1
|
Nie C, Liu B, Niu Y, Wu P, Song Z, Wei X, Wang J. Enhancement of Pickering effect of ovalbumin with bacterial cellulose nanofibers prepared by electron beam irradiation and encapsulation of curcumin. Int J Biol Macromol 2024; 279:135145. [PMID: 39216578 DOI: 10.1016/j.ijbiomac.2024.135145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In this study, the enhancement of Pickering effect of ovalbumin (OVA) with bacterial cellulose nanofibers (BCNFs) prepared by electron beam irradiation was investigated and the environmental stability of oil-in-water Pickering emulsions stabilized by OVA/BCNFs complexes was explored by varying ratios of OVA/BCNFS (1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1) and oil phase concentrations (10 %, 20 %, 30 %, 40 %, 50 %, 60 %). Droplet sizes of Pickering emulsions were decreased with the increase of the proportion of BCNFs, while the viscosity and storage modulus (G') of Pickering emulsions were increased. The gel strength of Pickering emulsions was positively correlated with the oil phase content. Pickering emulsions stabilized by OVA/BCNFs complexes were endowed excellent environmental stability under varying pH, ionic strength, and thermal conditions. Moreover, after encapsulating curcumin in Pickering emulsions, the retention rates of curcumin were improved significantly during room temperature, UV light, and thermal treatment. The present study would contribute to the advancement of novel protein/polysaccharide stabilizers and offer novel insight for investigating the stability of Pickering emulsions and delivering lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yefan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihong Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xindi Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Hunan Nobel Life Science Research Institute Co., LTD, 229 Guyuan Road, Changsha, Hunan 410221, China.
| |
Collapse
|
2
|
Liu JC, Nie B, Wang YQ, Yan JN, Wu HT. Phase behavior and synergistic gelation of scallop (Patinopecten yessoensis) male gonad hydrolysates and gellan gum driven by pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39425557 DOI: 10.1002/jsfa.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Previous studies have investigated complexation and coacervation of scallop Patinopecten yessoensis male gonad hydrolysates (SMGHs) and polysaccharides influenced by pH and blending ratio. It has been found that SMGHs/polysaccharide composite shows better gel properties under strongly acidic conditions. Thus, the complexation and coacervation of SMGHs and gellan gum (GG) were investigated via turbidimetric titration at different pH values (1-12) and biopolymer blending ratios (9.5:0.5-6:4). RESULTS Both pHc and pHφ1 exhibited ratio-independent behavior with constant values at approximately pH 5.8 and pH 3.8, respectively, dividing SMGHs/GG blends into three phases named mixed polymers, soluble complexes and insoluble coacervates, respectively. Overall, SMGHs and GG exhibited synergistic gelation under neutral and acidic conditions, with the initial storage modulus (G') increasing by approximately 42.5-, 573.7- and 3421-fold and 97.7-, 550.3- and 0.5-fold, respectively, at pH 7, 5 and 3, compared with SMGHs and GG. As pH decreased from 7 to 3, the initial G' and viscosity η values of SMGHs/GG gels increased by 20.1- and 2.3-fold, respectively, exhibiting the greatest increase in gel strength. Moreover, the free water in the SMGHs/GG system significantly shifted toward lower relaxation times attributed to the immobilization of the outer hydration layers. SMGHs/GG gels in the insoluble phase exhibited denser networks and rougher surfaces, supporting the enhanced rheological properties and water retention capacity of the gel. CONCLUSION This work provides a basic foundation for the development of pH-driven SMGHs/GG gelation by examining complexation and coacervation processes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bin Nie
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, Ministry of Agriculture and Rural Affair, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Liu Z, Zheng K, Yan R, Tang H, Jia Z, Zhang Z, Yang C, Wang J. Effects of different solid particle sizes on oat protein isolate and pectin particle-stabilized Pickering emulsions and their use as delivery systems. Food Chem 2024; 454:139681. [PMID: 38820636 DOI: 10.1016/j.foodchem.2024.139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Oat protein isolate (OPI)/high methoxyl pectin (HMP) complexes (OPP) were prepared to stabilized Pickering emulsions and applied as nutraceutical delivery systems. The different mass ratios and pH changed the interactions between OPI and HMP that caused the different size of OPP. Specifically, smaller particle size of OPP (125.7-297.6 nm) were formed when hydrophobic interactions along with electrostatic forces predominant in OPP (OPI:HMP = 3:1, pH 4, 5). Among these particles, OPP-2 could stabilize Pickering emulsion efficiently through formation of dense interfacial film, which exhibited the highest apparent viscosity and the smallest average droplet size (23.39 μm). Moreover, OPP-2 stabilized Pickering emulsions with superior stability not only exhibited higher encapsulation efficiency of 85.63%, but also could control curcumin release in simulated gastrointestinal fluids to improve curcumin's bioaccessibility. These results verified the possibility of OPP to be a Pickering emulsions stabilizer, and also identified its potential to be a stable delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Ziyun Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruizhe Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huihuang Tang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zengyan Jia
