1
|
Singh B, Soni SK, Vaish S, Mathur P, Garg N. Immobilization of microbial multienzyme preparation on calcium alginate beads as well as lyophilization with mosambi peel matrix improved its shelf-life and stability. Folia Microbiol (Praha) 2024; 69:383-393. [PMID: 37498405 DOI: 10.1007/s12223-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The purpose of the current study was to evaluate the functional activity and storage viability (at 4 °C and 35 °C) of an immobilized as well as lyophilized multienzyme, viz., pectinase, cellulase, and amylase (PCA) that was produced by Bacillus subtilis NG105 under solid state fermentation (SSF) at 35 ℃ for 10 days using mosambi peel as a substrate. After SSF, the culture media was divided into two aliquots. From the first aliquot, the produced ME was extracted, precipitated, and further immobilized on calcium alginate beads (MEICA). In order to immobilize on mosambi peel matrix, the second aliquot was mixed with acetone and subsequently lyophilized (MELMP). Thus, ready MEICA and MELMP extracted 87.5 and 91.5% juice from mango pulp, respectively. In the reusability study, after 5 cycles, MEICA exhibited 23.8%, 24.4%, and 36.5% PCA activity, respectively. The PCA activity of MEICA and MELMP was examined after 60 days of storage at 4 ℃. The result revealed that the PCA for MEICA declined from 100 to 66%, 58.2%, and 64.5%, respectively, while for MELMP, it dropped from 100 to 84.2%, 82.1%, and 69.7%, respectively. Further, after 60 days of storage, the reduction of total protein content (TPC) in free multienzyme (FME), MEICA, and MELMP was 92.2%, 91.5%, and 36.3% observed, respectively. In the localization study, the maximum levels of multienzyme activity were found in cell exudates. This study demonstrated that immobilizing of multienzyme through lyophilization on waste substrates like mosambi peel boosted its stability and shelf-life along with greatly reducing the cost of products.
Collapse
Affiliation(s)
- Balvindra Singh
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 227105, India
| | - Sumit K Soni
- Crop Improvement and Biotechnology Division, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| | - Supriya Vaish
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
| | - Priti Mathur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 227105, India
| | - Neelima Garg
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| |
Collapse
|
2
|
Adetunji AI, Olaniran AO. Biocatalytic Profiling of Free and Immobilized Partially Purified Alkaline Protease from an Autochthonous Bacillus aryabhattai Ab15-ES. REACTIONS 2023. [DOI: 10.3390/reactions4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Partially purified alkaline protease produced by an indigenous bacterial strain, Bacillus aryabhattai Ab15-ES, was insolubilized in alginate beads using an entrapment technique. Maximum entrapped enzyme activities of 68.76% and 71.06% were recorded at optimum conditions of 2% (w/v) sodium alginate and 0.3 M calcium chloride. Biochemical profiling of free and immobilized proteases was investigated by determining their activity and stability as well as kinetic properties. Both enzyme preparations exhibited maximum activity at the optimum pH and temperature of 8.0 and 50 °C, respectively. However, in comparison to the free enzyme, the immobilized protease showed improved pH stability at 8.0–9.0 and thermal stability at 40–50 °C. In addition, the entrapped protease exhibited a higher Vmax and increased affinity to the substrate (1.65-fold) than the soluble enzyme. The immobilized protease was found to be more stable than the free enzyme, retaining 80.88% and 38.37% of its initial activity when stored at 4 °C and 25 °C, respectively, for 30 d. After repeated use seven times, the protease entrapped in alginate beads maintained 32.93% of its original activity. These findings suggest the efficacy and sustainability of the developed immobilized catalytic system for various biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
- Department of Biological Sciences, Summit University, Offa 250101, Nigeria
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9031, South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
3
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Enhanced Stability of β-Agarase Immobilized on Streptavidin-Coated Fe 3O 4 Nanoparticles: Effect of Biotin Linker Length. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi214122, China
| |
Collapse
|
4
|
The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the production of ethanol, starches are converted into reducing sugars by liquefaction and saccharification processes, which mainly use soluble amylases. These processes are considered wasteful operations as operations to recover the enzymes are not practical economically so immobilizations of amylases to perform both processes appear to be a promising way to obtain more stable and reusable enzymes, to lower costs of enzymatic conversions, and to reduce enzymes degradation/contamination. Although many reviews on enzyme immobilizations are found, they only discuss immobilizations of α-amylase immobilizations on nanoparticles, but other amylases and support types are not well informed or poorly stated. As the knowledge of the developed supports for most amylase immobilizations being used in starch hydrolysis is important, a review describing about their preparations, characteristics, and applications is herewith presented. Based on the results, two major groups were discovered in the last 20 years, which include conventional and magnetic-based supports. Furthermore, several strategies for preparation and immobilization processes, which are more advanced than the previous generation, were also revealed. Although most of the starch hydrolysis processes were conducted in batches, opportunities to develop continuous reactors are offered. However, the continuous operations are difficult to be employed by magnetic-based amylases.
