1
|
Huang Z, Wang Y, McClements DJ, Dong R, Wang Y, Wang Q, Liu H, Yu Q, Xie J, Chen Y. Investigation of the interaction mechanism of citrus pectin-polyphenol-protein complex. Food Chem 2025; 468:142419. [PMID: 39700817 DOI: 10.1016/j.foodchem.2024.142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Citrus pectin is an anionic polysaccharide in citrus, which may improve the stability of citrus juices. This study investigated the influence of citrus pectin on the stability of protein-polyphenol complexes in the citrus juice model system and its interaction mechanism by multispectral and molecular dynamics (MD) simulations. Dynamic light scattering (DLS) and differential scanning calorimetry (DSC) showed that the citrus pectin-proanthocyanidin-zein complex improved the model citrus juices' cloud and thermal stability. Molecular dynamics (MD) simulations suggested that both pectin and proanthocyanidin bound to the U-shaped cavity of the zein molecules. Electrostatic and van der Waals forces were predominant in citrus pectin-zein. In contrast, van der Waals forces predominantly drove in proanthocyanidin-zein. This study indicated that citrus pectin could stabilize juice by delaying the onset of protein-polyphenol haze formation, which may provide new strategies for improving the quality, stability, and nutritional profile of fruit juice systems.
Collapse
Affiliation(s)
- Ziyan Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | | | - Ruihong Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qin Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Huifan Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Lee CR, Lee SJ, Kim TI, Chathuranga K, Lee JS, Kim S, Kim MH, Park WH. Chitosan-gallic acid conjugate edible coating film for perishable fruits. Food Chem 2025; 463:141322. [PMID: 39303471 DOI: 10.1016/j.foodchem.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Approximately 30 % of global agricultural land is used to produce food that is ultimately lost or wasted, making it imperative to explore strategies for mitigating this waste. This study explored the potential of chitosan (CS) derivatives as edible coatings to extend food shelf life. Although soluble CS derivatives such as glycol CS are suitable coatings, their antimicrobial properties often diminish with increased solubility. To address this issue, gallic acid (GA), a polyphenol, was conjugated with CS using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry to create edible coating solutions. The resulting CS-GA films exhibited remarkable solubility, mechanical strength, UV-blocking properties, and superior antioxidant and antimicrobial properties. Furthermore, these films exhibited a high affinity for hydrophobic fruit surfaces while also facilitating easy washing, making them an alternative for consumers who are averse to film-coated products. The CS-GA-coated fruits exhibited minimal surface spoilage, decreased mass loss, and increased firmness. Therefore, these CS-GA conjugate coatings hold significant potential as eco-friendly, edible, and washable food packaging coatings.
Collapse
Affiliation(s)
- Cho Rok Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Tae In Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Sangsik Kim
- Department of Energy Chemical Engineering, Kyungpook National University, Sangju 37224, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Sangju 37224, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
3
|
Nayak A, Mukherjee A, Kumar S, Dutta D. Exploring the potential of jujube seed powder in polysaccharide based functional film: Characterization, properties and application in fruit preservation. Int J Biol Macromol 2024; 260:129450. [PMID: 38232896 DOI: 10.1016/j.ijbiomac.2024.129450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In this study, we fabricated a novel biodegradable functional film using natural polysaccharides by adding jujube seed powder as an active ingredient. Scanning electron microscopy analysis showed agglomerate formation in the film with increasing concentration of seed powder. Fourier transform-infrared spectroscopy study demonstrated an electrostatic interaction between pectin and chitosan. The water solubility and swelling degree significantly decreased from 55.5 to 47.7 % and 66.0 to 41.9 %, respectively, depicting the film's water resistance properties. Higher opacity and lower transmittance value of the film indicated its protective effect towards light-induced oxidation of food. It was observed that the fabricated active film biodegraded to 82.33 % in 6 days. The DPPH radical scavenging activity of 98.02 % was observed for the functional film. The film showed antifungal activity against B. cinerea and P. chrysogenum. The highest zone of inhibition was obtained against food spoiling bacteria B. subtilis followed by S. aureus, P. aeruginosa and E. coli. Genotoxicity studies with the fabricated film showed a mitotic index of 8 % compared to 3 % in the control film. We used the fabricated film to preserve grapefruits, and the result showed that it could preserve grapes for ten days with an increase in antioxidant activity and polyphenolic content.