- Tianjin Huikang Biotechnology Co., LTD, Tianjin 300304, China
| | - Zhiqiang Zhang
- Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Yu Z, Zhou L, Chen Z, Chen L, Hong K, He D, Lei F. Fabrication and Characterization of Docosahexaenoic Acid Algal Oil Pickering Emulsions Stabilized Using the Whey Protein Isolate-High-Methoxyl Pectin Complex. Foods 2024; 13:2159. [PMID: 38998664 PMCID: PMC11240950 DOI: 10.3390/foods13132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the whey protein isolate-high-methoxyl pectin (WPI-HMP) complex prepared by electrostatic interaction was utilized as an emulsifier in the preparation of docosahexaenoic acid (DHA) algal oils in order to improve their physicochemical properties and oxidation stability. The results showed that the emulsions stabilized using the WPI-HMP complex across varying oil-phase volume fractions (30-70%) exhibited consistent particle size and enhanced stability compared to emulsions stabilized solely using WPI or HMP at different ionic concentrations and heating temperatures. Furthermore, DHA algal oil emulsions stabilized using the WPI-HMP complex also showed superior storage stability, as they exhibited no discernible emulsification or oil droplet overflow and the particle size variation remained relatively minor throughout the storage at 25 °C for 30 days. The accelerated oxidation of the emulsions was assessed by measuring the rate of DHA loss, lipid hydroperoxide levels, and malondialdehyde levels. Emulsions stabilized using the WPI-HMP complex exhibited a lower rate of DHA loss and reduced levels of lipid hydroperoxides and malondialdehyde. This indicated that WPI-HMP-stabilized Pickering emulsions exhibit a greater rate of DHA retention. The excellent stability of these emulsions could prove valuable in food processing for DHA nutritional enhancement.
Collapse
Affiliation(s)
- Zhe Yu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Li Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Zhe Chen
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Ling Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Kunqiang Hong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Fenfen Lei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
5
|
Wang C, Wei M, Zhu H, Wang L, Ni S, Li X, Gao D. Development of porous materials via protein/polysaccharides/polyphenols nanoparticles stabilized Pickering high internal phase emulsions for adsorption of Pb 2+ and Cu 2+ ions. Food Chem 2024; 445:138796. [PMID: 38471345 DOI: 10.1016/j.foodchem.2024.138796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The porous materials (PM) were prepared by the Pickering high internal phase emulsion (PHIPE) template. Firstly, the nanoparticles named as ZHMNPs or MZHMNPs were fabricated based on zein, Hohenbuehelia serotina polysaccharides and Malus baccata (Linn.) Borkh polyphenols without or with Maillard reaction, the average particle sizes and zeta potentials of which were distributed in a range of 718.1-979.4 nm and -21.6-25.2 mV. ZHMNPs possessed the relatively uniform spherical morphology, while MZHMNPs were irregular in shape. With ZHMNPs or MZHMNPs serving as the stabilizers, the PHIPEs were prepared, and exhibited the good viscoelasticity and excellent storage and freeze-thaw stabilities. Based on above PHIPEs template, the constructed PM possessed the large specific surface area and uniform pore structure. Through the investigations of adsorption performances, PM showed the outstanding adsorption capacities on Pb2+ and Cu2+ ions regardless of dissolving in deionized water or simulated gastrointestinal digestive fluid. Furthermore, the results also showed that the pH, temperature and adsorbent dosage had certain impacts on the adsorption performances of PM on Pb2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Cheng Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mian Wei
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Huipeng Zhu
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lu Wang
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xiaoyu Li
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Wang W, Ji S, Xia Q. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions. Carbohydr Polym 2024; 334:122041. [PMID: 38553238 DOI: 10.1016/j.carbpol.