Collapse
|
5
|
Gupta N, Beliya E, Paul JS, Jadhav S. Nanoarmoured α-amylase: A route leading to exceptional stability, catalysis and reusability for industrial applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, Sharma P, Kumar S, Lam S, Nadda AK. Mechano-chemical and biological energetics of immobilized enzymes onto functionalized polymers and their applications. Bioengineered 2022; 13:10518-10539. [PMID: 35443858 PMCID: PMC9208500 DOI: 10.1080/21655979.2022.2062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Changlei Xia
- Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry UniversityCo-Innovation, Nanjing,Jiangsu, China
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - SuShiung Lam
- Higher Institution Centre of Excellence (Hicoe), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
7
|
Sharma A, Thatai KS, Kuthiala T, Singh G, Arya SK. Employment of polysaccharides in enzyme immobilization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Nazarova EA, Yushkova ED, Ivanets AI, Prozorovich VG, Krivoshapkin PV, Krivoshapkina EF. α‐Amylase Immobilization on Ceramic Membranes for Starch Hydrolysis. STARCH-STARKE 2021. [DOI: 10.1002/star.202100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena A. Nazarova
- SCAMT Institute ITMO University Lomonosova Street 9 St. Petersburg 191002 Russian Federation
| | - Ekaterina D. Yushkova
- SCAMT Institute ITMO University Lomonosova Street 9 St. Petersburg 191002 Russian Federation
| | - Andrei I. Ivanets
- Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus Surganova Street, 9/1 Minsk 220072 Belarus
| | - Vladimir G. Prozorovich
- Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus Surganova Street, 9/1 Minsk 220072 Belarus
| | - Pavel V. Krivoshapkin
- SCAMT Institute ITMO University Lomonosova Street 9 St. Petersburg 191002 Russian Federation
| | - Elena F. Krivoshapkina
- SCAMT Institute ITMO University Lomonosova Street 9 St. Petersburg 191002 Russian Federation
| |
Collapse
|
9
|
Zhang C, Zhang F, Wang Y, Shi X, Fan R, Ni L. Ultrasonic and enzymatic pretreatments of Monascus fermentation byproduct for a sustainable production of Bacillus subtilis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3836-3842. [PMID: 33336368 DOI: 10.1002/jsfa.11018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monascus fermentation byproduct (MFB) is a biowaste generated after food colorants are extracted. Using MFB to produce probiotics (Bacillus subtilis) is a sustainable way for the entire production to be used as food or animal feed additives. However, due to the rigidity of the Monascus mycelium cell wall, B. subtilis cannot sufficiently utilize the nutrients in MFB, leading to low biomass production efficiency. We studied the effects of ultrasonic treatment, papain, β-glucanase, and chitosanase, and their combinations on improving the levels of soluble components from MFB. The effects of these treatments on mycelium cell walls were visualized using scanning electron microscopy, and their influence on B. subtilis production was analyzed. RESULTS Ultrasonic treatment increased the soluble components by 210 g kg-1 , including 50 g kg-1 protein and 120 g kg-1 carbohydrates. An enzyme mixture increased the soluble components by 160 g kg-1 , including 30 g kg-1 protein and 90 g kg-1 carbohydrates. The combination of the two methods achieved the highest increase of soluble components (up to 400 g kg-1 ) leading to a maximum B. subtilis production of 1 × 1011 colony-forming unit mL-1 . This yield was about 20 times greater than that using untreated MFB and about eight times greater than treatments using only ultrasonic or enzymatic methods. CONCLUSION The productivity of B. subtilis production using MFB as the sole medium can be greatly improved by ultrasound or enzymes, which cause the release of intercellular components or cell wall components. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| | - Feipeng Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| | - Yang Wang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| | - Xiangzhu Shi
- R & D Department, Fujian Xinminke Biotechnology Development Company, Fuzhou, China
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| |
Collapse
|
10
|