Collapse
Affiliation(s)
- Anamika Nayak
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
4
|
Yu H, Zhou Q, He D, Yang J, Wu K, Chai X, Xiang Y, Duan X, Wu X. Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols. Int J Biol Macromol 2023; 253:126859. [PMID: 37714243 DOI: 10.1016/j.ijbiomac.2023.126859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
In this study, cinnamon essential oil and tea polyphenols were added to chitosan/ polyvinyl alcohol/ hydroxypropyl methylcellulose/ alizarin composite films to enhance their mechanical and functional properties. Their addition to the composite films enhanced their antibacterial and antioxidant properties and significantly improved its elongation at break (p < 0.05). Cinnamon essential oil reduced the water vapor permeability, water content, and water solubility of composite films and improved their transparency. The composite films with additive exhibited excellent UV-barrier ability and pH responsivity. Fourier Transform infrared spectroscopy and X-Ray Diffraction analyses confirmed hydrogen bond formation between the polymer molecules and additives. The results of Scanning Electron Microscope-Focused Ion Beam revealed improved surface and cross-section morphology of the films, leading to the generation of a cross-linked structure. Thermogravimetric and differential scanning calorimetry analysis indicated enhanced thermal stability of the composite films upon cinnamon essential oil addition. Analysis of storage quality indicators (TBARS value, TVC, and TVB-N) revealed that the composite films could prolong the freshness of surimi. The incorporation of cinnamon essential oil and tea polyphenols into the composite films has demonstrated significant potential as an effective and natural alternative for active food packaging.
Collapse
Affiliation(s)
- Hongpeng Yu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006,China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Qing Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Dong He
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006,China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China.
| | - JinJin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Kegang Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, 510006,China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xianghua Chai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Yujuan Xiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xuejuan Duan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xiqin Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Luangapai F, Iwamoto S. Influence of blending and layer-by-layer assembly methods on chitosan-gelatin composite films enriched with curcumin nanoemulsion. Int J Biol Macromol 2023; 249:126061. [PMID: 37524290 DOI: 10.1016/j.ijbiomac.2023.126061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In this study, gelatin (GE) was composited with chitosan films (CH) and chitosan films incorporated with curcumin nanoemulsion (CH-CNE) through blending and layer-by-layer (LbL) assembly in order to overcome the physical limitations of the chitosan and its incorporated films. Furthermore, the distinctive effects of blending and LbL assembly on the physicochemical parameters of the composite films were assessed. The composite LbL films incorporated with GE exhibited improvement of water vapor barrier, tensile strength, solubility, which contributed to the enhanced antioxidant activity from the single components. By contrast, the composite films of the blending method exhibited greater elongation at break and increased swelling degree. Additionally, the films containing the nanoemulsion exhibited reduced light transmission and increased opacity. The thermal properties indicating the thermal stability and compatibility interactions of the composite films were examined by the glass transition temperature (Tg). Results revealed that the distinctive behavior of the Tg was affected by the compositing method. The LbL films exhibited substantially increased Tg, indicating enhanced thermal stability. The results indicated that the composited films formed via the LbL assembly attained better physicochemical properties and thermal stability, implying higher compatible film than the blending.
Collapse
Affiliation(s)
- Fakfan Luangapai
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Iwamoto
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
6
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
7
|
Li C, Gao M, Zheng G, Ma X, Liu X, Yu W. Enhanced quorum sensing capacity via regulating microenvironment to facilitate stress resistance of probiotic in alginate-based microcapsules. Int J Biol Macromol 2023; 225:605-614. [PMID: 36410534 DOI: 10.1016/j.ijbiomac.2022.11.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Alginate-based microcapsule has becoming a promising carrier for probiotic encapsulation due to the improved stress resistant ability. Besides the physical protection of microcapsules, bacterial quorum sensing (QS) is another prominent factor affecting microbial stress resistance in microcapsules. In the present study, Vibrio harveyi cells were entrapped and proliferated into cell aggregates in alginate-based microcapsules. The microenvironment composed of cells and biomacromolecules was regulated by the diameter, alginate concentration and core state of microcapsule. Then the effect of microenvironment on bacterial QS capacity was investigated, including bioluminescence, autoinducers (AIs) production and QS related genes expression. The highest diameter of 1200 μm and highest alginate concentration of 2.0 % w/v under the investigation range presented strongest QS capacity, and the maintenance of hydrogel core could enhance bacterial QS. Moreover, the mechanism analysis revealed that the formed biofilm on the surface of cell aggregates hampered the outward transfer of AIs, and the local AIs inside the cell aggregates induced stronger bacteria QS by close-range interaction. As a whole, these findings are helpful to guide the technological development and optimization of microencapsulated probiotics with stronger stress resistance, and the potential application in food, dairy, wastewater treatment and biosensor.