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Recently, there has been a focus on using biopolymer-based particles to stabilize high internal phase Pickering emulsions (HIPPEs) due to the notable advances in biocompatibility and biodegradability. In this work, the complex particles of peanut protein isolate and carboxymethyl cellulose (CMC) with various substitution degrees (DS; 0.7 and 0.9) and weight average molecular weights (Mw; 90, 250, and 700 kDa) were prepared and characterized as novel stabilizers. For the obtained four types of morphologically distinct particles, the complex particles formed by CMC (0.9 DS and 250 kDa) showed cluster structures with an average size of 1.271 μm, equally biphasic wettability with three-phase contact angles of 91.5°, and the highest diffusion rate at the oil-water interface. HIPPEs stabilized by these particles exhibited more elastic behavior due to the smaller tanδ and higher viscosity, as well as excellent thixotropic recovery properties and stability against heating, storage, and freeze-thawing. Furthermore, confocal laser scanning microscopy verified that these particles formed a dense interfacial layer around the oil droplets, which could resist flocculation and coalescence between oil droplets during in vitro digestion. The improved bioaccessibility of curcumin-loaded HIPPEs made these delivery systems potentially apply in functional foods.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
7
|
Li M, Yu H, Gantumur MA, Guo L, Lian L, Wang B, Yu C, Jiang Z. Insight into oil-water interfacial adsorption of protein particles towards regulating Pickering emulsions: A review. Int J Biol Macromol 2024; 272:132937. [PMID: 38848834 DOI: 10.1016/j.ijbiomac.2024.132937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Over the past decade, Pickering emulsions (PEs) stabilized by protein particles have been the focus of researches. The characteristics of protein particles at the oil-water interface are crucial for stabilizing PEs. The unique adsorption behaviors of protein particles and various modification methods enable oil-water interface to exhibit controllable regulation strategies. However, from the perspective of the interface, studies on the regulation of PEs by the adsorption behaviors of protein particles at oil-water interface are limited. Therefore, this review provides an in-depth study on oil-water interfacial adsorption of protein particles and their regulation on PEs. Specifically, the formation of interfacial layer and effects of their interfacial characteristics on PEs stabilized by protein particles are elaborated. Particularly, complicated behaviors, including adsorption, arrangement and deformation of protein particles at the oil-water interface are the premise of affecting the formation of interfacial layer. Moreover, the particle size, surface charge, shape and wettability greatly affect interfacial adsorption behaviors of protein particles. Importantly, stabilities of protein particles-based PEs also depend on properties of interfacial layers, including interfacial layer thickness and interfacial rheology. This review provides useful insights for the development of PEs stabilized by protein particles based on interfacial design.
Collapse
Affiliation(s)
- Meng Li
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Haiying Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Lidong Guo
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Lian Lian
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Bo Wang
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China
| | - Chunmiao Yu
- Department of Food Science and Engineering, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150030, PR China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
9
|
Long M, Ren Y, Li Z, Yin C, Sun J. Effects of different oil fractions and tannic acid concentrations on konjac glucomannan-stabilized emulsions. Int J Biol Macromol 2024; 265:130723. [PMID: 38467227 DOI: 10.1016/j.ijbiomac.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Polysaccharide-stabilized emulsions have received extensive attention, but emulsifying activity of polysaccharides is poor. In this study, konjac glucomannan (KGM) and tannic acid (TA) complex (KGM-TA) was prepared via non-covalent binding to increase the polysaccharide interfacial stability. The emulsifying stabilities of KGM-TA complex-stabilized emulsions were analyzed under different TA concentrations and oil fractions. The results indicated that hydrogen bonds and hydrophobic bonds were the main binding forces for KGM-TA complex, which were closely related to TA concentrations. The interfacial tension of KGM-TA complex decreased from 20.0 mN/m to 13.4 mN/m with TA concentration increasing from 0 % to 0.3 %, indicating that TA improved the interfacial activity of KGM. Meanwhile, the contact angle of KGM-TA complex was closer to 90° with the increasing TA concentrations. The emulsifying stability of KGM-TA complex-stabilized emulsions increased in an oil mass fraction-dependent manner, reaching the maximum at 75 % oil mass fraction. Moreover, the droplet sizes of KGM-TA complex-stabilized high-internal-phase emulsions (HIPEs) decreased from 82.7 μm to 44.7 μm with TA concentration increasing from 0 to 0.3 %. Therefore, high TA concentrations were conducive to the improvement of the emulsifying stability of KGM-TA complex-stabilized HIPEs. High oil mass fraction promoted the interfacial contact of adjacent droplets, thus enhancing the non-covalent binding of KGM molecules at the interfaces with TA as bridges. Additionally, the high TA concentrations increased the gel network density in the aqueous phase, thus enhancing the emulsifying stability of emulsions. Our findings reveal the mechanisms by which polysaccharide-polyphenol complex stabilized HIPEs. Therefore, this study provides theoretical basis and references for the developments of polysaccharide emulsifier with high emulsifying capability and high-stability emulsions.