Long J, Li X, Liu X, Jin Z, Xie Z, Xu X, Lu C. Preparation of Streptavidin-Coated Magnetic Nanoparticles for Specific Immobilization of Enzymes with High Activity and Enhanced Stability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c03281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiaoxiao Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xueming Xu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
11
|
Statistical optimization of amylase production and its purification from a palm wine isolate Bacillus sp., Q-164. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Karagoz P, Mandair R, Manayil JC, Lad J, Chong K, Kyriakou G, Lee AF, Wilson K, Bill RM. Purification and immobilization of engineered glucose dehydrogenase: a new approach to producing gluconic acid from breadwaste. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:100. [PMID: 32514312 PMCID: PMC7268246 DOI: 10.1186/s13068-020-01735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production. Contemporary approaches include the use of immobilized enzymes that can be harnessed to produce high-value chemicals from waste. RESULTS In this study, an engineered glucose dehydrogenase (GDH) was optimized for gluconic acid (GA) production. Sulfolobus solfataricus GDH was expressed in Escherichia coli. The K m and V max values for recombinant GDH were calculated as 0.87 mM and 5.91 U/mg, respectively. Recombinant GDH was immobilized on a hierarchically porous silica support (MM-SBA-15) and its activity was compared with GDH immobilized on three commercially available supports. MM-SBA-15 showed significantly higher immobilization efficiency (> 98%) than the commercial supports. After 5 cycles, GDH activity was at least 14% greater than the remaining activity on commercial supports. Glucose in bread waste hydrolysate was converted to GA by free-state and immobilized GDH. After the 10th reuse cycle on MM-SBA-15, a 22% conversion yield was observed, generating 25 gGA/gGDH. The highest GA production efficiency was 47 gGA/gGDH using free-state GDH. CONCLUSIONS This study demonstrates the feasibility of enzymatically converting BWH to GA: immobilizing GDH on MM-SBA-15 renders the enzyme more stable and permits its multiple reuse.
Collapse
Affiliation(s)
- Pinar Karagoz
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - Ravneet Mandair
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | | | - Jai Lad
- European Bioenergy Research Institute (EBRI), Aston University, Birmingham, B4 7ET UK
| | - Katie Chong
- European Bioenergy Research Institute (EBRI), Aston University, Birmingham, B4 7ET UK
| | - Georgios Kyriakou
- Department of Chemical Engineering, University of Patras, 265 04 Patras, Greece
| | - Adam F. Lee
- Applied Chemistry & Environmental Science, School of Science, RMIT University, Melbourne, VIC 3000 Australia
| | - Karen Wilson
- Applied Chemistry & Environmental Science, School of Science, RMIT University, Melbourne, VIC 3000 Australia
| | - Roslyn M. Bill
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
13
|
de Souza IA, Orsi DC, Gomes AJ, Lunardi CN. Enzymatic hydrolysis of starch into sugars is influenced by microgel assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 22:e00342. [PMID: 31080766 PMCID: PMC6500924 DOI: 10.1016/j.btre.2019.e00342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022]
Abstract
The use of alginate and chitosan polymer in the immobilization of Aspergillus oryzae ATCC 3940 fungal crude enzyme extract (CEE) amylase was presented. The assembly results change in the application of optimal pH and temperature hydrolysis to convert starch to sugar. Bead arrangement in three microgel supports: the internal support phase (IP), the external support phase (EP), and the internal and external support phase (UP). The best results were obtained using IP and EP. Reusing beads evaluated the stability of immobilized enzymes on IP support, remained active and bound during three cycles of reuse. For free and immobilized (IP) activity showed pH ranged from 5.0 to 7.0; optimum thermal enzymatic greater activity at 45 °C. The method of building the microgel influencing sugar reduction, in a single-step way to immobilize crude fungal amylase extracts can be used in industry.