Collapse
Affiliation(s)
- Cheng Li
- The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China
| | - Meng Gao
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Guoshuang Zheng
- The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China
| | - Xiaojun Ma
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xiudong Liu
- College of Environment and Chemical Engineering, Dalian University, Dalian Economic Technological Development Zone, Dalian 116622, PR China.
| | - Weiting Yu
- The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China; Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| |
Collapse
|
8
|
Bhatia S, Al-Harrasi A, Ullah S, Al-Azri MS, Bekhit AEDA, Karam L, Albratty M, Aldawsari MF, Anwer MK. Combined Effect of Drying Temperature and Varied Gelatin Concentration on Physicochemical and Antioxidant Properties of Ginger Oil Incorporated Chitosan Based Edible Films. Foods 2023; 12:364. [PMID: 36673455 PMCID: PMC9857393 DOI: 10.3390/foods12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
In the present work, ginger essential oil (GEO) loaded chitosan (CS) based films incorporated with varying concentrations of gelatin (GE) were fabricated and dried at different conditions (25 °C and 45 °C). The physio-chemical, mechanical and antioxidant potential of the films were determined. Films dried at 45 °C showed better physical attributes and less thickness, swelling degree (SD), moisture content, water vapor permeability (WVP), more transparency, and better mechanical characteristics. Fourier transform infrared spectroscopy (FTIR) revealed the chemical composition and interaction between the functional groups of the film components. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) findings revealed that samples dried at 45 °C had more crystalline structure, were thermally stable, and smoother. Antioxidant results showed that films dried at low temperature showed comparatively more (p < 0.0001) antioxidant activity. Additionally, an increase in gelatin concentration improved the tensile strength and swelling factor (p < 0.05), however, had no significant impact on other parameters. The overall results suggested better characteristics of GEO-loaded CS-GE based edible films when dried at 45 °C.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Sana Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Mohammed Said Al-Azri
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | | | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Avila LB, Pinto D, Silva LFO, de Farias BS, Moraes CC, Da Rosa GS, Dotto GL. Antimicrobial Bilayer Film Based on Chitosan/Electrospun Zein Fiber Loaded with Jaboticaba Peel Extract for Food Packaging Applications. Polymers (Basel) 2022; 14:polym14245457. [PMID: 36559823 PMCID: PMC9786702 DOI: 10.3390/polym14245457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
This work focused on developing an active bilayer film based on natural extract. Thus, the jaboticaba peel extract (JPE) was produced and characterized and showed promising application as a natural additive in biopolymeric materials. The zein fiber and bilayer films were produced using a chitosan film (casting) and zein fiber (electrospinning), with and without JPE. All samples were evaluated according to thickness, solubility in water, water vapor permeability, and main diameter, and for these, zein fiber, chitosan/zein fiber, and chitosan/zein fiber + 3% JPE showed values of 0.19, 0.51, and 0.50 mm, 36.50, 12.96, and 27.38%, 4.48 × 10-9, 1.6 × 10-10, and 1.58 × 10-10 (g m-1 Pa-1 s-1), and 6.094, 4.685, and 3.620 μm, respectively. These results showed that the addition of a second layer improved the barrier properties of the material when compared to the monolayer zein fiber. The thermal stability analysis proved that the addition of JPE also improved this parameter and the interactions between the components of the zein fiber and bilayer films; additionally, the effective presence of JPE was shown through FTIR spectra. In the end, the active potential of the material was confirmed by antimicrobial analysis since the bilayer film with JPE showed inhibition halos against E. coli and S. aureus.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
- Correspondence: (L.F.O.S.); (G.L.D.)
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Itália Avenue, Rio Grande 96203-900, Rio Grande do Sul, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Materials Science and Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
| | - Gabriela Silveira Da Rosa
- Graduate Program in Materials Science and Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
- Chemical Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, Santa Maria 97105-900, Rio Grande do Sul, Brazil
- Correspondence: (L.F.O.S.); (G.L.D.)