Collapse
Affiliation(s)
- Min Long
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuanyuan Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jie Sun
- College of Life Science and Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
10
|
Wang Z, Zhao Y, Liu H, Chen Q, Liu Q, Kong B. Soy protein isolate-sodium alginate colloidal particles for improving the stability of high internal phase Pickering emulsions: Effects of mass ratios. Food Chem X 2024; 21:101094. [PMID: 38229671 PMCID: PMC10790022 DOI: 10.1016/j.fochx.2023.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
The potential of sodium alginate (SA) at different mass ratios to improve the emulsifying ability of soy protein isolate (SPI) in high internal phase Pickering emulsions (HIPPEs) was evaluated in this work. SPI-SA particles were used as a natural particle stabilizer of HIPPEs with 80 % oil phase. The properties of particles with varying SPI to SA ratios (10:0, 10:1, 10:3, 10:5, 10:10, and 10:15 w/w) were evaluated. HIPPEs with a 10:10 SPI to SA ratio exhibited the smallest droplet sizes. Both the storage modulus and loss modulus of the HIPPEs increased with increasing SA addition ratios, implying that HIPPEs with higher SA addition have stronger gel characteristics. In addition, super-resolution microscopy and cryogenic scanning electron microscopy indicated that SA addition strengthened the compactness of the interface film and increased the distribution uniformity of HIPPEs. In conclusion, the combination of SPI and SA is beneficial for improving the performance of HIPPEs.
Collapse
Affiliation(s)
- Zhi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yubo Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
11
|
Yang Z, Li M, Li Y, Huang X, Li Z, Zhai X, Shi J, Zou X, Xiao J, Sun Y, Povey M, Gong Y, Holmes M. Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chem 2024; 437:137891. [PMID: 37922795 DOI: 10.1016/j.foodchem.2023.137891] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The poor biological, mechanical and water-resistance properties of sodium alginate/guar gum film (SG) limit its application in food preservation. To overcome this disadvantage, we added β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion (BOPE) to enhance the mechanical and water resistance properties of SG film, and added green synthesized silver nanoparticles (AgNPS) and Lycium ruthenicum extract (LA) to improve the biological properties of the film. The properties of BOPE was optimized using Box-Behnken design (BBD). Scanning electron microscope and Fourier transform infrared results revealed the change of structure and molecular interaction in the SG film after the addition of AgNPS, LA, and optimized BOPE. The 2.0%BOPE-loaded film containing AgNPS/LA with the enhanced mechanical, barrier, BO retention, and biological properties not only improved the preservation effect on mushroom (A. bisporus), but also maintained structural stability. Thus, the 2.0%BOPE-loaded SG/LA/AgNPS film has considerable potential in active packaging applications.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
12
|
Tian Y, Sun F, Wang Z, Yuan C, Wang Z, Guo Z, Zhou L. Research progress on plant-based protein Pickering particles: Stabilization mechanisms, preparation methods, and application prospects in the food industry. Food Chem X 2024; 21:101066. [PMID: 38268843 PMCID: PMC10806259 DOI: 10.1016/j.fochx.2023.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhuying Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Hou J, Tan G, Hua S, Zhang H, Wang J, Xia N, Zhou S, An D. Development of high internal phase Pickering emulsions stabilized by egg yolk and carboxymethylcellulose complexes to improve β-carotene bioaccessibility for the elderly. Food Res Int 2024; 177:113835. [PMID: 38225112 DOI: 10.1016/j.foodres.2023.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