Collapse
Affiliation(s)
| | | | | | - Claure N. Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, Universidade de Brasília, Centro Metropolitano, Brasília 72220-275, DF, Brazil
| |
Collapse
|
14
|
Mardani T, Khiabani MS, Mokarram RR, Hamishehkar H. Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int J Biol Macromol 2018; 120:354-360. [DOI: 10.1016/j.ijbiomac.2018.08.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
|
15
|
Wong JX, Rehm BHA. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018; 19:4098-4112. [DOI: 10.1021/acs.biomac.8b01093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jin Xiang Wong
- Institute of Fundamental Sciences, Massey University, Private Bag, 11222 Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, 4111 Queensland, Australia
| |
Collapse
|
16
|
Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles. Food Chem 2018; 239:276-286. [DOI: 10.1016/j.foodchem.2017.06.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 11/22/2022]
|
17
|
Ramírez-Tapias YA, Lapasset Laumann AS, Britos CN, Rivero CW, Trelles JA. Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix. 3 Biotech 2017; 7:380. [PMID: 29109925 PMCID: PMC5658297 DOI: 10.1007/s13205-017-1010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Enzyme immobilization using hydrogels is a low-cost and effective system for the degradation of bulk pectin derived from orange industry residues. Polygalacturonases obtained from four different bacterial strains of Streptomyces genus were immobilized in alginate gel and assayed for pectin hydrolysis. The enzyme from Streptomyces halstedii ATCC 10897 proved to be superior and more stable within the alginate matrix. Furthermore, a new strategy to improve alginate bead stability using a mixture of calcium and strontium is reported; this technique allowed enhancing the mechanical properties by combining different amounts of these cations for ionotropic gelation. The developed biocatalyst showed maximum hydrolysis at 2 h, generating 1.54 mg/mL of reducing sugars and decreasing the viscosity of polygalacturonic acid by 98.9%. Reusability up to 29 successive reactions (58 h) demonstrated a very stable performance. The heterogeneous biocatalyst was used in the enzymatic saccharification of orange peel albedo (2.23 mg/mL) for adding value to this agro-waste by industrial exploitation.
Collapse
Affiliation(s)
- Yuly A. Ramírez-Tapias
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Cuidad Autónoma de Buenos Aires (CABA), Buenos Aires Argentina
| | - Aldana S. Lapasset Laumann
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Claudia N. Britos
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Cintia W. Rivero
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Cuidad Autónoma de Buenos Aires (CABA), Buenos Aires Argentina
| | - Jorge A. Trelles
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Cuidad Autónoma de Buenos Aires (CABA), Buenos Aires Argentina
| |
Collapse
|
18
|
Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.02.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Pervez S, Aman A, Ul Qader SA. Role of two polysaccharide matrices on activity, stability and recycling efficiency of immobilized fungal amyloglucosidase of GH15 family. Int J Biol Macromol 2017; 96:70-77. [DOI: 10.1016/j.ijbiomac.2016.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
|
20
|
Dutta P, Deb A, Majumdar S. Optimization of the Medium for the Production of Extracellular Amylase by the Pseudomonas stutzeri ISL B5 Isolated from Municipal Solid Waste. Int J Microbiol 2016; 2016:4950743. [PMID: 28096816 PMCID: PMC5206451 DOI: 10.1155/2016/4950743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
The management of municipal solid waste is one of the major problems of the present world. The use of microbial enzymes for sustainable management of the solid waste is the need of the time. In the present study, we have isolated a potent amylase producing strain (ISL B5) from municipal solid waste. The strain was identified as Pseudomonas stutzeri (P. stutzeri) both biochemically and by 16S rDNA sequencing. The optimization studies revealed that the strain ISL B5 exhibited maximum activity in the liquid media containing 2% starch (2.77 U/ml), 0.8% peptone (2.77 U/ml), and 0.001% Ca2+ ion (2.49 U/ml) under the pH 7.5 (2.59 U/ml), temperature 40°C (2.63 U/ml), and 25 h of incubation period (2.49 U/ml). The highest activity of crude enzyme has also been optimized at the pH 8 (2.49 U/ml).
