1
|
Kim S, Hwang HS. Understanding the oxidation of hemp seed oil and improving its stability by encapsulation into protein microcapsules. J Food Sci 2024; 89:6321-6334. [PMID: 39183680 DOI: 10.1111/1750-3841.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Hemp seed oil (HSO) is an edible oil low in saturated fat and rich in polyunsaturated fatty acids (PUFAs) such as omega-6 and omega-3 fatty acids. When they are in contact with oxygen in the air, PUFAs are easily oxidized even at room temperature due to the multiple double bonds that facilitate the formation of reactive radicals when exposed to air. This study aimed to evaluate the oxidation of HSO under different conditions and to examine the encapsulation of HSO with zein as a new method to prevent its oxidation. Peak time of weight gain monitored with thermogravimetric analysis and oxidation products detected with high-performance liquid chromatography were used to determine the oxidation of fatty acids and HSO. It was found that the thermal decomposition of fatty acids prevailed over autoxidation beyond a certain temperature (at about 100-140°C). Encapsulating HSO into zein microcapsules, which isolates oil droplets from contact with oxygen in the air, effectively prevented its oxidation. The induction period of HSO oxidation was delayed by 7.3-9.3 times with the zein-to-HSO ratio of 0.5-1.25. In contrast, 0.5% (w/w) α-tocopherol could prolong the induction period up to 2.5 times indicating that the encapsulation method was much more effective than α-tocopherol in preventing the oxidation of HSO. This method may also be applied for other oils susceptible to oxidation such as omega-3 oils. PRACTICAL APPLICATION: This research compares the effects of three schemes that stabilize hemp seed oil from oxidation: (1) lowering temperature to slow down the oxidation reaction, (2) adding antioxidant to deactivate the initiation of oxidation reaction, and (3) encapsulating oil droplets into protein microcapsules to keep the oil from contact with oxygen. The experimental result showed the encapsulation of oils in protein microcapsules is more effective than the other two. The stabilization approaches applied to hemp seed oil can also be applied to other edible oils that are unstable.
Collapse
Affiliation(s)
- Sanghoon Kim
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Plant Polymer Research, Peoria, Illinois, USA
| | - Hong-Sik Hwang
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research, Peoria, Illinois, USA
| |
Collapse
|
2
|
Wang H, Li S, Wang S, Zhou J, Liu C, Chen C, Xie J. Development of controlled-release antioxidant poly (lactic acid) bilayer active film with different distributions of α-tocopherol and its application in corn oil preservation. Food Chem 2024; 439:138094. [PMID: 38061299 DOI: 10.1016/j.foodchem.2023.138094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024]
Abstract
The antioxidant poly (lactic acid) bilayer active films with a different distribution of α-tocopherol (TOC) in two layers (outer layer/inner layer: 0%/6%, 2%/4%, 3%/3%, 4%/2%, 6%/0%) were developed. The effects of TOC distribution on the structural, physicochemical, mechanical, antioxidant and release properties of the films and their application in corn oil packaging were investigated. The different distributions of TOC showed insignificant effects on the color, transparency, tensile strength and oxygen and water vapor barrier properties of the films, but it affected the release behavior of TOC from the films into 95% ethanol and the oxidation degree of corn oil. The film with higher TOC in outer layer showed a slower release rate. The corn oil packaged by the film containing 4% TOC in outer layer and 2% TOC in inner layer exhibited the best oxidative stability. This concept showed a great potential to develop controlled-release active films for food packaging.
Collapse
Affiliation(s)
- Haodong Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shaowei Li
- Jiage Food (China) Co., LTD, Suzhou 215400, China
| | - Sai Wang
- Jiage Food (China) Co., LTD, Suzhou 215400, China
| | - Jiaxin Zhou
- Jiage Food (China) Co., LTD, Suzhou 215400, China
| | - Changshu Liu
- Jiage Food (China) Co., LTD, Suzhou 215400, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
3
|
Khan A, Ezati P, Rhim JW. Chitosan/Starch-Based Active Packaging Film with N, P-Doped Carbon Dots for Meat Packaging. ACS APPLIED BIO MATERIALS 2023; 6:1294-1305. [PMID: 36877603 DOI: 10.1021/acsabm.3c00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Nitrogen, phosphorus-doped green-tea-derived carbon dots (NP-CDs) incorporated chitosan/starch (Chi/St) based multifunctional nanocomposite films were prepared. FE-SEM images verified a homogeneous distribution of CDs with minimum aggregation in the fabricated films. Incorporating NP-CDs led to enhanced UV-light blocking (93.1% of UV-A and ∼99.7% of UV-B) without significantly affecting the films' water transparency and water vapor permeability. Besides, incorporating NP-CDs into the Chi/St films enhanced antioxidant activity (98.0% for ABTS and 71.4% for DPPH) and displayed strong antibacterial activity against L. monocytogenes, E. coli, and S. aureus. Wrapping the meat in the prepared film and storing it at 20 °C has been shown to reduce bacterial growth (less than 2.5 Log CFU/g after 48 h) without significantly altering the actual color of the wrapped meat. The Chi/St film loaded with NP-CD has high potential as an active packaging material to ensure safety and extend the shelf life of meat products.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Poly (α-Dodecyl γ-Glutamate) (PAAG-12) and Polylactic Acid Films Charged with α-Tocopherol and Their Antioxidant Capacity in Food Models. Antioxidants (Basel) 2019; 8:antiox8080284. [PMID: 31390785 PMCID: PMC6720967 DOI: 10.3390/antiox8080284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
Poly (α-dodecyl γ-glutamate) (PAAG-12) was successfully synthesized from poly(γ-glutamic acid) (PGGA) according to Nuclear Magnetic Resonance (NMR) analyses. PAAG-12 films were prepared and enriched with 5% α-tocopherol, with the aim of using them as novel antioxidant active packaging for food applications. Thermogravimetric Analysis (TGA) characterization determined that α-tocopherol improved thermal stability of films, which is beneficial for industrial processing. Polylactic Acid (PLA) films prepared with the same amount of α-tocopherol were used to set a comparative frame and both types of films were applied to two different food models to assess their protective action against oxidation. Water, 50% ethanol (EtOH) and 95% EtOH were used as food simulants and HPLC analyses were performed to determine diffusion and partition coefficients in PLA and the novel polymer, the latter exhibiting slower release rates. Primary oxidation was measured with peroxide value, which revealed that PAAG-12 films with α-tocopherol protected oil-in-water (O/W) emulsions up to 29 days, complying with the Codex Alimentarius.