The work aimed to develop the multi-protein mixture of egg yolk as natural particles to stabilize high internal phase Pickering emulsions (HIPPEs) to improve the bioaccessibility of β-carotene in the elderly. The results showed that the depletion attraction drove the adsorption of egg yolk protein particles at the oil-water interface and the formation of osmotic droplet clusters due to the attachment of particle-coated droplets in the dispersed phase, leading to kinetic blocking and stable gelation of HIPPEs. Rheological measurements showed that HIPPEs had shear thinning, low shear stress, viscoelastic properties, and structural recovery properties, which facilitated easy consumption for the elderly. The stability of HIPPEs was verified by ionic and centrifugal stability tests, demonstrating their potential for application to complex gastric environments. HIPPEs have been applied to the International Dysphagia Dietary Standardization Initiative (IDDSI) test and simulated in vitro digestion in older adults, demonstrating their safe swallowability and high β-carotene bioaccessibility. Our findings suggest solutions for food practitioners facing the aging problem and provide new insights for preparing age-friendly foods.
Collapse
Affiliation(s)
- Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guixin Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Sijie Zhou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Dong An
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
14
|
He X, Lu Q. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application. Adv Colloid Interface Sci 2024; 324:103086. [PMID: 38244533 DOI: 10.1016/j.cis.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) is renowned for its exceptionally high-volume fraction of internal phase, leading to flocculated yet deformed emulsion droplets and unique rheological behaviors such as shear-thinning property, viscoelasticity, and thixotropic recovery. Alongside the inherent features of regular emulsion systems, such as large interfacial area and well-mixture of two immiscible liquids, the HIPPEs have been emerging as building blocks to construct three-dimensional (3D) scaffolds with customized structures and programmable functions using an extrusion-based 3D printing technique, making 3D-printed HIPPE-based scaffolds attract widespread interest from various fields such as food science, biotechnology, environmental science, and energy transfer. Herein, the recent advances in preparing suitable HIPPEs as 3D printing inks for various applied fields are reviewed. This work begins with the stabilization mechanism of HIPPEs, followed by introducing the origin of their distinctive rheological behaviors and strategies to adjust the rheological behaviors to prepare more eligible HIPPEs as printing inks. Then, the compatibility between extrusion-based 3D printing and HIPPEs as building blocks was discussed, followed by a summary of the potential applications using 3D-printed HIPPE-based scaffolds. Finally, limitations and future perspectives on preparing HIPPE-based materials using extrusion-based 3D printing were presented.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Sun F, Cheng T, Ren S, Yang B, Liu J, Huang Z, Guo Z, Wang Z. Soy protein isolate/carboxymethyl cellulose sodium complexes system stabilized high internal phase Pickering emulsions: Stabilization mechanism based on noncovalent interaction. Int J Biol Macromol 2024; 256:128381. [PMID: 38000596 DOI: 10.1016/j.ijbiomac.2023.128381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The interactions between carboxymethyl cellulose sodium and proteins can regulate the interfacial and rheological properties of HIPEs, which plays a leading role in the stabilities of HIPEs. This article prepared various ratios of soluble soy protein isolate/carboxymethyl cellulose sodium (SPI/CMC) complexes in different proportions and examined the impact of various ratios of complexes on the structure and interface properties of complexes systems. Additionally, it explored the co-emulsification mechanism of HIPEs using SPI and CMC. At appropriate ratios of SPI/CMC, SPI and CMC mainly combine through non covalent binding and form complexes with smaller particle sizes and stronger electrostatic repulsion. The interfacial properties indicated that adding appropriate CMC increased the pliability and reduced the interfacial tension, while also enhancing the wettability of SPI/CMC complexes. At the ratio of 2:1, the SPI/CMC complexes-stabilized HIPPEs exhibited smaller oil droplets size, tighter droplet packing, and thicker interfacial film through the bridging of droplets and the generation of stronger gel-like network structures to prevent the coalescence/flocculation of droplets. These results suggested that the appropriate ratios of SPI/CMC can improve the physical stability of HIPEs by changing the structure and interface characteristics of the SPI/CMC complexes. This work provided theoretical support for stable HIPEs formed with protein-polysaccharide complexes.