Collapse
Affiliation(s)
- Prajesh Dutta
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, University of Gour Banga, Malda, West Bengal 732103, India
| | - Akash Deb
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, University of Gour Banga, Malda, West Bengal 732103, India
| | - Sukanta Majumdar
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany, University of Gour Banga, Malda, West Bengal 732103, India
| |
Collapse
|
21
|
Guleria S, Walia A, Chauhan A, Shirkot CK. Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein. 3 Biotech 2016; 6:208. [PMID: 28330279 PMCID: PMC5039138 DOI: 10.1007/s13205-016-0519-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 11/01/2022] Open
Abstract
An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 °C, pH 8.0 for 5 min) was 3580 µg/ml/min. The results of immobilization with various matrices revealed that 3 % calcium alginate (2829.92 µg/ml/min), 2 % agar (2600 µg/ml/min) and 10 % polyacrylamide (5698.99 µg/ml/min) were optimum concentrations for stable bead formation. Immobilized enzyme reusability results indicated that calcium alginate, agar and polyacrylamide beads retained 25.63, 22.05 and 34.04 % activity in their fifth repeated cycle, respectively. In cell immobilization technique, the free movement of microorganisms is restricted in the process, and a semi-continuous system of fermentation can be used. In the present work, this technique has been used for alkaline protease production using different matrices. Polyacrylamide (10 %) was found with the highest total alkaline protease titer, i.e., 24,847 µg/ml/min semi-continuously for 18 days as compared to agar (total enzyme titer: 5800 in 10 days) and calcium alginate (total enzyme titer: 13,010 in 15 days). This present study reported that polyacrylamide (10 %) among different matrices has maximum potential of immobilization of B. amyloliquefaciens SP1 and its detergent stable alkaline protease with effective application in bloodstain removal.
Collapse
|
22
|
Konovalova V, Guzikevich K, Burban A, Kujawski W, Jarzynka K, Kujawa J. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane. Carbohydr Polym 2016; 152:710-717. [PMID: 27516322 DOI: 10.1016/j.carbpol.2016.07.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/10/2016] [Accepted: 07/17/2016] [Indexed: 01/10/2023]
Abstract
In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme.
Collapse
Affiliation(s)
- Viktoriia Konovalova
- Department of Chemistry, National University of Kyiv-Mohyla Academy, 2 Skovoroda Street, 04070 Kiev, Ukraine
| | - Kateryna Guzikevich
- Department of Chemistry, National University of Kyiv-Mohyla Academy, 2 Skovoroda Street, 04070 Kiev, Ukraine
| | - Anatoliy Burban
- Department of Chemistry, National University of Kyiv-Mohyla Academy, 2 Skovoroda Street, 04070 Kiev, Ukraine
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Karolina Jarzynka
- Nicolaus Copernicus University in Toruń, 11 Gagarina Street, 87-100 Toruń, Poland
| | - Joanna Kujawa
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
23
|
Bruna F, Pereira MG, Polizeli MDLTM, Valim JB. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18832-18842. [PMID: 26259168 DOI: 10.1021/acsami.5b05668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The design of new biocatalysts through the immobilization of enzymes, improving their stability and reuse, plays a major role in the development of sustainable methodologies toward the so-called green chemistry. In this work, α-amylase (AAM) biocatalyst based on Mg3Al-layered double-hydroxide (LDH) matrix was successfully developed with the adsorption method. The adsorption process was studied and optimized as a function of time and enzyme concentration. The biocatalyst was characterized, and the mechanism of interaction between AAM and LDH, as well as the immobilization effects on the catalytic activity, was elucidated. The adsorption process was fast and irreversible, thus yielding a stable biohybrid material. The immobilized AAM partially retained its enzymatic activity, and the biocatalyst rapidly hydrolyzed starch in an aqueous solution with enhanced efficiency at intermediate loading values of ca. 50 mg/g of AAM/LDH. Multiple attachments through electrostatic interactions affected the conformation of the immobilized enzyme on the LDH surface. The biocatalyst was successfully stored in its dry form, retaining 100% of its catalytic activity. The results reveal the potential usefulness of a LDH compound as a support of α-amylase for the hydrolysis of starch that may be applied in industrial and pharmaceutical processes as a simple, environmentally friendly, and low-cost biocatalyst.
Collapse
Affiliation(s)
- Felipe Bruna
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| | - Marita G Pereira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| | - Maria de Lourdes T M Polizeli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| | - João B Valim
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto and ‡Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Avenida Bandeirantes 3900, Monte Alegre, 14.040-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Ramanathan M, Muthuramalingam R, Lakshmanan R. The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The Theory of the Non-Steady State. J Membr Biol 2015; 248:1127-35. [PMID: 26265446 DOI: 10.1007/s00232-015-9829-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
In this paper, mathematical model pertaining to the decomposition of enzyme-substrate complex in an artificial membrane is discussed. Here the transport through liquid membrane phases is considered. The model involves the system of non-linear reaction diffusion equations. The non-linear terms in this model are related to Michaelis-Menten reaction scheme. Approximate analytical expressions for the concentrations of substrate and product have been derived by solving the system of non-linear reaction diffusion equations using new approach of homotopy perturbation method for all values of Michaelis-Menten constant, diffusion coefficient, and rate constant. Approximate flux expression for substrate and product for non-steady-state conditions are also reported. A comparison of the analytical approximation and numerical simulation is also presented. The results obtained in this work are valid for the entire solution domain.
