1
|
Kasprzak D, Gaweł-Bęben K, Kukula-Koch W, Strzępek-Gomółka M, Wawruszak A, Woźniak S, Chrzanowska M, Czech K, Borzyszkowska-Bukowska J, Głowniak K, Matosiuk D, Orihuela-Campos RC, Jodłowska-Jędrych B, Laskowski T, Meissner HO. Lepidium peruvianum as a Source of Compounds with Anticancer and Cosmetic Applications. Int J Mol Sci 2024; 25:10816. [PMID: 39409148 PMCID: PMC11476809 DOI: 10.3390/ijms251910816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Lepidium peruvianum-an edible herbaceous biennial plant distributed in the Andes-has been used for centuries as food and as a natural medicine in treating hormonal disorders, as an antidepressant, and as an anti-osteoporotic agent. The presented study aims to prove its beneficial cosmetic and chemopreventive properties by testing the antiradical, whitening, cytotoxic, and anticancer properties of differently colored phenotypes that were extracted using three solvents: methanol, water, and chloroform, with the help of the chemometric approach to provide evidence on the impact of single glucosinolanes (seven identified compounds in the HPLC-ESI-QTOF-MS/MS analysis) on the biological activity of the total extracts. The tested extracts exhibited moderate antiradical activity, with the methanolic extract from yellow and grey maca phenotypes scavenging 49.9 ± 8.96% and 48.8% ± 0.44% of DPPH radical solution at a concentration of 1 mg/mL, respectively. Grey maca was the most active tyrosinase inhibitor, with 72.86 ± 3.42% of the enzyme activity calculated for the water extract and 75.66 ± 6.21% for the chloroform extract. The studies in cells showed no cytotoxicity towards the human keratinocyte line HaCaT in all studied extracts and a marked inhibition of cell viability towards the G361 melanoma cell line, which the presence of pent-4-enylglucosinolate, glucotropaeolin, and glucoalyssin in the samples could have caused. Given all biological activity tests combined, the three mentioned compounds were shown to be the most significant positive contributors to the results obtained, and the grey maca water extract was found to be the best source of the former compound among the tested samples.
Collapse
Affiliation(s)
- Dorota Kasprzak
- Department of Cosmetology, Faculty of Health Sciences, Wincenty Pol Academy of Applied Sciences in Lublin, Choiny 2 Street, 20-816 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Sylwia Woźniak
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Marcelina Chrzanowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Karolina Czech
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Kazimierz Głowniak
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Rita Cristina Orihuela-Campos
- Academic Department of Stomatology for Children and Adolescents, Integrated Faculties of Medicine, Stomatology and Nursing, Cayetano Heredia Peruvian University, Av. Honorio Delgado 430, Lima 15102, Peru;
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland;
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Henry O. Meissner
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora, Gold Coast, QLD 4221, Australia;
| |
Collapse
|
2
|
Grasso F, Martínez MMA, Turrini F, Méndez Paz D, Vázquez Sobrado R, Orlandi V, Jenssen M, Lian K, Rombi J, Tiso M, Razzuoli E, Costas C, Boggia R. Antioxidant Marine Hydrolysates Isolated from Tuna Mixed Byproducts: An Example of Fishery Side Streams Upcycling. Antioxidants (Basel) 2024; 13:1011. [PMID: 39199255 PMCID: PMC11351660 DOI: 10.3390/antiox13081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The aim of this research is to propose simple and scalable processes to obtain bioactive peptides extensively hydrolyzed starting from a tuna mixed biomass. The upcycling of this powdered biomass is challenging since it comes from the unsorted industrial side streams of the tuna canning process (cooked residues from fillet trimming) after a patented mild dehydration useful for preventing its degradation until its exploitation. Two different protocols were proposed, with and without the inclusion of an exogenous enzyme (Enzymatic-Assisted Extraction, EAE), with no relevant differences in yields (24% vs. 22%) and a comparable amino acid composition. Nevertheless, the former protocol (with EAE) provided peptides with an average molecular weight of 1.3 kDa, and the second one (without EAE) provided peptides with an average molecular weight of 2.2 kDa. The two corresponding types of tuna protein hydrolysates (Enzymatic Hydrolysates (EH) and Non-Enzymatic Hydrolysates (NEH)) were characterized by proximate compositions, pH, color profile, amino acid analysis, FTIR spectra, and molecular weight distribution. In addition, several biological analyses were performed to assess their potential use as nutraceutical supplements: special attention has been paid to antioxidant activity using three different methods to quantify it. EH showed the most promising antioxidant activity which could be exploited also in other fields (e.g., biomaterials, cosmetics).
