1
|
Gorzin M, Saeidi M, Javidi S, Seow EK, Abedinia A. Nanoencapsulation of Oliveria decumbens Vent./basil essential oils into gum arabic/maltodextrin: Improved in vitro bioaccessibility and minced beef meat safety. Int J Biol Macromol 2024; 270:132288. [PMID: 38735604 DOI: 10.1016/j.ijbiomac.2024.132288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Mahdis Gorzin
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Mahboubeh Saeidi
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Sahar Javidi
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Eng-Keng Seow
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Food Science Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor Branch, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Ahmadreza Abedinia
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran; Department of Food Engineering, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
2
|
Hsu C, Tsai HY, Chang CF, Yang CC, Su NW. Discovery of a novel phosphotransferase from Bacillus subtilis that phosphorylates a broad spectrum of flavonoids. Food Chem 2022; 400:134001. [DOI: 10.1016/j.foodchem.2022.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
|
3
|
Tsai HY, Chen MY, Hsu C, Kuan KY, Chang CF, Wang CW, Hsu CP, Su NW. Luteolin Phosphate Derivatives Generated by Cultivating Bacillus subtilis var. Natto BCRC 80517 with Luteolin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8738-8745. [PMID: 35795971 DOI: 10.1021/acs.jafc.2c03524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luteolin (LUT), a plant-derived flavone, exhibits various bioactivities; however, the poor aqueous solubility hampers its applications. Here, we revealed bioconversion of LUT by Bacillus subtilis BCRC 80517, yielding three water-soluble phosphate conjugates. These derivatives were identified as luteolin 4'-O-phosphate (L4'P), luteolin 3'-O-phosphate (L3'P), and luteolin 7-O-phosphate (L7P) by LC-ESI-MS/MS and NMR. Besides, we found that Bacillus subtilis BCRC 80517 was able to convert different levels of LUT but showed a limited conversion rate. By observing bacterial morphology with transmission electron microscopy and confocal fluorescence microscopy, we found that LUT disrupted the bacterial membrane integrity, which explained the incomplete conversion. Additionally, we revealed a spontaneous intramolecular transesterification of L4'P to L3'P, the thermodynamically more stable form, under acidic conditions and proposed the possible mechanism involving a cyclic phosphate as the intermediate. This study provides insight into development of a potent structural modification strategy to enhance the solubility of LUT through biophosphorylation.
Collapse
Affiliation(s)
- Hsin-Ya Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Yu Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kai-Yuan Kuan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Che-Wei Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 106, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Wang ST, Chen JA, Hsu C, Su NW. Microbial Phosphorylation Product of Hesperetin by Bacillus subtilis BCRC 80517 Improves Oral Bioavailability in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10184-10193. [PMID: 34449206 DOI: 10.1021/acs.jafc.1c04298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The flavanoid hesperidin (Hsd) is one of the major polyphenols in citrus fruits. Hsd and its aglycone hesperetin (Hst) have a broad array of bioactivities; however, their low aqueous solubility and low intestinal permeability lead to their limited oral bioavailability. In the present study, we generated two water-soluble derivatives of Hst, namely, Hst 7-O-phosphate and Hst3'-O-phosphate, by a unique bioconversion process of Bacillus subtilis var. natto BCRC80517. The phosphorylated products showed superior aqueous solubility and distinct physicochemical properties compared with the original Hst. The Hst phosphate derivatives (HstPs) remained stable in simulated gastric and intestinal fluids for 240 min and could revert to the original Hst form by alkaline phosphatase treatment in Caco-2 cells, showing enhanced intestinal permeability in vitro. After oral administration in rats, HstPs greatly elevated plasma exposure to Hst and showed better bioavailability than did Hsd. HstPs may be a potential and efficient alternative to Hst.
Collapse
Affiliation(s)
- Shang-Ta Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Jou-An Chen
- Department of Biochemical Science & Technology, National Taiwan University, Taipei 106, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Biochemical Science & Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
5
|
Zhu Y, Drouin P, Lepp D, Li XZ, Zhu H, Castex M, Zhou T. A Novel Microbial Zearalenone Transformation through Phosphorylation. Toxins (Basel) 2021; 13:294. [PMID: 33919181 PMCID: PMC8143168 DOI: 10.3390/toxins13050294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22-42 °C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity. Thirteen of the Bacillus strains showed phosphorylation functionality at an efficacy of between 20.3% and 99.4% after 24 h incubation, suggesting the metabolism pathway is widely conserved in Bacillus spp. This study established a new transformation system for potential application of controlling ZEA although the metabolism and toxicity of ZEA-14-phosphate requires further investigation.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Pascal Drouin
- Lallemand Inc., Montréal, QC H1W 2N8, Canada; (P.D.); (M.C.)
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| | - Mathieu Castex
- Lallemand Inc., Montréal, QC H1W 2N8, Canada; (P.D.); (M.C.)