Collapse
Affiliation(s)
- Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuanghe Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bing Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Liu
- Shandong Yuwang Industrial Co., Ltd, Dezhou, Shandong 251299, China
| | - Zhaoxian Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Shandong Gushen Biological Technology Group Co., Ltd, Dezhou, Shandong 253500, China.
| |
Collapse
|
16
|
Ling M, Huang X, He C, Zhou Z. Tunable rheological properties of high internal phase emulsions stabilized by phosphorylated walnut protein/pectin complexes: The effects of pH conditions, mass ratios, and concentrations. Food Res Int 2024; 175:113670. [PMID: 38129023 DOI: 10.1016/j.foodres.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The current study reported high internal phase emulsions (HIPEs) stabilized by phosphorylated walnut protein/pectin complexes (PWPI/Pec) and elucidated how their rheological properties were modulated by pH conditions, mass ratios, and concentrations of the complexes. At pH 3.0, the HIPEs stabilized by PWPI/Pec exhibited smaller oil droplet sizes, as well as higher storage modulus (G') and flow stress, in comparison to those stabilized by the complexes formed at pH 4.0-6.0. These observations can be directly linked to pH-dependent changes in particle size, surface hydrophobicity, and wettability of the PWPI/Pec complexes. Rheological analysis revealed that all generated HIPEs displayed weak strain overshoot behavior, irrespective of pH conditions. Notably, HIPEs stabilized by PWPI/Pec at mass ratios of 2:1 and 4:1 showed enlarged oil droplet sizes, lower G' and flow stress but higher flow strain with unaffected loss factor compared to those stabilized by PWPI/Pec 1:1. However, reducing the concentration of PWPI/Pec led to a simultaneous decrease in G', flow stress, and flow strain, along with a significant increase in the loss factor of the HIPEs. Furthermore, the HIPEs formed with 1% PWPI/Pec 1:1 at pH 3.0 demonstrated excellent stability against heat treatment and long-term storage. These results provide valuable insights into the modulation of rheological characteristics of HIPEs and offer guidance for the application of walnut protein-based stabilizers in HIPE systems.
Collapse
Affiliation(s)
- Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China.
| |
Collapse
|
17
|
Li D, Yin H, Wu Y, Feng W, Xu KF, Xiao H, Li C. Ultrastable High Internal Phase Pickering Emulsions: Forming Mechanism, Processability, and Application in 3D Printing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18829-18841. [PMID: 38011315 DOI: 10.1021/acs.jafc.3c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) are versatile platforms for various applications owing to their low-density, solid-like structure, and large specific surface area. Here, naturally occurring polysaccharide-protein hybrid nanoparticles (PPH NPs) were used to stabilize HIPPEs with an internal phase fraction of 80% at a PPH NP concentration of 1.5%. The obtained HIPPEs displayed a gel-like behavior with excellent stability against centrifugation (10000g, 10 min), temperature (4-121 °C), pH (1.0-11.0), and ionic strength (0-500 mM). Confocal laser scanning microscope and cryo-scanning electron microscopy results showed that PPH NPs contributed to the stability of HIPPEs by effectively adsorbing and anchoring on the surface of the emulsion droplets layer by layer to form a dense 3D network barrier to inhibit droplet coalescence. The rheological analysis showed that the HIPPEs possessed a higher viscosity and lower frequency dependence with increasing PPH NP concentration, suggesting the potential application of such HIPPEs in three-dimensional (3D) printing, which was subsequently confirmed by a 3D printing experiment. This work provides highly stable and processable HIPPEs, which can be developed as facile and reusable materials for numerous applications. They can also be directly used for future food manufacturing, drug and nutrient delivery, and tissue reconstruction.