Collapse
Affiliation(s)
- Federica Grasso
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - María Mercedes Alonso Martínez
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Federica Turrini
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy
| | - Diego Méndez Paz
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Rebeca Vázquez Sobrado
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Valentina Orlandi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Marte Jenssen
- Nofima, Muninbakken, 9-13, 9019 Tromsø, Norway; (M.J.); (K.L.)
| | - Kjersti Lian
- Nofima, Muninbakken, 9-13, 9019 Tromsø, Norway; (M.J.); (K.L.)
| | - Junio Rombi
- MICAMO LAB, Via XX Settembre 33/10, 16121 Genova, Italy; (J.R.); (M.T.)
| | - Micaela Tiso
- MICAMO LAB, Via XX Settembre 33/10, 16121 Genova, Italy; (J.R.); (M.T.)
| | - Elisabetta Razzuoli
- Sezione di Genova Portualità Marittima, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy;
| | - Celina Costas
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (M.M.A.M.); (D.M.P.); (R.V.S.); (C.C.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Xia N, Xu L, Huang M, Xu D, Li Y, Wu H, Mei Z, Yu Z. Neuroprotection of macamide in a mouse model of Alzheimer's disease involves Nrf2 signaling pathway and gut microbiota. Eur J Pharmacol 2024; 975:176638. [PMID: 38734297 DOI: 10.1016/j.ejphar.2024.176638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The underlying mechanisms of macamide's neuroprotective effects in Alzheimer's disease (AD) were investigated in the paper. Macamides are considered as unique ingredients in maca. Improvement effects and mechanisms of macamide on cognitive impairment have not been revealed. In this study, Vina 1.1.2 was used for docking to evaluate the binding abilities of 12 main macamides to acetylcholinesterase (AChE). N-benzyl-(9Z,12Z)-octadecadienamide (M 18:2) was selected to study the following experiments because it can stably bind to AChE with a strong binding energy. The animal experiments showed that M 18:2 prevented the scopolamine (SCP)-induced cognitive impairment and neurotransmitter disorders, increased the positive rates of Nrf2 and HO-1 in hippocampal CA1, improved the synaptic plasticity by maintaining synaptic morphology and increasing the synapse density. Moreover, the contents of IL-1β, IL-6, and TNF-α in the hippocampus, serum, and colon were reduced by M 18:2. Furthermore, M 18:2 promoted colonic epithelial integrity and partially restored the composition of the gut microbiota to normal, including decreased genera Clostridiales_unclassified and Lachnospiraceae_unclassified, as well as increased genera Muribaculaceae_unclassified, Muribaculum, Alistipes, and Bacteroides, which may be the possible biomarkers of cognitive aging. In summary, M 18:2 exerted neuroprotective effects on SCP-induced AD mice possibly via activating the Nrf2/HO-1 signaling pathway and modulating the gut microbiota.
Collapse
Affiliation(s)
- Nengyin Xia
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mengyuan Huang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dengrui Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Haoming Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zejun Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
4
|
Dokkedal-Silva V, Morelhão PK, Tufik S, Andersen ML. The increasing popularity of Peruvian maca (Lepidium meyenii) and its potential impacts on sleep and quality of life. Clinics (Sao Paulo) 2024; 79:100398. [PMID: 38848635 PMCID: PMC11214369 DOI: 10.1016/j.clinsp.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
•Peruvian maca is a popular supplement consumed to increase energy and sexual health. •Studies report it also has anti-sinflammatory and neuroprotective effects. •Stimulant properties of this supplement raise questions about its effects on sleep. •Investigation of possible reinforcing characteristics is also recommended.