| |
Collapse
|
10
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|
13
|
Zhou X, Dai Q, Huang X, Qin Z. Preparation and characterizations of antibacterial–antioxidant film from soy protein isolate incorporated with mangosteen peel extract. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The mangosteen peel extract (MPE) was used to obtain soy protein isolate (SPI) films. The results show that MPE exhibited a high content of total phenolics and antioxidant activity. Moreover, the MPE can enhance the antibacterial–antioxidant properties, UV-visible light barrier properties, and water-resistant properties of the SPI films. The presence of MPE resulted in an increase in water vapor permeability and hydrophobicity. The extract addition also reduced the film’s crystallinity along with a decrease in the mechanical property and lowering of the maximum degradation temperature. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the polyphenols in MPE could interact with SPI through hydrogen bonds and hydrophobic interactions, and the addition of MPE changed the secondary structure of SPI with a decrease in β-sheets and an increase in β-turns and random coils. Scanning electron microscopy showed that all the films exhibited smooth and homogenous morphology on the surface and on some layers through cross-sectional images. Our results suggested that the MPE would be a promising ingredient to make SPI films used as an active packaging material.
Collapse
Affiliation(s)
- Xin Zhou
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Qingyin Dai
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Xi Huang
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| |
Collapse
|
14
|
Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Xie Q, Zheng X, Li L, Ma L, Zhao Q, Chang S, You L. Effect of Curcumin Addition on the Properties of Biodegradable Pectin/Chitosan Films. Molecules 2021; 26:2152. [PMID: 33918007 PMCID: PMC8068353 DOI: 10.3390/molecules26082152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
A pectin/chitosan matrix-loaded curcumin film (PCCF) with a deep eutectic solvent (DES) as the solvent and plasticizer was prepared in this study. Different quantities of curcumin (identified as PCCF-0, PCCF-1, PCCF-2. PCCF-3) were loaded on the pectin/chitosan film in order to evaluate their effects on the film properties. Results showed that curcumin could interact with the pectin/chitosan matrix and form a complex three-dimensional network structure. PCCF could promote the thickness, tensile strength, thermal properties, antioxidant and antiseptic capacities, but deteriorate the light transmission and elongation at the same time. The addition of curcumin would change the color of the film, without significantly affecting the moisture content. The tensile strength of PCCF-3 reached the maximum value of 3.75 MPa, while the elongation decreased to 10%. Meanwhile, the water-resistance properties of PCCF-3 were significantly promoted by 8.6% compared with that of PCCF-0. Furthermore, PCCF showed remarkable sustained antioxidant activities in a dose-dependent manner. PCCF-3 could inhibit DPPH and ABTS free radicals by 58.66% and 29.07%, respectively. It also showed antiseptic capacity on fresh pork during storage. Therefore, curcumin addition could improve the barrier, mechanical, antioxidant and antiseptic properties of the polysaccharide-based film and PCCF has the potential to be used as a new kind of food packaging material in the food industry.
Collapse
Affiliation(s)
- Qingtong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Xudong Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Liuting Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Liqun Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Qihui Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), South China University of Technology, Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Telange DR, Jain SP, Pethe AM, Kharkar PS. Egg White Protein Carrier-Assisted Development of Solid Dispersion for Improved Aqueous Solubility and Permeability of Poorly Water Soluble Hydrochlorothiazide. AAPS PharmSciTech 2021; 22:94. [PMID: 33683493 DOI: 10.1208/s12249-021-01967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrochlorothiazide (HTZ) is a first-line drug used in the treatment of hypertension suffered from low oral bioavailability due to poor aqueous solubility and permeability. Hence, lyophilized egg white protein-based solid dispersion (HTZ-EWP SD) was developed to explore its feasibility as a solid dispersion carrier for enhanced aqueous solubility and permeability of HTZ. The HTZ-EWP SD was prepared using the kneading method. HTZ-EWP SD was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transforms infrared spectroscopy (FT-IR), powder X-ray diffractometer (PXRD), solubility, in vitro dissolution, and ex vivo permeation studies. The physico-chemical evaluation suggested the formation of the solid dispersion. Optimized HTZ-EWP SD4 drastically enhanced (~32-fold) aqueous solubility (~16.12 ± 0.08 mg/mL) over to pure HTZ (~ 0.51 ± 0.03 mg/mL). The dissolution study in phosphate buffer media (pH 6.8) revealed that HTZ-EWP SD4 significantly enhanced the release rate of HTZ (~ 87 %) over to HTZ (~ 25 %). The permeation rate of HTZ from optimized HTZ-EWP SD4 was enhanced significantly (~ 84 %) compared to pure HTZ (~ 24 %). Optimized HTZ-EWP-SD4 enhanced the rate of HTZ dissolution (~ 86 %) in FeSSIF (fed state simulated intestinal fluid), compared to a low dissolution rate (~ 72 %) in FaSSIF (fasted state simulated intestinal fluid) state after 2-h study. Obtained results conclude that lyophilized egg white protein can be utilized as an alternative solid dispersion carrier for enhancing the solubility and permeability of HTZ.
