the paste final viscosity and retrogradation ratio of the TS/WPI mixture gradually decreased from 3683 cP to 2532 cP and from 80.65% to 30.51%, respectively. As the WPI content increased from 0% to 10%, the emulsion droplet size decreased gradually from 96.81 μm to 10.32 μm, and the storage modulus G' and stabilities of freeze-thaw, centrifugal, and storage increased gradually. Confocal laser scanning microscopy revealed that WPI and TS were mainly distributed at the oil-water interface and droplet interstice, respectively. Thermal treatment, pH, and ionic strength had little influence on the appearance but had different influences on the droplet size and G', and the rates of droplet size and G' increase under storage varied with different environmental factors.
Collapse
Affiliation(s)
- Huan Fan
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Peilei Zhu
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gan Hui
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Yue Shen
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Zongjie Yong
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wang
- Department of Food Science and Engineering, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
44
|
Xie H, Wei X, Liu X, Bai W, Zeng X. Effect of polyphenolic structure and mass ratio on the emulsifying performance and stability of emulsions stabilized by polyphenol-corn amylose complexes. ULTRASONICS SONOCHEMISTRY 2023; 95:106367. [PMID: 36933501 PMCID: PMC10034494 DOI: 10.1016/j.ultsonch.2023.106367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
O/W emulsions stabilized by polyphenol/amylose (AM) complexes with several polyphenol/AM mass ratios and different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) were prepared by a high-intensity ultrasound emulsification technique. The effect of the pyrogallol group number of polyphenols and the mass ratio of polyphenols/AM on polyphenol/AM complexes and emulsions was studied. The soluble and/or insoluble complexes gradually formed upon adding polyphenols into the AM system. However, insoluble complexes were not formed in the GA/AM systems because GA has only one pyrogallol group. In addition, the hydrophobicity of AM could also be improved by forming polyphenol/AM complexes. The emulsion size decreased with increasing pyrogallol group number on the polyphenol molecules at a fixed ratio, and the size could also be controlled by the polyphenol/AM ratio. Moreover, all emulsions presented various degrees of creaming, which was restrained by decreasing emulsion size or the formation of a thick complex network. The complex network was enhanced by increasing the ratio or pyrogallol group number on the polyphenol molecules, which was because the increasing number of complexes was adsorbed onto the interface. Altogether, compared to GA/AM and EGCG/AM, the TA/AM complex emulsifier had the best hydrophobicity and emulsifying properties, and the TA/AM emulsion had the best emulsion stability.
Collapse
Affiliation(s)
- Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China.
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
45
|
He X, Wang B, Xue Y, Li Y, Hu M, He X, Chen J, Meng Y. Effects of high acyl gellan gum on the rheological properties, stability, and salt ion stress of sodium caseinate emulsion. Int J Biol Macromol 2023; 234:123675. [PMID: 36801230 DOI: 10.1016/j.ijbiomac.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Sodium caseinate (SC) is widely used as a biological macromolecular emulsifier in oil-in-water (O/W) emulsions. However, the SC-stabilized emulsions were unstable. High-acyl gellan gum (HA) is an anionic macromolecular polysaccharide that improves emulsion stability. This study aimed to investigate the effects of HA addition on the stability and rheological properties of SC-stabilized emulsions. Study results revealed that HA concentrations >0.1 % could increase Turbiscan stability, reduce the volume average particle size, and increase the zeta-potential absolute value of the SC-stabilized emulsions. In addition, HA increased the triple-phase contact angle of SC, transformed SC-stabilized emulsions into non-Newtonian fluids, and effectively inhibited the movement of emulsion droplets. The effect of 0.125 % HA concentration was the most effective, allowing SC-stabilized emulsions to maintain good kinetic stability over a 30-d period. NaCl destabilized SC-stabilized emulsions but had no significant effect on HA-SC emulsions. In summary, HA concentration had a significant effect on the stability of SC-stabilized emulsions. HA altered the rheological properties and reduced creaming and coalescence by forming a three-dimensional network structure, increasing the electrostatic repulsion of the emulsion and the adsorption capacity of SC at the oil-water interface, and thereby improving the stability of SC-stabilized emulsions during storage and in the presence of NaCl.