Collapse
Affiliation(s)
| | | | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Monica Levy Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Chae J, Hahn D, Nam JO. Macamide, a component of maca (Lepidium meyenii Walp) lipophilic extract, enhances myogenic differentiation via AKT/p38 signaling and attenuates dexamethasone-induced muscle atrophy. Biomed Pharmacother 2024; 172:116249. [PMID: 38340399 DOI: 10.1016/j.biopha.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Maca (Lepidium meyenii) is a plant that grows in the central Andes region of Peru, and it has been reported to have various bioactive functions, such as improving or preventing osteoporosis, sexual dysfunction, and memory impairment. In this study, maca roots of various colors (yellow, red, or black) were extracted using different polar solvents (PE, HEX, or BuOH) to compare their effects on muscle differentiation. Among them, the red maca lipophilic extract, which showed the most effectiveness, was chosen for further investigation. Our results show that RMLE enhances muscle differentiation by inducing MyoD-E2A heterodimerization through the activation of the AKT/p38 pathway. Additionally, RMLE attenuated dexamethasone-induced muscle atrophy by inhibiting nuclear translocation of FoxO3a and expression of E3-ligase (MAFbx and MURF1) in vitro and in vivo. Therefore, based on these results suggest that lipophilic extract of maca, which can abundantly contain nonpolar compounds, macamides, can enhance the functional properties of maca in alleviating muscle homeostasis.
Collapse
Affiliation(s)
- Jongbeom Chae
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongyup Hahn
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Deep Eutectic Solvent-Based Ultrasound-Assisted Strategy for Simultaneous Extraction of Five Macamides from Lepidium meyenii Walp and In Vitro Bioactivities. Foods 2023; 12:foods12020248. [PMID: 36673339 PMCID: PMC9858098 DOI: 10.3390/foods12020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
This study aimed to develop an integrated approach of deep eutectic solvent-based ultrasound-assisted extraction (DES-UAE) to simultaneously extract five major bioactive macamides from the roots of Lepidium meyenii Walp. Ten different DESs containing choline chloride and selected hydrogen-bond donors were prepared and evaluated based on the extracted macamide content determination using high-performance liquid chromatography (HPLC). Choline chloride/1,6-hexanediol in a 1:2 molar ratio with 20% water exhibited the most promising extraction efficiencies under the optimized parameters verified using single-factor optimization as well as Box-Behnken design. Using the optimized DES-UAE method, the extraction efficiencies of the five macamides were up to 40.3% higher compared to those using the most favorable organic solvent petroleum ether and were also superior to those of the other extraction methods, such as heating and combination of heating and stirring. Furthermore, using the macroporous resin HPD-100, the recoveries of the five target macamides from the DES extraction reached 85.62-92.25%. The 20 μg/mL group of the five macamide extracts showed superior neuroprotective activity against PC12 cell injury than that of the positive drug nimodipine. The macamide extracts also showed higher NO inhibition in LPS-stimulated RAW264.7 cells. Thus, the developed approach was a green and potential alternative that can be used to extract bioactive macamide constituents from L. meyenii in the pharmaceutical and food industries.
Collapse
|
7
|
Zhu H, Wang R, Hua H, Cheng Y, Guo Y, Qian H, Du P. The macamide relieves fatigue by acting as inhibitor of inflammatory response in exercising mice: From central to peripheral. Eur J Pharmacol 2022; 917:174758. [PMID: 35026191 DOI: 10.1016/j.ejphar.2022.174758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
Macamides are the major and unique bioactive compounds of Lepidium meyenii (Walp.) or Maca. N-benzyl-(9Z, 12Z)-octadecadienamide (N-benzyl-linoleamide) is one of the most biologically active macamides with various pharmacological activities - anti-fatigue, neuroprotective, antioxidant, anti-tumoral activities, anti-inflammatory, and analgesic. In this study, the anti-fatigue properties of N-benzyl-(9Z, 12Z)-octadecadienamide were further evaluated by a weight-loaded forced swimming test. Results indicated N-benzyl-(9Z, 12Z)-octadecadienamide supplementation increased the forelimb grip strength of mice and exercising time remaining on the Rota-rod test. Furthermore, significant decreases in pro-inflammatory factors and reactive oxygen species (ROS) contents were observed in mice receiving N-benzyl-(9Z, 12Z)-octadecadienamide treatment after a 30 min swimming test, which was equivalent to that of caffeine. Histological analysis also indicated that N-benzyl-(9Z, 12Z)-octadecadienamide attenuated damage to the liver in mice by up-regulating the expression of heme oxygenase-1 (HO-1) and inhibiting the expression of Interleukin (IL)-1β during exercise. Pearson correlation analysis suggested peripheral fatigue indexes, including energy sources, metabolites were significantly correlated with inflammatory factors and ROS levels. Likewise, central fatigue parameters are also associated, including hippocampal inflammatory response and hypothalamic neurotransmitters. Hence, macamides can be considered to have great potential as a natural drug with high efficiency and low side effects for fatigue management.