Collapse
|
5
|
Biswal AK, Saha S. Prolonging food shelf-life by dual actives release from multi-layered polymer particles. Colloids Surf B Biointerfaces 2018; 175:281-290. [PMID: 30551015 DOI: 10.1016/j.colsurfb.2018.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
Biodegradable polymer based 'controlled release packaging' technology has ability to release packaging actives in controlled manner to prolong the food shelf-life. Currently available systems are not sufficiently capable of releasing multiple actives in sustainable fashion. Hence, the purpose of this study was to develop dual actives (antioxidant and antibacterial) loaded multilayered microparticles in one step and to release them at rates suitable for long-term inhibition of bacterial growth as well as lipid oxidation in food. In order to achieve this goal, 2 kinds of multilayered polymer particles made up of PLLA (Poly(l-lactic acid)) and PLGA (Poly(dl-lactic-co-glycolic acid) with varying viscosity were developed using emulsion solvent evaporation method. Surprisingly, low viscous PLGA resulted tri-layered particles (PLGA/PLLA/PLGA: shell/middle/core) instead of bi-layered (PLGA/PLLA: shell/core) particles as observed for high viscous PLGA. The mechanism of formation of tri-layered particles was investigated in detail. The outermost layer consisted of relatively more hydrophilic polymer PLGA along with benzoic acid (antibacterial) and the inner core comprised of hydrophobic polymer PLLA and tocopherol (antioxidant). Release study demonstrated that release rate of dual actives were significantly accelerated from tri-layered particles in comparison to bi-layered one and their release profiles can be well explained with the help of Ridger-Peppas model. Both sets of particles exhibited long-term antibacterial (against both Escherichia coli and Staphylococcus aureus) as well as antioxidant effect over a period of 60 days. The results show for the first time the feasibility of using multilayered microparticles to prolong the food shelf-life by simultaneous release of multiple actives.
Collapse
Affiliation(s)
- Agni Kumar Biswal
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
6
|
Franco P, Aliakbarian B, Perego P, Reverchon E, De Marco I. Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Bahar Aliakbarian
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genova, Italy
- The Axia Institute-Department of Supply Chain Management, Michigan State University, 715 E. Main Street, Suite 115, Midland, Michigan 48640, United States
- The School of Packaging, Michigan State University, East Lansing, Michigan 48824, United States
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genova, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
7
|
Shen L, Chen X, Lee DS, Zhu X, Chen M, Yam KL. Effects of diffusion controlled release of tocopherol on lipid oxidation. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chen X, Chen M, Xu C, Yam KL. Critical review of controlled release packaging to improve food safety and quality. Crit Rev Food Sci Nutr 2018; 59:2386-2399. [PMID: 29553807 DOI: 10.1080/10408398.2018.1453778] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.