Collapse
|
17
|
Protein-Based Films and Coatings for Food Industry Applications. Polymers (Basel) 2021; 13:polym13050769. [PMID: 33801341 PMCID: PMC7958328 DOI: 10.3390/polym13050769] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.
Collapse
|
18
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
19
|
Qian F, Gao X, Li L, Safian Murad M, Mu G, Wu X. Influence of forming method of blending versus casting layer‐by‐layer on structural properties and packing performances of casein‐gelatin composite edible film under different appending proportion. J Appl Polym Sci 2020. [DOI: 10.1002/app.50378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Xiaoxi Gao
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Li Li
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Mian Safian Murad
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| |
Collapse
|
20
|
Hajivand P, Aryanejad S, Akbari I, Hemmati A. Fabrication and characterization of a promising oregano‐extract/psyllium‐seed mucilage edible film for food packaging. J Food Sci 2020. [DOI: 10.1111/1750-3841.15331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pegah Hajivand
- Faculty of Petroleum and Chemical Engineering, Tehran Science and Research Branch Islamic Azad Univ. Tehran 1477893855 Iran
| | - Sara Aryanejad
- Faculty of Petroleum and Chemical Engineering, Tehran Science and Research Branch Islamic Azad Univ. Tehran 1477893855 Iran
| | - Iman Akbari
- Faculty of Petroleum and Chemical Engineering, Tehran Science and Research Branch Islamic Azad Univ. Tehran 1477893855 Iran
| | - Azadeh Hemmati
- Faculty of Petroleum and Chemical Engineering, Tehran Science and Research Branch Islamic Azad Univ. Tehran 1477893855 Iran
| |
Collapse
|
21
|
Valdés García A, Juárez Serrano N, Beltrán Sanahuja A, Garrigós MC. Novel Antioxidant Packaging Films Based on Poly(ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants (Basel) 2020; 9:E629. [PMID: 32708916 PMCID: PMC7402149 DOI: 10.3390/antiox9070629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Antioxidant films based on poly(ε-caprolactone) (PCL) containing almond skin extract (ASE) were developed for food packaging applications. The effect of ASE incorporation on the morphological, structural, colour, mechanical, thermal, barrier and antioxidant properties of the prepared films were evaluated. The structural, tensile and thermal properties of the films were not altered due to ASE addition. Although no significant differences were observed for the oxygen permeability of samples, some increase in water absorption and water vapour permeability was observed for active films due to the hydrophilic character of ASE phenolic compounds, suggesting the suitability of this novel packaging for fatty foods conservation. ASE conferred antioxidant properties to PCL films as determined by the DPPH radical scavenging activity. The efficiency of the developed films was evaluated by the real packaging application of fried almonds at different ASE contents (0, 3, 6 wt.%) up to 56 days at 40 °C. The evolution of peroxide and p-anisidine values, hexanal content, fatty acid profile and characteristic spectroscopy bands showed that active films improved fried almonds stability. The results suggested the potential of PCL/ASE films as sustainable and antioxidant food packaging systems to offer protection against lipid oxidation in foods.
Collapse
Affiliation(s)
- Arantzazu Valdés García
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, PO Box 99, E-03080 Alicante, Spain; (N.J.S.); (A.B.S.); (M.C.G.)
| | | | | | | |
Collapse
|
22
|
Albertos I, Martin-Diana A, Burón M, Rico D. Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Bioactive Edible Films Based on Arrowroot Starch Incorporated with Cranberry Powder: Microstructure, Thermal Properties, Ascorbic Acid Content and Sensory Analysis. Polymers (Basel) 2019; 11:polym11101650. [PMID: 31614446 PMCID: PMC6835484 DOI: 10.3390/polym11101650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
The growing global awareness about environmental preservation has stimulated the search for alternatives to replace conventional plastics made from fossil sources. One of the advantages is using polymers from renewable sources, such as starch and gelatin, which, in addition to being biodegradable, may also be edible. The incorporation of cranberry into a polymeric matrix can transfer bioactive composite films, colour and flavour to the film, which are characteristic of this fruit, expanding its application to fruit stripes or colourful coatings for specific foods. In this context, the aim of this work was to evaluate the influence of the incorporation of 0, 5, 15, 25, 35, 45 and 55% (solids mass/biopolymer mass) cranberry powder on the microstructure, thermal properties, ascorbic acid content and sensory analysis of gelatin and arrowroot starch films obtained by casting. Scanning electron microscopy (SEM) images showed that the incorporation of cranberry made the film surface rough and irregular. All films presented an X-ray diffraction pattern typical of a semicrystalline material. The glass transition temperature (Tg) decreased when increasing the concentration of cranberry in films. All films with cranberry presented high ascorbic acid content and were well accepted by the tasters when sensory analysis was performed.