Collapse
Affiliation(s)
- Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruoyong Wang
- Air Force Medical Center, Beijing, 100142, China
| | - Hanyi Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Du
- Air Force Medical Center, Beijing, 100142, China.
| |
Collapse
|
8
|
Influences of Dietary Supplementation with Maca (Lepidium meyenii) on Performance, Parameters of Growth Curve and Carcass Characteristics in Japanese Quail. Animals (Basel) 2022; 12:ani12030318. [PMID: 35158642 PMCID: PMC8833503 DOI: 10.3390/ani12030318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary It is known that the bioactive compounds (N-benzyl-palmitamide, benzyl isothiocyanate, glucosinolates and phenolics) in the maca plant are appetizing, as well as having antioxidant effects and improving reproductive ability. The aim of this study was to determine the effects of adding maca plant powder to the ration at different levels on growth, slaughter carcass, partial egg production and some reproductive characteristics of Japanese quail (Coturnix coturnix japonica). Addition of maca powder to the diet increased the feed consumption but did not affect growth, slaughter carcass, partial egg production or fertility. In addition, maca powder reduced embryonic deaths and improved chick quality. According to these results, the positive effects of short-term application of maca powder are not observed during the fattening period in Japanese quails. Abstract Maca plant contains rich nutrients and in addition, it has various bioactive substances (N-benzyl-palmitamide, benzyl isothiocyanate, glucosinolates and phenolics). It is used to improve reproductive properties and has antioxidant effects for both humans and animals. The aim of this study was to determine the effects of adding maca plant powder to the ration at different levels on growth, slaughter carcass, partial egg production and some reproductive characteristics in Japanese quail (Coturnix coturnix japonica). The experimental groups were formed by adding 0% (control), 0.05% and 0.1% maca powder to the diet, and a total of 300 birds were used. Growth (weekly body weights, parameters of Gompertz growth function), feed efficiency and carcass characteristics of quails in the 42-day fattening trial were determined. Reproductive characteristics were measured up to 22 weeks of age. Addition of maca powder to the diet increased the feed consumption (p < 0.05) but did not affect body weights at 35 and 42 days of age, β0 and β1 parameters or point of inflection weight of the Gompertz model, carcass traits, partial egg production or fertility. It may be advisable to add 0.1% maca powder to the diets of breeders. Besides, maca powder reduced embryonic deaths and improved chick quality (both p < 0.05). It is thought that different results for reproductive traits can be obtained if maca powder is used for a longer period in the diets of breeder quail flocks.
Collapse
|
9
|
Chen R, Wei J, Gao Y. A review of the study of active components and their pharmacology value in Lepidium meyenii (Maca). Phytother Res 2021; 35:6706-6719. [PMID: 34533247 DOI: 10.1002/ptr.7257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
Lepidium meyenii (Maca) contains several active components, including alkaloids, glucosinolates, isothiocyanates, polysaccharides, polyphenols, and sterols, which make it have the traditional therapeutic uses. In this paper, we summarized the analytical progress of the active components associated with alkaloids, polysaccharides, glucosinolates, sterols, free fatty acids, flavonoids, and natural phenols in Maca by mass spectrometry (MS). Due to the effect of color and type on active components in Maca, we summarized the study of quality evaluation about Maca according to the type and the content of active components such as glucosinolates, essential oils, macamides, and macaenes by MS. Additionally, the research on the change of active components in Maca at different growth stages by MS will be beneficial to full utilization of active components in Maca and other natural resources. We reviewed the study in the visible distribution of amino acids, amide alkaloids, imidazolium alkaloids, and saccharides in Maca by imaging mass spectrometry (IMS). We also reviewed the pharmacology value associated with improvement of reproductive function, anti-stress response, anti-osteoporosis, antitumor activity, clinical research and toxicity of Maca, and so forth. Nevertheless, due to individual differences and limitations of the subjects, further high-quality studies are needed to confirm the clinical efficacy of the plant.