Collapse
Affiliation(s)
- Dafei Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Yin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yingni Wu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Feng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Hu J, Liang Y, Huang X, Chen G, Liu D, Chen Z, Fang Z, Chen X. Thermal Stability Improvement of Core Material via High Internal Phase Emulsion Gels. Polymers (Basel) 2023; 15:4272. [PMID: 37959953 PMCID: PMC10647363 DOI: 10.3390/polym15214272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Biocompatible particle-stabilized emulsions have gained significant attention in the biomedical industry. In this study, we employed dynamic high-pressure microfluidization (HPM) to prepare a biocompatible particle emulsion, which effectively enhances the thermal stability of core materials without the addition of any chemical additives. The results demonstrate that the HPM-treated particle-stabilized emulsion forms an interface membrane with high expansion and viscoelastic properties, thus preventing core material agglomeration at elevated temperatures. Furthermore, the particle concentration used for constructing the emulsion gel network significantly impacts the overall strength and stability of the material while possessing the ability to inhibit oxidation of the thermosensitive core material. This investigation explores the influence of particle concentration on the stability of particle-stabilized emulsion gels, thereby providing valuable insights for the design, improvement, and practical applications of innovative clean label emulsions, particularly in the embedding and delivery of thermosensitive core materials.
Collapse
Affiliation(s)
- Jinhua Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongxue Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueyao Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guangxue Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dingrong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhuangzhuang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng Fang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xuelong Chen
- Atera Water Pte Ltd., 1 Corporation Drive, Singapore 619775, Singapore;
| |
Collapse
|
19
|
Zhang J, Zhao S, Liu Q, Chen Q, Liu H, Kong B. High internal phase emulsions stabilized by pea protein isolate modified by ultrasound and pH-shifting: Effect of chitosan self-assembled particles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Wang L, Liu M, Guo P, Zhang H, Jiang L, Xia N, Zheng L, Cui Q, Hua S. Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes. Food Chem 2023; 414:135718. [PMID: 36827783 DOI: 10.1016/j.foodchem.2023.135718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Although protein-polysaccharide complexes have shown tremendous potential in stabilizing high internal phase Pickering emulsions (HIPPEs), it is unclear whether coacervates have the same potential to be used as effective Pickering stabilizers. In this study, HIPPEs were prepared by ovalbumin (OVA)-pectin (PE) coacervates during the transition from coacervates to complexes. The results showed that enhanced OVA-PE interactions significantly affected the wettability and surface-tension reduction ability of the OVA-PE coacervates. At pH 2, the coacervate-stabilized HIPPEs exhibited smaller oil droplet sizes (21.3±2.3 μm), tighter droplet packing, and finer solid-like structures through the bridging of droplets and the generation of stronger gel-like network structures to prevent coalescence and lipid oxidation. The gastrointestinal digestion results proved that the OVA-PE coacervates promoted lipid hydrolysis and improved the bioaccessibility (from 19.7±0.7% to 36.5±2%) of curcumin-loaded HIPPEs. Our work provides new ideas for the development of biopolymer particles as effective Pickering stabilizers in the food industry.
Collapse
Affiliation(s)
- Lechuan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Panpan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Cui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
21
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Li B. Characteristics and in vitro digestion of resveratrol encapsulated in Pickering emulsions stabilized by tea water-insoluble protein nanoparticles. Food Chem X 2023; 18:100642. [PMID: 36968315 PMCID: PMC10034416 DOI: 10.1016/j.fochx.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
This study focused on the characteristics and in vitro digestion of resveratrol encapsulated in Pickering emulsions stabilized by tea water-insoluble protein nanoparticles (TWINs). The absolute value of zeta potential of Pickering emulsions stabilized by TWIPNs (TWIPNPEs) encapsulating resveratrol was above 40 mV. Resveratrol encapsulated in TWIPNPEs was located at a hydrophobic environment of emulsion droplets. Additionally, the encapsulation efficiency (EE) of TWIPNPEs at TWIPN concentrations of 3.0% and 4.0% was above 85%. The resveratrol encapsulated in TWIPNPEs at a TWIPN concentration of 4.0% was still greater than 80% after UV irradiation to reduce the susceptibility of resveratrol for photodegradation. Moreover, the bioavailability of resveratrol in TWIPNPEs was improved in the simulated in vitro digestion. The bioavailability of resveratrol in TWIPNPEs in the simulated system was two times higher than unencapsulated resveratrol. This research could be useful for the encapsulation and application of nutraceuticals like resveratrol based on TWIPNPEs.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
- Corresponding author.
