1
|
Dippong T, Muresan LE, Senila L. Comparison of the Thermal Behavior and Chemical Composition of Milk Powders of Animal and Plant Origin. Foods 2025; 14:389. [PMID: 39941982 PMCID: PMC11817115 DOI: 10.3390/foods14030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The present study aims to perform a comparative analysis of the chemical composition and thermal behavior of two distinct milk types, namely animal and plant-based. The thermal analysis revealed the presence of the following classes of compounds: hydrocarbons, heterocycles, aldehydes, ketones, amines and alcohols. All types of milk contain saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), though the relative proportions of these vary depending on the specific milk type. Animal milk powders contain SFAs, including palmitic, stearic, and myristic acids, as well as moderate amounts of MUFAs, such as oleic and palmitoleic acids. They also contain lower PUFAs, including linoleic and alpha-linolenic acids. In contrast, plant-based milk powders, particularly soy milk powder, are rich in both linoleic and alpha-linolenic acids. Plant-based milk typically exhibits lower levels of SFAs and higher levels of MUFAs and PUFAs when compared to milk of animal origin. In conclusion, the fatty acid profiles of animal and plant-based milk powders reflect the different nutritional attributes and health implications associated with each. Thermal behavior analysis offers insights into the stability and potential flavor changes that may occur during processing and storage. The comparative analysis highlights significant differences in the chemical composition and thermal behavior of animal and plant-based milk powders.
Collapse
Affiliation(s)
- Thomas Dippong
- Department of Chemistry and Biology, Faculty of Science, Technical University of Cluj-Napoca, 76A Victoriei St., 430122 Baia Mare, Romania;
| | - Laura Elena Muresan
- Raluca Ripan’ Institute for Research in Chemistry, Babes Bolyai University, Fantanele, 30, 400294 Cluj-Napoca, Romania;
| | - Lacrimioara Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Ogrodowczyk AM, Romaszko E. Study protocol: The role of milk matrix lipids in programming the immunoreactivity of proteins derived from lactic acid bacteria. PLoS One 2024; 19:e0301477. [PMID: 38768108 PMCID: PMC11104651 DOI: 10.1371/journal.pone.0301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/16/2024] [Indexed: 05/22/2024] Open
Abstract
Food allergy is widely recognized as a significant health issue, having escalated into a global epidemic, subsequently giving rise to the development of numerous additional complications. Currently, the sole efficient method to curb the progression of allergy is through the implementation of an elimination diet. The increasing number of newly identified allergens makes it harder to completely remove or avoid them effectively. The immunoreactivity of proteins of bacterial origin remains an unexplored topic. Despite the substantial consumption of microbial proteins in our diets, the immunologic mechanisms they might induce require thorough validation. This stands as the primary objective of this study. The primary objective of this study was to evaluate the effects of bacterial proteins on the intestinal barrier and immune system parameters during hypersensitivity induction in both developing and mature organisms. The secondary objective was to evaluate the role of lipids in the immunoreactivity programming of these bacterial proteins. Notably, in this complex, comprehensively designed in vitro, in vivo, and ex vivo trial, the immunoreactivity of various bacterial proteins will be examined. In summary, the proposed study intends to address the knowledge gaps regarding the effects of Lactobacillus microbial proteins on inflammation, apoptosis, autophagy, and intestinal barrier integrity in a single study.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, Poland
| | - Ewa Romaszko
- Non-Public Health Care Clinic “ATARAX”, Olsztyn, Poland
| |
Collapse
|
3
|
Markiewicz LH, Ogrodowczyk AM, Wiczkowski W, Wróblewska B. Phytate and Butyrate Differently Influence the Proliferation, Apoptosis and Survival Pathways in Human Cancer and Healthy Colonocytes. Nutrients 2021; 13:1887. [PMID: 34072741 PMCID: PMC8230256 DOI: 10.3390/nu13061887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The colonic epithelium is never exposed to a single factor, therefore studies on the effect of combinations of factors naturally and persistently present in the intestines are of special importance for understanding the phenomena occurring at this place. The aim of the study was to investigate the combined effect of 1 mM phytate and 1 mM butyrate (PA1B1) on cell lines derived from cancer (HCT116 and HT-29) and healthy (NCM460D) human colonic epithelium. Colorimetric and flow cytometry methods were used to determine the proliferation rate, cell cycle, and apoptosis. Selected markers of proliferation, inflammatory, and survival pathways were investigated at the mRNA and/or protein level. The combination of phytate and butyrate disturbed the cell cycle and triggered apoptosis and/or death in both studied cancer colonocytes to a higher extent compared to healthy colonocytes. Moreover, in healthy colonocytes, phytate activated the survival pathway without stimulation of inflammatory response. This may indicate that the response of healthy colonocytes to phytate protects colonic epithelium from the loss of integrity and tightness that would occur if inflammation developed. Based on the obtained results we postulate that studies on both cancer and/or healthy colonocytes should be carried out in the presence of butyrate as the permanent component of colonic contents. This should be of special importance when anti-proliferative/pro-apoptotic activity or inflammatory status of colonocytes is to be investigated.