Collapse
Affiliation(s)
- Rui Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China
| | - Jinchao Wei
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yumei Gao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China
| |
Collapse
|
10
|
Orellana Mendoza E, Cuadrado W, Yallico L, Zárate R, Quispe-Melgar HR, Limaymanta CH, Sarapura V, Bao-Cóndor D. Heavy metals in soils and edible tissues of Lepidium meyenii (maca) and health risk assessment in areas influenced by mining activity in the Central region of Peru. Toxicol Rep 2021; 8:1461-1470. [PMID: 34401355 PMCID: PMC8353470 DOI: 10.1016/j.toxrep.2021.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Heavy metal contamination of soil and agricultural products is an environmental problem, has an adverse effect on the quality of food crops, and is a danger to food security and public health. The concentration of arsenic (As), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) in surface soils and edible hypocotyls tissues of two ecotypes of Lepidium meyenii Walpers (maca) was evaluated in three districts of the Junín province, Peru. In addition, the risk to human health due to exposure to heavy metals from maca consumption was evaluated. Soil samples and maca hypocotyls were collected in areas influenced by mining and metallurgical activity. The mean concentration of Cd (0.32 ± 0.23 mg/kg) and Pb (0.20 ± 0.12 mg/kg) in maca samples exceeded the values established by the Food and Agriculture Organization and the World Health Organization. The bioconcentration factor was less than 1. The estimated daily intake of each metal was below the oral reference dose. The hazard quotient and hazard index were less than 1, it is unlikely to cause non-cancer adverse health outcome. The cancer risk for As and Cd was higher than the tolerable limit (1 × 10-6) in children and adults. In the district of Ondores, the cancer risk for As in children was higher than the acceptable limit (1 × 10-4). Residents of the Ondores district would be more exposed to As and Cd from consumption of maca hypocotyls. It is very important to carry out continuous monitoring of other toxic metals in different ecotypes of maca (red, black, yellow, purple, creamy white, pink) in order to evaluate the variation in the accumulation of heavy metals and the level of toxicity of each metal between ecotypes.
Collapse
Affiliation(s)
- Edith Orellana Mendoza
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Walter Cuadrado
- Faculty of Applied Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Luz Yallico
- Faculty of Nursing, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Rosa Zárate
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | | | - Cesar H. Limaymanta
- Department of Library and Information Science, Universidad Nacional Mayor de San Marcos, Av. Universitaria with Av. Venezuela, Lima, Lima District 15081, Peru
- Department of Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Vicky Sarapura
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Diana Bao-Cóndor
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| |
Collapse
|
11
|
Liu JH, Zhang RR, Peng XR, Ding ZT, Qiu MH. Lepipyrrolins A-B, two new dimeric pyrrole 2-carbaldehyde alkaloids from the tubers of Lepidium meyenii. Bioorg Chem 2021; 112:104834. [PMID: 33813309 DOI: 10.1016/j.bioorg.2021.104834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Nine new pyrrole alkaloids, including two undescribed dimeric pyrrole 2‑carbaldehyde alkaloids, lepipyrrolins A-B (1-2), seven pyrrole-alkaloid derivatives, macapyrrolins D-J (3-9), along with three known ones (10-12) were isolated from the rhizomes of Lepidium meyenii. Their structures and absolute configurations were demonstrated by extensive spectroscopic data (1D, 2D NMR, HRESIMS), and calculated electronic circular dichroism (ECD) experiment. Compounds 1, 3-12 were tested for their nitric oxide inhibitory effects. Furthermore, compound 1 was evaluated for its cytotoxic activity against five human tumor cell lines (HL-60, SMMC-7221, A549, MCF-7, and SW480) in vitro, and displayed selective cytotoxicity against SMMC-7721 with IC50 value of 16.78 ± 0.49 μM.