Collapse
|
24
|
A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr Polym 2019; 215:1-7. [DOI: 10.1016/j.carbpol.2019.03.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/02/2023]
|
25
|
Ahmadi R, Ghanbarzadeh B, Ayaseh A, Kafil HS, Özyurt H, Katourani A, Ostadrahimi A. The antimicrobial bio-nanocomposite containing non-hydrolyzed cellulose nanofiber (CNF) and Miswak (Salvadora persica L.) extract. Carbohydr Polym 2019; 214:15-25. [DOI: 10.1016/j.carbpol.2019.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 01/10/2023]
|
26
|
Chentir I, Kchaou H, Hamdi M, Jridi M, Li S, Doumandji A, Nasri M. Biofunctional gelatin-based films incorporated with food grade phycocyanin extracted from the Saharian cyanobacterium Arthrospira sp. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Rasid N, Nazmi N, Isa M, Sarbon N. Rheological, functional and antioxidant properties of films forming solution and active gelatin films incorporated with Centella asiatica (L.) urban extract. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Scepankova H, Martins M, Estevinho L, Delgadillo I, Saraiva JA. Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:253-267. [PMID: 30269189 DOI: 10.1007/s11130-018-0687-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural extracts, like those obtained from medicinal herbs, dietary plants and fruits are being recognized as important sources of bioactive compounds with several functionalities including antioxidant, anticancer, and antimicrobial activities. Plant extracts rich in phenolic antioxidants are currently being successfully used for several pharmaceutical applications and in the development of new foods (i.e., functional foods), in order to enhance the bioactivity of the products and to replace synthetic antioxidants. The extraction method applied in the recovery of the bioactive compounds from natural materials is a key factor to enhance the bioactivity of the extracts. However, most of the extraction techniques have to employ heat, which can easily lead to heat-sensitive compounds losing their biological activity, due to changes caused by temperature. Presently, high hydrostatic pressure (HHP) is being increasingly explored as a cold extraction method of bioactive compounds from natural sources. This non-thermal high hydrostatic pressure extraction (HHPE) technique allows one to reduce the extraction time and increase the extraction of natural beneficial ingredients, in terms of nutritional value and biological activities and thus enhance the bioactivity of the extracts. This review provides an updated and comprehensive overview on the extraction efficiency of HHPE for the production of natural extracts with enhanced bioactivity, based on the extraction yield, total content and individual composition of bioactive compounds, extraction selectivity, and biological activities of the different plant extracts, so far studied by extraction with this technique.
Collapse
Affiliation(s)
- Hana Scepankova
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Margarida Martins
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Letícia Estevinho
- Agricultural College of Bragança, Polytechnic Institute of Bragança, 5301-855, Bragança, Portugal
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ivonne Delgadillo
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
29
|
Halim ALA, Kamari A, Phillip E. Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int J Biol Macromol 2018; 120:1119-1126. [PMID: 30176328 DOI: 10.1016/j.ijbiomac.2018.08.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022]
Abstract
In this work, chitosan, gelatin and methylcellulose films incorporated with tannic acid (TA) were synthesised, characterised and applied for the first time to preserve cherry tomatoes (Solanum lycopersicum var. cerasiforme) and grapes (Vitis vinifera). The addition of TA at 15% (w/w) increased the transparency value of biopolymer films. The highest increment of transparency value was obtained for MC-TA film, increased from 0.572 to 4.73 A/mm. Based on antimicrobial study, the addition of TA improved the antibacterial properties of biopolymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The ability of films to preserve both fruits was evaluated in a 14-day preservation study. The application of biopolymer films treated with TA has decreased the weight loss and browning index of fruits, as compared to control films. A significant reduction in the weight loss of cherry tomatoes wrapped with chitosan (from 21.3 to 19.6%), gelatin (from 22.1 to 15.5%) and methylcellulose (26.2 to 20.5%) films were obtained following TA treatment. Overall, results obtained from this study highlight the effects of TA on physiochemical properties of biopolymer films and their ability to preserve fruits.