Collapse
Affiliation(s)
- Xi Chen
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Mo Chen
- b College of Engineering, QuFu Normal University , Rizhao , Shangdong , China
| | - Chenyi Xu
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Kit L Yam
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
9
|
Chen CW, Xie J, Yang FX, Zhang HL, Xu ZW, Liu JL, Chen YJ. Development of moisture-absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13374] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen-Wei Chen
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation; Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation; Shanghai 201306, China
| | - Fu-Xin Yang
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation; Shanghai 201306, China
| | - Hai-Lin Zhang
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
| | - Zhe-Wei Xu
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
| | - Jin-Liang Liu
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
| | - You-Ji Chen
- College of Food Science and Technology; Shanghai Ocean University; Shanghai 201306, China
| |
Collapse
|
10
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
11
|
|
12
|
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)--challenges and road ahead. Drug Deliv 2014; 22:675-90. [PMID: 24670091 DOI: 10.3109/10717544.2014.896058] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Self-microemulsifying drug delivery system (SMEDDS) has emerged as a vital strategy to formulate poor water soluble compounds for bioavailability enhancement. However, certain limitations are associated with SMEDDS formulations which include in vivo drug precipitation, formulation handling issues, limited lymphatic uptake, lack of predictive in vitro tests and oxidation of unsaturated fatty acids. These limitations restrict their potential usage. Inclusion of polymers or precipitation inhibitors within lipid based formulations helps to maintain drug supersaturation after dispersion. This, thereby, improves the bioavailability and reduces the variability on exposure. Also, formulating solid SMEDDS helps to overcome liquid handling and stability problems. Usage of medium chain triglycerides (MCT) and suitable antioxidants to minimize oxidation of unsaturated fatty acids are few of the steps to overcome the limitations associated with SMEDDS. The review discussed here, in detail, the limitations of SMEDDS and suitable measures that can be taken to overcome them.
Collapse
Affiliation(s)
- Shambhu Dokania
- a Department of Pharmaceutics , NIPER Ahmedabad , C/o B.V. Patel PERD Centre , Ahmedabad , Gujarat , India
| | - Amita K Joshi
- a Department of Pharmaceutics , NIPER Ahmedabad , C/o B.V. Patel PERD Centre , Ahmedabad , Gujarat , India
| |
Collapse
|
13
|
Cozzolino CA, Nilsson F, Iotti M, Sacchi B, Piga A, Farris S. Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf B Biointerfaces 2013; 110:208-16. [DOI: 10.1016/j.colsurfb.2013.04.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/03/2013] [Accepted: 04/28/2013] [Indexed: 01/17/2023]
|
14
|
Lee DS, Yam KL. Effect of tocopherol loading and diffusivity on effectiveness of antioxidant packaging. CYTA - JOURNAL OF FOOD 2013. [DOI: 10.1080/19476337.2012.696281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Ray S, Jin T, Fan X, Liu L, Yam KL. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce. J Food Sci 2013; 78:M276-84. [PMID: 23294122 DOI: 10.1111/1750-3841.12010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
Abstract
A feasibility study was conducted to develop chlorine dioxide (ClO(2) )-releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amounts of PLA (100 and 300 mg), percentages of reactant (5% to 60%), and ratios of sodium chlorite to citric acid (1:2 or 2:1) were prepared using a solvent casting method. The release of ClO(2) from the resultant films was activated by moisture. Increase of reactants in the films produced more ClO(2) while higher PLA content in the films resulted in less release of ClO(2) . The ratio of sodium chlorite to citric acid and activation temperature (22 °C compared with 10 °C) did not affect the ClO(2) release from the films. Antimicrobial efficacy of ClO(2) released from the films was evaluated using grape tomato as a model food. The results indicate that the films were activated by moisture from tomatoes in the package and the released ClO(2) reduced Salmonella spp. and Escherichia coli O157:H7 inoculated on the tomatoes to undetectable levels (<5 colony forming units (CFU)/tomato), achieving more than 3 log reduction. The film-treated tomatoes did not show significant changes in color and texture as compared to controls during storage at 10 °C for 21 d. This study demonstrated the technical feasibility for development of gaseous ClO(2) -releasing packaging system to enhance microbial safety and extend shelf life of fresh produce.
Collapse
Affiliation(s)
- Soumi Ray
- Dept. of Food Science, Rutgers, The State Univ. of New Jersey, 65 Dudley Rd., New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
16
|
Chen X, Lee DS, Zhu X, Yam KL. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3492-3497. [PMID: 22404043 DOI: 10.1021/jf2045813] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper investigated the feasibility of manipulating packaging polymers with various degrees of hydrophobicity to release two antioxidants, tocopherol and quercetin, at rates suitable for long-term inhibition of lipid oxidation in food. For example, one antioxidant can be released at a fast rate to provide short-term/intermediate protection, whereas the other antioxidant can be released at a slower rate to provide intermediate/long-term protection of lipid oxidation. Controlled-release packaging films containing tocopherol and quercetin were produced using ethylene vinyl alcohol (EVOH), ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), and polypropylene (PP) polymers; the release of these antioxidants to 95% ethanol (a fatty food simulant) was measured using UV-vis spectrophotometry, and Fickian diffusion models with appropriate initial and boundary conditions were used to fit the data. For films containing only quercetin, the results show that the release of quercetin was much faster but lasted for a much shorter time for hydrophilic polymers (EVOH and EVA) than for hydrophobic polymers (LDPE and PP). For binary antioxidant films containing tocopherol and quercetin, the results show that tocopherol released more rapidly but for a shorter period of time than quercetin in LDPE and EVOH films, and the difference is more pronounced for LDPE films than EVOH films. The results also show the presence of tocopherol can accelerate the release of quercetin. Although none of the films produced is acceptable for long-term lipid oxidation inhibition, the study provides encouraging results suggesting that acceptable films may be produced in the future using polymer blend films.
Collapse
Affiliation(s)
- Xi Chen
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | | | | | | |
Collapse
|