Collapse
Affiliation(s)
- Jun-Hong Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ran-Ran Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
12
|
Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta 2021; 221:121635. [DOI: 10.1016/j.talanta.2020.121635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
13
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
14
|
Feng T, Qiu S, Tan G, Tian D, Wu D, Zhou L, Yang M, Zhu S. Identification of Suitable Barcodes for Specifically Detecting Adulterants of Turnip (Brassica rapa) and Radish (Raphanus sativus) in Maca (Lepidium meyenii). FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01857-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ticona LA, Coballes MR, Potente G, Sánchez ÁR. Anti-inflammatory Potential of Macamides Isolated from Yellow Tubers
of Mashua (Tropaeolum Tuberosum). ACTA ACUST UNITED AC 2020. [DOI: 10.1055/a-1159-4242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAlthough Tropaeolum tuberosum tubers have been consumed cooked as a folk
remedy for the treatment of skin, lungs, liver and kidneys diseases, these uses
have very limited scientific basis. Therefore, this article develops a
phytochemical analysis of the yellow tubers of T. tuberosum with the
objective to assess whether the isolated compounds have anti-inflammatory
potential in the CCD-1109Sk, MRC-5 and RWPE-1 cell lines. We performed an
extraction of T. tuberosum tubers using different organic solvents,
followed by a bioguided chromatographic separation. Four macamides were
identified by LC/MS techniques, but only N-benzyllinoleamide
(1) and N-benzyloleamide (2) were isolated and
elucidated by NMR/MS techniques, given that they were present in a
larger proportion in the tubers. The anti-inflammatory potential of macamides
was evaluated by the inhibition of NF-κB and STAT3 activation. Both
compounds displayed inhibition of NF-κB activation with IC50
values of 2.28±0.54 µM;
3.66±0.34 µM and
4.48±0.29 µM for compound (1) and
6.50±0.75 µM;
7.74±0.19 µM and
8.37 ±0.09 µM for compound (2)
in CCD-1109Sk, MRC-5 and RWPE-1 cell lines, respectively. Moreover, both
compounds inhibited the STAT3 activation with IC50 of
0.61±0.76 µM;
1.24±0.05 µM and
2.10±0.12 µM for compound (1) and
5.49±0.31 µM;
7.73 ±0.94 µM and
7.79±0.30 µM for compound (2).
Therefore, isolated macamides of T. tuberosum tubers showed promising
anti-inflammatory effects, suggesting a possible beneficial use to combat
inflammatory processes of skin, lung and prostate.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University
Autónoma of Madrid, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of
Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - María Rodríguez Coballes
- Department of Organic Chemistry, Faculty of Sciences, University
Autónoma of Madrid, Madrid, Spain
| | - Giulia Potente
- Department for Life Quality Studies, University of Bologna, Rimini,
Italy
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University
Autónoma of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Zhang S, Yang F, Shao J, Pu H, Ruan Z, Yang W, Li H. The metabolic formation profiles of macamides accompanied by the conversion of glucosinolates in maca (
Lepidium meyenii
) during natural air drying. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shao‐Zhi Zhang
- Institute of Agro‐Products Processing Science and Technology Yunnan Academy of Agricultural Sciences Kunming 650223 China
| | - Fang Yang
- Institute of Agro‐Products Processing Science and Technology Yunnan Academy of Agricultural Sciences Kunming 650223 China
| | - Jin‐Liang Shao
- Institute of Quality Standard and Testing Technology Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Hong‐Mei Pu
- Institute of Agro‐Products Processing Science and Technology Yunnan Academy of Agricultural Sciences Kunming 650223 China
| | - Zhen‐Yuan Ruan
- Department of Landscape Architecture Yunnan Forestry Technological College Kunming 650224 China
| | - Wan‐Lin Yang
- Institute of Agro‐Products Processing Science and Technology Yunnan Academy of Agricultural Sciences Kunming 650223 China