Collapse
Affiliation(s)
- Al Luqman Abdul Halim
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Azlan Kamari
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| | - Esther Phillip
- Nuklear Malaysia, Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
30
|
Luchese CL, Brum LFW, Piovesana A, Caetano K, Flôres SH. Bioactive Compounds Incorporation into the Production of Functional Biodegradable Films - A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/204124791700800402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The bioactive compounds incorporation for the production of biodegradable food packagings comes as a viable and environmentally friendly substitute in order to improve the nutritional value as well as extend the shelf life of highly perishable food products. Moreover, the use of bioactive compounds has been directly associated with the promotion of health aspects; the ingestion of bioactive compounds is related with minimizing risks of some diseases such as hypertension, diabetes, and coronary heart diseases. Therefore, the present study carried out a review of the current scenario in the film's production with natural antioxidants addition. The prebiotics and probiotics compound addition in films properties produced were also discussed in this work. Additionally, the film biodegradation properties should also be taken into account for their right disposal in the environment. Some factors that can to affect the biodegradation process are the nature of the polymer, the interactions among the blend components, its crystallinity, and the environmental conditions (light, temperature, O2 concentrations; and humidity). Therefore, the evaluation of relationships between structure and the polymers biodegradability is the extreme importance.
Collapse
Affiliation(s)
- Cláudia Leites Luchese
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2777, Anexo I do Campus da Saúde, Porto Alegre, RS - CEP: 90035-007, Brasil
| | - Luis Fernando Wentz Brum
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS -CEP: 91501-970, Brasil
| | - Alessandra Piovesana
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS -CEP: 91501-970, Brasil
| | - Karine Caetano
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS -CEP: 91501-970, Brasil
| | - Simone Hickmann Flôres
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS -CEP: 91501-970, Brasil
| |
Collapse
|
31
|
Luzi F, Fortunati E, Giovanale G, Mazzaglia A, Torre L, Balestra GM. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int J Biol Macromol 2017; 104:43-55. [DOI: 10.1016/j.ijbiomac.2017.05.176] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
32
|
Lin D, Lu W, Kelly AL, Zhang L, Zheng B, Miao S. Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Li K, Jin S, Han Y, Li J, Chen H. Improvement in Functional Properties of Soy Protein Isolate-Based Film by Cellulose Nanocrystal⁻Graphene Artificial Nacre Nanocomposite. Polymers (Basel) 2017; 9:E321. [PMID: 30970998 PMCID: PMC6418927 DOI: 10.3390/polym9080321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
A facile, inexpensive, and green approach for the production of stable graphene dispersion was proposed in this study. We fabricated soy protein isolate (SPI)-based nanocomposite films with the combination of 2D negative charged graphene and 1D positive charged polyethyleneimine (PEI)-modified cellulose nanocrystals (CNC) via a layer-by-layer assembly method. The morphologies and surface charges of graphene sheets and CNC segments were characterized by atomic force microscopy and Zeta potential measurements. The hydrogen bonds and multiple interface interactions between the filler and SPI matrix were analyzed by Attenuated Total Reflectance⁻Fourier Transform Infrared spectra and X-ray diffraction patterns. Scanning electron microscopy demonstrated the cross-linked and laminated structures in the fracture surface of the films. In comparison with the unmodified SPI film, the tensile strength and surface contact angles of the SPI/graphene/PEI-CNC film were significantly improved, by 99.73% and 37.13% respectively. The UV⁻visible light barrier ability, water resistance, and thermal stability were also obviously enhanced. With these improved functional properties, this novel bio-nanocomposite film showed considerable potential for application for food packaging materials.
Collapse
Affiliation(s)
- Kuang Li
- Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shicun Jin
- Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yufei Han
- Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hui Chen
- Key Laboratory of Wood Materials Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Etxabide A, Uranga J, Guerrero P, de la Caba K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Physical and antioxidant properties of flexible soy protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Pająk P, Socha R, Łakoma P, Fortuna T. Antioxidant properties of apple slices stored in starch-based films. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1203931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Olejar KJ, Ray S, Kilmartin PA. Enhanced antioxidant activity of polyolefin films integrated with grape tannins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2825-2831. [PMID: 26337572 DOI: 10.1002/jsfa.7450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/09/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. RESULTS Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. CONCLUSION Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kenneth J Olejar
- Biocide Toolbox and School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sudip Ray
- Biocide Toolbox and School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Paul A Kilmartin
- Biocide Toolbox and School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
38
|
Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 2016; 137:360-374. [DOI: 10.1016/j.carbpol.2015.10.074] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
|
39
|
Kang H, Shen X, Zhang W, Qi C, Zhang S, Li J. Simultaneously strengthening and toughening soy protein isolate-based films using poly(ethylene glycol)-block-polystyrene (PEG-b-PS) nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra17051j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Uniformly dispersed PEG-b-PS nanoparticles synthesized via RAFT dispersion polymerization was employed to reinforce the biodegradable soy protein isolate films.