Collapse
Affiliation(s)
- Xingfen He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yuhang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanhua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mingxiang Hu
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Xingwang He
- Zhejiang Tech-way Biotechnology Co., Ltd., Shaoxing 311811, People's Republic of China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Yuecheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
46
|
Razzak MA, Cho SJ. Physicochemical and functional properties of capsaicin loaded cricket protein isolate and alginate complexes. J Colloid Interface Sci 2023; 641:653-665. [PMID: 36963258 DOI: 10.1016/j.jcis.2023.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/26/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
As people become more aware of the health benefits of foods and their nutritional benefits for preventing diseases and promoting health, the demand for functional foods rich in proteins, fiber, and bioactives like capsaicin (CAP) is constantly rising. This study hypothesized that the electrostatic complexes developed by cricket protein isolate (CPI) and alginate (AL) could be utilized to encapsulate CAP, making it more water-soluble and protecting it at acidic pHs. Quantitative analysis revealed that CAP was efficiently encapsulated into the CPI-AL complexes with a maximum encapsulation efficiency of 91%, improving its aqueous solubility 45-fold. In vitro release tests showed that CAP was retained at acidic pHs (3.0 and 5.0) in CPI-AL complexes but released steadily at neutral pH (7.4), which will protect CAP in the stomach while enabling its release in the small intestine. Moreover, the antioxidant activity of CAP-CPI-AL complexes was superior to that of their individual bare equivalents. The complexes also demonstrated enhanced emulsifying capabilities and stability at acidic pHs (2.0-5.0) as the CPI fraction in the complexes increased. Our findings thus contribute to the growing body of knowledge that validates protein-polysaccharide complexation as a promising strategy for developing edible delivery systems.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea; Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.; Department of Food Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea; Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea..
| |
Collapse
|
47
|
Feng X, Dai H, Tan H, Tang M, Ma L, Zhang Y. Improvement of low-oil gelatin emulsions performance by adjusting the electrostatic interaction between gelatin and nanocellulose with different morphologies. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
48
|
Zeng L, Lee J, Jo YJ, Choi MJ. Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Wang N, Zhao X, Jiang Y, Ban Q, Wang X. Enhancing the stability of oil-in-water emulsions by non-covalent interaction between whey protein isolate and hyaluronic acid. Int J Biol Macromol 2023; 225:1085-1095. [PMID: 36414080 DOI: 10.1016/j.ijbiomac.2022.11.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effect of non-covalent interactions between different concentrations (0.1-1.2 %, w/v) of hyaluronic acid (HA) and 3 % (w/v) whey protein isolate (WPI) on the stability of oil-in-water emulsions. Non-covalent interactions between WPI and HA were detected using Fourier-transform infrared spectroscopy. The addition of HA increased the electrostatic repulsion between molecules and reduced the particle size of WPI. Circular dichroism spectroscopy results indicated that the addition of HA caused an increase in β-sheet content and a decrease in α-helix and random coil content in WPI. Moreover, HA increased the emulsion viscosity and strength of the interfacial network structure. Micrographs obtained using confocal laser scanning microscopy indicated that the emulsion with 0.8 % (w/v) HA exhibited good dispersion and homogeneity after storage for 14 d. Complexation with HA significantly altered the rheological and emulsifying properties of WPI, providing an emulsion with excellent stability under heating treatment, freeze-thawing treatment and centrifugation. The results provide a potential for HA application in emulsified foods.
Collapse
Affiliation(s)
- Ningzhe Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Zhao
- College of Equipment Management and Support, Engineering University of People's Armed Police, Xi'an 710086, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
50
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|