Collapse
Affiliation(s)
- Malinidevi Ramanathan
- Department of Mathematics, The Standard Fireworks Rajaratnam College for Women, Sivakasi, Tamil Nadu, 626 123, India.
| | - Rasi Muthuramalingam
- Department of Mathematics, Sethu Institute of Technology, Kariapatti, Tamil Nadu, 626 115, India.
| | - Rajendran Lakshmanan
- Department of Mathematics, Sethu Institute of Technology, Kariapatti, Tamil Nadu, 626 115, India.
| |
Collapse
|
25
|
Jain M, Sebatini M, Sharmila G, Muthukumaran C, Baskar G, Tamilarasan K. Fabrication of a Chitosan-Coated Magnetic Nanobiocatalyst for Starch Hydrolysis. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201400493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Kumar GS, Rather GM, Gurramkonda C, Reddy BR. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis. Biotechnol Appl Biochem 2015; 63:57-66. [DOI: 10.1002/bab.1350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022]
Affiliation(s)
| | - Gulam Mohmad Rather
- Department of Chemistry; Indian Institute of Technology Delhi; New Delhi India
| | - Chandrasekhar Gurramkonda
- Department of Chemical; Biochemical and Environmental; Engineering; Technology Research Centre; Centre for Advanced Sensor Technology; University of Maryland Baltimore County (UMBC); Baltimore MD USA
| | | |
Collapse
|
27
|
Bezerra CS, de Farias Lemos CMG, de Sousa M, Gonçalves LRB. Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. J Appl Polym Sci 2015. [DOI: 10.1002/app.42125] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilla Salviano Bezerra
- Departamento de Engenharia Química; Universidade Federal do Ceará; Campus do Pici, Bloco 709, Fortaleza Ceará 60440-554 Brazil
| | | | - Marylane de Sousa
- Departamento de Engenharia Química; Universidade Federal do Ceará; Campus do Pici, Bloco 709, Fortaleza Ceará 60440-554 Brazil
| | - Luciana Rocha Barros Gonçalves
- Departamento de Engenharia Química; Universidade Federal do Ceará; Campus do Pici, Bloco 709, Fortaleza Ceará 60440-554 Brazil
| |
Collapse
|
28
|
Zhao L, Fu Y, Chen C, Yang W, Hu Q. Ultrasonic-Assisted Extraction and Chromatography Separation of Polysaccharides from the Base ofFlammulina velutipesStipe. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.964728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Detoxification of hexavalent chromate by Amphibacillus sp. KSUCr3 cells immobilised in silica-coated magnetic alginate beads. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0373-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Maalej H, Hmidet N, Ghorbel-Bellaaj O, Nasri M. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0862-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Temoçin Z. Immobilization ofα-amylase on reactive modified fiber and its application for continuous starch hydrolysis in a packed bed bioreactor. STARCH-STARKE 2013. [DOI: 10.1002/star.201300132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zülfikar Temoçin
- Faculty of Arts and Sciences; Department of Chemistry; Kırıkkale University; Yahşihan Kırıkkale Turkey
| |
Collapse
|
32
|
Kalpana BJ, Pandian SK. Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting α-amylase from a marine bacterium Bacillus subtilis S8-18. J Basic Microbiol 2013; 54:802-11. [PMID: 23712833 DOI: 10.1002/jobm.201200732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Abstract
A halotolerant α-amylase having the ability of digesting the insoluble raw starches was characterized from Bacillus subtilis S8-18, a marine sediment isolate from Palk Bay region. The electrophoresis techniques unveiled that the α-amylase was indeed a monomer with a molecular weight of 57 kDa. The optimum temperature and pH for the enzyme activity were 60 °C and 6.0 respectively. The enzyme was highly stable for 24 h over a wide range of pH from 4.0 to 12.0 by showing 84-94% activity. Interestingly, by retaining 72% activity even after 24 h, the enzyme also showed tolerance towards 28% NaCl. The α-amylase retained a minimum of 93% residual activity in 1 mM concentration for the selected divalent metal ions. The enzyme was found to be chelator resistant as it remained unaffected by 1 mM of EDTA and exhibited 96% activity even at 5 mM concentration. Furthermore, though 1% SDS caused remarkable reduction (68%) in amylase activity, the enzyme showed tolerance towards other detergents (1% of Triton-X and Tween 80) with 85% activity. Additionally, the α-amylase enzyme is capable of hydrolyzing the insoluble raw starch substrates which was evident from the scanning electron microscopic (SEM) and spectrophotometric analyses.