- Institute of Quality Standard and Testing Technology Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Hong Li
- Institute of Agro‐Products Processing Science and Technology Yunnan Academy of Agricultural Sciences Kunming 650223 China
| |
Collapse
|
17
|
Yu Z, Jin W, Cui Y, Ao M, Liu H, Xu H, Yu L. Protective effects of macamides from Lepidium meyenii Walp. against corticosterone-induced neurotoxicity in PC12 cells. RSC Adv 2019; 9:23096-23108. [PMID: 35514490 PMCID: PMC9067313 DOI: 10.1039/c9ra03268a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Maca has attracted considerable attention owing to its neuroprotective effects in vitro and vivo. Macamides, a series of nonpolar and long-chain fatty acid N-benzylamides, are considered unique constituents in maca. This study investigated the protective effects of ethanol extracts of maca (EEM) and macamides on corticosterone-induced (CORT) neurotoxicity in rat pheochromocytoma (PC12) cells. CORT reduced cell viability and increased LDH release, intracellular ROS levels, and MMP decline rate, and induced mitochondrial apoptosis. However, pretreatment with EEM and macamides ameliorated CORT-induced neurotoxicity. EEM increased the cell viability and reduced the LDH release. M 18:1, M 18:2, and M 18:3 increased cell viability and reduced LDH release and intracellular ROS generation. M 18:2 and M 18:3 inhibited MMP reduction and reduced the Bax/Bcl-2 ratios. M 18:1 reduced the intracellular ROS without affecting other factors. Moreover, M 18:3 prevented CORT-induced mitochondrial apoptosis, restrained the expression levels of pro-apoptotic proteins, namely, Bax, cytochrome C, cleaved-caspase-3, and cleaved-PARP, and increased the expression levels of Bcl-2. In addition, M 18:3 increased Akt phosphorylation and the ability of M 18:3 to protect against CORT-induced cytotoxicity was remarkably reduced by LY294002, a PI3K phosphorylation inhibitor. M 18:3 also elevated the phosphorylation of CREB and activated the BDNF protein levels in CORT-induced PC12 cells. In conclusion, macamides, especially M 18:3, exert protective effects on CORT-induced PC12 cells. The cellular mechanism of M 18:3 against CORT-induced cytotoxicity may involve inhibition of mitochondrial apoptosis, and activation of Akt and CREB phosphorylation. Overall, macamides may potentially treat neuronal damage induced by CORT. Neuroprotection of macamides is probably associated with inhibition of the mitochondrial apoptotic and the activation of the phosphorylation of Akt and CREB.![]()
Collapse
Affiliation(s)
- Zejun Yu
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| | - Yajie Cui
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| | - Hao Liu
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| | - Hang Xu
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology
- Department of Biotechnology
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
18
|
Jin W, Chen X, Huo Q, Cui Y, Yu Z, Yu L. Aerial parts of maca (Lepidium meyenii Walp.) as functional vegetables with gastrointestinal prokinetic efficacy in vivo. Food Funct 2018; 9:3456-3465. [PMID: 29878016 DOI: 10.1039/c8fo00405f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lepidium meyenii Walp. (maca) has been utilized in the Andean region because of its edibleness and medicinal value. The aerial parts of maca (APM) were analyzed for protein, total sugar, vitamins, amino acids, and minerals and its characteristic active ingredients at five different growth stages. The results showed the high protein, total sugar, vitamin C, niacin, potassium, and calcium contents of APM. All 17 amino acids and the characteristic active ingredients, namely, macamide, glucosinolates, adenosine, and total saponins, were detected. We examined the effects of maca plant powders on gastric emptying and intestinal propulsion and the levels of serum motilin and gastrin in atropine-treated mice. Benzyl isothiocyanate (BITC) was investigated to identify the potential active material in APM. The results revealed that both maca plant powders and BITC can promote the gastrointestinal prokinetic efficacy. Thus, APM feature potential as new functional vegetable sources.