Collapse
Affiliation(s)
- Haijiao Kang
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Xiaoyan Shen
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Wei Zhang
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Chusheng Qi
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- China
- Beijing Key Laboratory of Wood Science and Engineering
| |
Collapse
|
40
|
Kadam SU, Pankaj S, Tiwari BK, Cullen P, O’Donnell CP. Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum nodosum extract. Food Packag Shelf Life 2015. [DOI: 10.1016/j.fpsl.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Chen Y, Ye R, Wang J. Effect of Voltage on the Mechanical and Water Resistance Properties of Zein Films by Electrophoretic Deposition. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1430-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Arcan I, Yemenicioğlu A. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8238-8246. [PMID: 25025594 DOI: 10.1021/jf500666w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.
Collapse
Affiliation(s)
- Iskender Arcan
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology , 35430, Gülbahçe Köyü, Urla, Izmir, Turkey
| | | |
Collapse
|
43
|
|
44
|
Peña-Rodriguez C, Martucci JF, Neira LM, Arbelaiz A, Eceiza A, Ruseckaite RA. Functional properties and in vitro antioxidant and antibacterial effectiveness of pigskin gelatin films incorporated with hydrolysable chestnut tannin. FOOD SCI TECHNOL INT 2014; 21:221-31. [DOI: 10.1177/1082013214525429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The impact of the incorporation of 10% w/w of hydrolyzable chestnut tannin into pigskin gelatin (G) films plasticized with glycerol (Gly) on the physicochemical properties as well as the in vitro antioxidant and antibacterial effectiveness against food-borne pathogens such as Escherichia coli and Streptococcus aureus was investigated. A higher tendency to both redness (a*) and yellowness (b*) coloration characterized gelatin films incorporated with chestnut tannin. The reduced lightness (L) and transparency of gelatin–chestnut tannin films plasticized with 30% w/w Gly might be associated with certain degree of phase separation which provoked the migration of the plasticizer to the film surface. The incorporation of chestnut tannin and glycerol affected the chemical structure of the resultant films due to the establishment of hydrogen interactions between components as revealed by Fourier transform infrared spectroscopy. These interactions reduced gelatin crystallinity and seemed to be involved in the substantial decrease of the water uptake of films with tannin, irrespective of the glycerol level. Such interactions had minor effect on tensile properties being similar to those of the control films (without chestnut tannin) at the same glycerol level. Films modified with 10% w/w chestnut tannin showed significant (P < 0.05) 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ca. from 0 ± 0.033 to 87.1 ± 0.002% for chestnut tannin-free and chestnut tannin-containing gelatin films. The limited inhibitory activity of films incorporated with 10% w/w chestnut tannin against the selected bacteria evidenced by disk diffusion method probably resulted from the interactions within the film restricting the diffusion of the active agent into the agar medium. The more modest protective effect observed against a Gram-positive bacterium ( S. aureus) was also discussed.
Collapse
Affiliation(s)
- Cristina Peña-Rodriguez
- Materials+Technologies Group, Dept. of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country, Donostia-San Sebastián, Spain
| | - Josefa F Martucci
- Research Institute of Material Science and Technology (INTEMA), Mar del Plata, Argentina
| | - Laura M Neira
- Research Institute of Material Science and Technology (INTEMA), Mar del Plata, Argentina
| | - Aitor Arbelaiz
- Materials+Technologies Group, Dept. of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country, Donostia-San Sebastián, Spain
| | - Arantxa Eceiza
- Materials+Technologies Group, Dept. of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country, Donostia-San Sebastián, Spain
| | - Roxana A Ruseckaite
- Research Institute of Material Science and Technology (INTEMA), Mar del Plata, Argentina
| |
Collapse
|
45
|
Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. FOOD ENGINEERING REVIEWS 2013. [DOI: 10.1007/s12393-013-9072-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Wang S, Marcone MF, Barbut S, Lim LT. Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|