Collapse
Affiliation(s)
- Balu Jancy Kalpana
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | |
Collapse
|
33
|
Immobilization of α-Amylase onto Luffa operculata Fibers. Enzyme Res 2013; 2013:803415. [PMID: 23606948 PMCID: PMC3626310 DOI: 10.1155/2013/803415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
A commercial amylase (amy) was immobilized by adsorption onto Luffa operculata fibers (LOFs). The derivative LOF-amy presented capacity to hydrolyze starch continuously and repeatedly for over three weeks, preserving more than 80% of the initial activity. This system hydrolyzed more than 97% of starch during 5 min, at room temperature. LOF-amy was capable to hydrolyze starch from different sources, such as maize (93.96%), wheat (85.24%), and cassava (79.03%). A semi-industrial scale reactor containing LOF-amy was prepared and showed the same yield of the laboratory-scale system. After five cycles of reuse, the LOF-amy reactor preserved over 80% of the initial amylase activity. Additionally, the LOF-amy was capable to operate as a kitchen grease trap component in a real situation during 30 days, preserving 30% of their initial amylase activity.
Collapse
|
34
|
Optimization and Immobilization of Purified Labeo rohita Visceral Protease by Entrapment Method. Enzyme Res 2013; 2013:874050. [PMID: 23533718 PMCID: PMC3600187 DOI: 10.1155/2013/874050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022] Open
Abstract
The purified fish visceral protease enzyme was immobilized by using various concentrations of sodium alginate and calcium chloride to optimize the best concentration for the formation of the beads. Then it was characterized by assaying the optimal pH, temperature, storage stability and reusability. The results on immobilization with sodium alginate and calcium chloride showed that a combination of 2% sodium alginate and 0.3 M calcium chloride weas found to be the optimum concentration for the formation of spherical and stable beads, this gave a maximal entrapped activity of 48.31%, and there was no change in the optimum pH 8.0 and temperature 40°C of protease before and after entrapment. The results on stability and reusability indicated that it was stable at 4°C retaining 100% residual activity after 5 days of storage and 67% loss of activity after ten days of storage and it retained 100% residual activity on the first reuse, 75% residual activity on the second reuse, 25% residual activity on the third use and complete loss in the activity on the fourth reuse.
Collapse
|
35
|
Abstract
A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized α-amylase were used as a model for this study. Corn starch hydrolysis was carried out at a constant pH of 5.5 and temperature of 50°C. The substrate flow rate was ranging from 0.2 to 5.0 mL/min, substrate initial concentrations 1 to 100 g/L. α-amylase was immobilized on to calcium alginate hydrogel beads of 2 mm average diameter. In this work Michaelis-Menten kinetics have been considered. The effect of substrate flow rate (i.e., residence time) and initial concentration on intraparticle diffusion have been taken into consideration. The performance of the system is found to be affected by the substrate flow rate and initial concentrations. The reaction is controlled by the reaction rate. The model equation was a nonlinear second order differential equation simulated based on the experimental data for steady state condition. The simulation was achieved numerically using FINITE ELEMENTS in MATLAB software package. The simulated results give satisfactory results for substrate and product concentration profiles within the biocatalyst bead.
Collapse
|
36
|
Yang W, Fang Y, Liang J, Hu Q. Optimization of ultrasonic extraction of Flammulina velutipes polysaccharides and evaluation of its acetylcholinesterase inhibitory activity. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.11.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Schons PF, Lopes FCR, Battestin V, Macedo GA. Immobilization ofPaecilomyces variotiitannase and properties of the immobilized enzyme. J Microencapsul 2011; 28:211-9. [DOI: 10.3109/02652048.2011.552988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Isozymes of α-amylases from newly isolated Bacillus thuringiensis CKB19: Production from immobilized cells. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0218-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Ali Khan A, Alzohairy MA. Recent Advances and Applications of Immobilized Enzyme Technologies: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjbsci.2010.565.575] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Zhou ZD, Li GY, Li YJ. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate–chitosan beads. Int J Biol Macromol 2010; 47:21-6. [DOI: 10.1016/j.ijbiomac.2010.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|