Collapse
Affiliation(s)
- Lidia Hanna Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Anna Maria Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| |
Collapse
|
4
|
Ogrodowczyk AM, Kalicki B, Wróblewska B. The effect of lactic acid fermentation with different bacterial strains on the chemical composition, immunoreactive properties, and sensory quality of sweet buttermilk. Food Chem 2021; 353:129512. [PMID: 33740512 DOI: 10.1016/j.foodchem.2021.129512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023]
Abstract
This paper describes the successful development of new low-immunoreactive buttermilk (BM)-based formulations which were fermented with 31 lactic acid bacteria (LAB) and Bifidobacterium strains. The aim of this study was to create a new formula, which can serve as potential candidates for the immunotherapy of allergy. Preparations were tested for their content of biologically active compounds, such as proteins, peptides, phospholipids, and short-chain fatty acids (SCFA), as well as for the survivability of LAB and sensory quality. The results showed that the BM was a matrix rich in nutritional components and displayed higher than expected susceptibility to the reduction of protein IgE-immunoreactivity (to 98%) and high bacterial-protecting capacity. The overall sensory quality of examined products was influenced by the profile of SCFA and free peptides, but two formulations fermented with Lactobacillus delbrueckii ssp. bulgaricus-151 and Lactobacillus casei-LcY were the most advantageous with desirable sensory, immunoreactive, and biochemical properties.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima str 10, 10-748 Olsztyn, Poland.
| | - Bolesław Kalicki
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima str 10, 10-748 Olsztyn, Poland
| |
Collapse
|
5
|
Fotschki J, Wróblewska B, Fotschki B, Kalicki B, Rigby N, Mackie A. Microbial transglutaminase alters the immunogenic potential and cross-reactivity of horse and cow milk proteins. J Dairy Sci 2020; 103:2153-2166. [PMID: 31928755 DOI: 10.3168/jds.2019-17264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Horse milk is a valuable raw material and a very attractive alternative for scientific research to address the issue of cow milk (CM) allergy due to its protein profile. A decrease in immunoreactive properties can be achieved by thermal, enzymatic, and hydrolytic processing. Therefore, the aim of this study was to explore the possibility of reducing the immunoreactivity of horse milk proteins by microbial transglutaminase (TG) polymerization. To determine how TG linking alters immunoreactivity under simulated digestion of the examined milk, analyses were performed before, during, and after digestion. The dose-dependent (1, 10, and 100 U) effects of microbial TG on horse and cow milk were analyzed. A consecutive 3-stage digestion was simulated with salivary, gastric, and intestinal fluids. The effects of digestion were analyzed by SDS-PAGE, particle size analysis, and size-exclusion chromatography. Immunoreactivity was assessed using competitive ELISA (β-lactoglobulin and α-casein) and immunodot (sera from 7 patients aged 3 to 13 years who are allergic to CM proteins). Horse milk contained almost half of the amount of total proteins in CM. The dose 1 U/g of total milk protein changed the immunoreactivity of both cow and horse milk. With increasing TG doses, α-casein immunoreactivity increased, and β-lactoglobulin decreased. After total digestion, horse milk was characterized by 2.4-fold lower average IgE and 4.8-fold lower IgG reactivity than CM. We found that TG alters the IgE and IgG reactivity of CM after in vitro digestion. Horse milk was less reactive to IgE and IgG than was CM, with animal and patient sera. The effect of TG on immunoreactivity depends on enzyme quantity and milk protein type. The diet based on modified horse milk proteins could be an alternative for some patients with CM protein allergy; however, confirmation through clinical trials is needed.
Collapse
Affiliation(s)
- J Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - B Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - B Fotschki
- Department of Biological Function of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - B Kalicki
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - N Rigby
- Institute of Food Research, Norwich NR4 7UA, United Kingdom; School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom
| | - A Mackie
- Institute of Food Research, Norwich NR4 7UA, United Kingdom; School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Fotschki J, Szyc AM, Laparra JM, Markiewicz LH, Wróblewska B. Immune-modulating properties of horse milk administered to mice sensitized to cow milk. J Dairy Sci 2016; 99:9395-9404. [PMID: 27771084 DOI: 10.3168/jds.2016-11499] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023]
Abstract
The aim of this study was to examine immune adaptive changes, the expression of innate biomarkers and variations in intestinal microbiota composition after horse-milk administration in BALB/c mice, which were sensitized intraperitoneally using cow β-lactoglobulin and α-casein with aluminum adjuvant. We measured serum antibody IgE levels and the expression of MCP-1, IL-4, and TNF-α in duodenal samples. Changes in immune cell populations in peripheral blood were quantified using flow cytometry, and intestinal microbiota composition was assessed using real-time PCR. We found that horse-milk administration decreased serum IgE levels in sensitized mice. The groups that received horse milk showed an increased population of regulatory T cells (CD4+Foxp3+). Horse-milk administration decreased the mRNA levels of IL-4 and resulted in higher transcripts of TLR-4 in all treatment groups; however, the levels of MCP-1, TNF-α, and TLR-2 were unaltered. After horse-milk treatment, we observed a positive effect, with increased numbers of intestinal Bifidobacterium spp. We observed immune-modulating properties of horse milk, but future studies should focus on testing horse-milk processing, such as fermentation and destroying most allergenic epitopes to continue research under clinical conditions.
Collapse
Affiliation(s)
- J Fotschki
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - A M Szyc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - J M Laparra
- Immunonutrition and Health Group, Valencian International University, C/Gorgos 5-7, 46021 Valencia, Spain
| | - L H Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - B Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
7
|
Lactobacillus casei LcY decreases milk protein immunoreactivity of fermented buttermilk but also contains IgE-reactive proteins. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|