| |
Collapse
|
22
|
Tao X, Chen C, Li Y, Qin X, Zhang H, Hu Y, Liu Z, Guo X, Liu G. Improving the physicochemical stability of Pickering emulsion stabilized by glycosylated whey protein isolate/cyanidin-3-glucoside to deliver curcumin. Int J Biol Macromol 2023; 229:1-10. [PMID: 36586646 DOI: 10.1016/j.ijbiomac.2022.12.269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Protein-polysaccharide-polyphenol delivery systems function as a promising tool to deliver bioactive ingredients aiming to improve their solubility and bioavailability. In this study, whey protein isolate (WPI), short-chain inulin (SCI), and cyanidin-3-glucoside (C3G) were first used to stabilize Pickering emulsions. The physicochemical properties and stability of curcumin encapsulated or not in Pickering emulsions were explored. Results showed that glycosylation and C3G reduced surface and interfacial tension on protein surfaces and inhibited the aggregation of emulsion droplets, thereby reducing the emulsion's particle size. WPI-SCI/C3G stabilized Pickering emulsion had the best stability. The CLSM results showed that the WPI-SCI and WPI-SCI/C3G stabilized emulsions were uniformly dispersed, suggesting that glycosylation and the interaction between protein and C3G enhanced the adsorption capacity of the interfacial protein and improved the stability of the Pickering emulsion. The retention rates of curcumin-loaded WPI-SCI- (67.34 %) and WPI-SCI/C3G- (77.07 %) stabilized Pickering emulsions on day 8 of storage were higher than those in WPI- (33.97 %) and WPI/C3G- (37.02 %) stabilized emulsions, and the degradation half-life was also extended from 7 days to >15 days. These findings provide a theoretical basis for the application of WPI Pickering emulsion and indicate a useful means for the delivery of bioactive components.
Collapse
Affiliation(s)
- Xiaoya Tao
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Cheng Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yaochang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Gang Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China.
| |
Collapse
|
23
|
Zioga M, Papantonopoulou G, Evageliou V. High internal phase emulsions and edible films with high methoxyl pectin and pea protein isolate or sodium caseinate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
24
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Valorizing protein-polysaccharide conjugates from sugar beet pulp as an emulsifier. Int J Biol Macromol 2023; 226:679-689. [PMID: 36436597 DOI: 10.1016/j.ijbiomac.2022.11.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 μm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | | | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
25
|
Zhang F, Shen R, Xue J, Yang X, Lin D. Characterization of bacterial cellulose nanofibers/soy protein isolate complex particles for Pickering emulsion gels: The effect of protein structure changes induced by pH. Int J Biol Macromol 2023; 226:254-266. [PMID: 36460250 DOI: 10.1016/j.ijbiomac.2022.11.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
In this work, the influence of soy protein isolated at different pH values (1-9) on the self-assembly behaviors of bacterial cellulose nanofibers/soy protein isolate (BCNs/SPI) colloidal particles via anti-solvent precipitation were investigated. The results showed that the formation of BCNs/SPI at pH values of 1-5 was mainly driven by electrostatic interaction, while the formation of those at pH values of 5-9 was driven by weak molecular interactions including hydrogen bonding and steric-hindrance effect. The FTIR demonstrated that the conformation of protein involved a transition from order to disorder at the level of secondary structure as pH values were away from the isoelectric point. The fluorescence spectroscopy and UV-vis adsorption spectroscopy indicated that hydrophobic region of SPI at pH value of 5 displayed more exposed as compared with that at pH values away from the isoelectric point. The changes in structure conformation of SPI induced by pH values led to the changes in properties of the BCNs/SPI colloidal particles including particle size, microstructure, crystallinity, hydrophily, thermal stability, and rheological properties. Furthermore, the structures of BCNs/SPI colloidal particles at different pH values significantly affected the stability of Pickering emulsion gels stabilized by the corresponding complex colloidal particles. This study provided a theoretical basis for the design of food-grade Pickering emulsion gels stabilized by BCNs/SPI complex colloidal particles.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Xue
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
26
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|