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (Y.Z.); (D.L.); (X.-Z.L.); (H.Z.)
| |
Collapse
|
6
|
Wang ST, Chang HS, Hsu C, Su NW. Osteoprotective effect of genistein 7-O-phosphate, a derivative of genistein with high bioavailability, in ovariectomized rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Kim KM, Park JS, Choi H, Kim MS, Seo JH, Pandey RP, Kim JW, Hyun CG, Kim SY. Biosynthesis of novel daidzein derivatives using Bacillus amyloliquefaciens whole cells. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1461212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Kyu-Min Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jin-Soo Park
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - HaeRi Choi
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Min-Seon Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Joo-Hyun Seo
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jin Woo Kim
- Department of Food Science, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju, Republic of Korea
| | - Seung-Young Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
8
|
Hsu C, Wu BY, Chang YC, Chang CF, Chiou TY, Su NW. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:127-137. [PMID: 29231720 DOI: 10.1021/acs.jafc.7b04647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The soy isoflavones daidzein (DAI) and genistein (GEN) have beneficial effects on human health. However, their oral bioavailability is hampered by their low aqueous solubility. Our previous study revealed two water-soluble phosphorylated conjugates of isoflavones, daidzein 7-O-phosphate and genistein 7-O-phosphate, generated via biotransformation by Bacillus subtilis BCRC80517 cultivated with isoflavones. In this study, two novel derivatives of isoflavones, daidzein 4'-O-phosphate and genistein 4'-O-phosphate, were identified by HPLC-ESI-MS/MS and 1H, 13C, and 31P NMR, and their biotransformation roadmaps were proposed. Primarily, isoflavone glucosides were deglycosylated and then phosphorylated predominantly into 7-O-phosphate conjugates with traces of 4'-O-phosphate conjugates. Inevitably, trace quantities of glucosides were converted into 6″-O-succinyl glucosides. GEN was more efficiently phosphorylated than DAI. Nevertheless, the presence of GEN prolonged the time until the exponential phase of cell growth, whereas the other isoflavones showed little effect on cell growth. Our findings provide new insights into the novel microbial phosphorylation of isoflavones involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Chen Hsu
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Bo-Yuan Wu
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Yu-Chuan Chang
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica , Taipei 11529, Taiwan
| | - Tai-Ying Chiou
- Laboratory of Food Science and Technology, Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology , Kitami 090-8507, Japan
| | - Nan-Wei Su
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
9
|
Functional beverage from fermented soymilk with improved amino nitrogen, β-glucosidase activity and aglycone content using Bacillus subtilis starter. Food Sci Biotechnol 2016; 25:1399-1405. [PMID: 30263422 DOI: 10.1007/s10068-016-0218-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/16/2016] [Accepted: 07/17/2016] [Indexed: 01/28/2023] Open
Abstract
The bioactivity of soymilk was enhanced by fermentation with three strains of β-glucosidaseproducing Bacillus subtilis for 36 h at 37oC. The results indicated that protease, cellulase, and β-glucosidase activities were significantly (p<0.05) increased with increasing fermentation time. In addition, the amino-type nitrogen content in B. subtilis-fermented soymilk was increased to 121.1-140.7 mg% after 36 h of fermentation. Among the isoflavones in soymilk, the contents of β-glucosides or acetyl-glucosides were decreased, while aglycone content was increased by fermentation. In particular, the soymilk fermented with B. subtilis HJ18-9 had highest β-glucosidase activity and the largest increase in aglycone content. The total aerobic and anaerobic cell counts were increased with increasing fermentation time. Therefore, this study suggests that soy beverages fermented with β-glucosidase-producing B. subtilis have the potential to enhance the health and nutritional status of consumers.
Collapse
|
10
|
|
11
|
Shim YS, Yoon WJ, Hwang JB, Park HJ, Seo D, Ha J. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection. Food Chem 2015; 187:391-7. [PMID: 25977042 DOI: 10.1016/j.foodchem.2015.04.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 01/05/2015] [Accepted: 04/17/2015] [Indexed: 11/21/2022]
Abstract
A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste.
Collapse
Affiliation(s)
- You-Shin Shim
- Food Analysis Center, Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi Province 463-746, Republic of Korea; Department of Food Biotechnology, University of Science & Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| | - Won-Jin Yoon
- Food Analysis Center, Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi Province 463-746, Republic of Korea
| | - Jin-Bong Hwang
- Food Analysis Center, Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi Province 463-746, Republic of Korea
| | - Hyun-Jin Park
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Dongwon Seo
- Food Analysis Center, Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi Province 463-746, Republic of Korea
| | - Jaeho Ha
- Food Analysis Center, Korea Food Research Institute, 1201-62, Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi Province 463-746, Republic of Korea; Department of Food Biotechnology, University of Science & Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
12
|
Wang ST, Fang TF, Hsu C, Chen CH, Lin CJ, Su NW. Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
13
|
Hsu CC, Wu TM, Hsu YT, Wu CW, Hong CY, Su NW. A novel soybean (Glycine max) gene encoding a family 3 β-glucosidase has high isoflavone 7-O-glucoside-hydrolyzing activity in transgenic rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:921-8. [PMID: 25569564 DOI: 10.1021/jf504778x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A previous study demonstrated that purified Glycine max β-glucosidase (GmBGL) could hydrolyze glucosyl isoflavone to the aglyconic form. This study reports the cloning and functional characterization of a soybean cDNA encoding the β-glucosidase. GmBGL was isolated by use of a purified soybean N-terminal amino acid sequence and conserved sequences of β-glucosidase genes from other plants. Sequence analysis of GmBGL revealed an open reading frame of 1884 bp encoding a polypeptide of 627 amino acids with a calculated molecular mass of 69 kDa. Phylogenetic analysis classified the GmBGL into the glycosyl hydrolase 3 family. In soybean, the GmBGL transcript was predominantly accumulated in roots and leaves. To examine the enzymatic activity and substrate specificity, GmBGL was ectopically expressed in transgenic rice. Purified GmBGL protein from transgenic rice could catalyze the hydrolysis of genistin and daidzin to produce genistein and daidzein, respectively, which confirmed GmBGL as a functional β-glucosidase with isoflavone glucoside-hydrolyzing activity. This paper reveals that GmBGL is a key enzyme in transforming glucosyl isoflavones to aglycones in soybean, which may help in genetic manipulation of aglycone-rich soybean seeds.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|