Collapse
Affiliation(s)
- Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
19
|
Chen JJ, Gong PF, Liu YL, Liu BY, Eggert D, Guo YH, Zhao MX, Zhao QS, Zhao B. Postharvest Ultrasound-Assisted Freeze-Thaw Pretreatment Improves the Drying Efficiency, Physicochemical Properties, and Macamide Biosynthesis of Maca (Lepidium meyenii
). J Food Sci 2018. [DOI: 10.1111/1750-3841.14083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Jin Chen
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Dept. of Food Science and Technology; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Peng-Fei Gong
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Yi-Lan Liu
- Dept. of Chemical and Biomolecular Engineering; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Bo-Yan Liu
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Dawn Eggert
- Dept. of Food Science and Technology; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Yuan-Heng Guo
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Ming-Xia Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| |
Collapse
|
20
|
Beharry S, Heinrich M. Is the hype around the reproductive health claims of maca (Lepidium meyenii Walp.) justified? JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:126-170. [PMID: 28811221 DOI: 10.1016/j.jep.2017.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maca - Lepidium meyenii Walp. has been cultivated and used by Andean people for over 1300-2000 years in Peru as food and medicine. Starting in the late 1990's it has developed into an important herbal medicine in China and is now cultivated there widely, too AIM OF STUDY: This study aims to provide an insight into the emergence of maca on the global market as an alternative remedy to treat reproductive health related problems in both men and women and to critically assess these health claims. METHODOLOGY A search of electronic databases such as EMBASE and a hand-search was done to acquire peer-reviewed articles and reports about maca. RESULTS AND DISCUSSION Lepidium meyenii is used traditionally as a tonic, fertility enhancer for both humans and cattle, and to treat a variety of ailments such as rheumatism, respiratory disorders and anaemia among others. Maca root is cooked, baked, fermented as a drink and made into porridge. In the last twenty years, maca was introduced onto the global market and demand has dramatically grown over this time with its promotion on the internet, as the 'Peruvian Ginseng' for libido and fertility enhancement. It has also been said to treat menopausal symptoms, erectile dysfunction and benign prostatic hyperplasia. The sky-rocketing demand for the plant has seen a shift from traditional cultivation methods to mass production practices with the use of fertilisers and also pesticides; as maca is now grown in areas other than the Andes such as in the Yunnan province in China. This can potentially affect the phytochemistry and composition of the plant and thus, the quality, safety and efficacy of maca products. Meanwhile, research into maca's medicinal properties has followed the spike in popularity of maca and has been focused mainly on maca's aphrodisiac and fertility enhancing properties. So far, the in vivo studies and clinical trials conducted have yielded inconclusive results. Some of the key limitations reside in methodology and sample size. Chemical profiling, led to the discovery of new compounds unique to maca, such as, 'macamides' and also other active metabolites like the glucosinolates; to which the medicinal effects of maca have been ascribed but cannot be confirmed due to lack of data. CONCLUSIONS To date, the health claims of maca cannot be fully supported from a scientific standpoint and more research is needed. It appears that the indigenous local knowledge about the health benefits of maca has been dragged out of context to fit the demands of a growing market for herbal remedies. This globalisation (or hype esp. in China) also has had serious consequences for the local producers in Peru. The lack of protocols to regulate the production and marketing of maca during this rapid expansion, poses a threat to both the safety of consumers and the sustainability of supply.
Collapse
Affiliation(s)
- Shruti Beharry
- Research Cluster Biodiversity and Medicines/Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, United Kingdom
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines/Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, United Kingdom.
| |
Collapse
|
21
|
Response Surface Methodology Optimization Extraction of Polysaccharides from Maca (Lepidium meyenii) Leaves and Primary Characterization. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-4801-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Zhang M, Wang G, Lai F, Wu H. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lepidium meyenii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1921-1931. [PMID: 26883006 DOI: 10.1021/acs.jafc.5b05610] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel polysaccharide named as MC-1 was isolated from the roots of Lepidium meyenii using a water extraction method. Structural characterization revealed that MC-1 had an average molecular weight of 11.3 kDa and consisted of arabinose (26.21%), mannose (11.81%), glucose (53.66%), and galactose (8.32%). The main linkage types of MC-1 were proven to be (1 → 5)-α-L-Ara, (1 → 3)-α-L-Man, (1 → 2,6)-α-L-Man, (1 → )-α-D-Glc, (1 → 4)-α-D-Glc, (1 → 6)-α-D-Glc and (1 → 6)-β-D-Gal by methylation analysis, periodate oxidation-Smith degradation and NMR analysis. The immunostimulating assay indicated that MC-1 could significantly enhance the pinocytic and phagocytic capacity and promote the NO, TNF-α, and IL-6 secretion of RAW 264.7 cells, involving toll-like receptor 2, complement receptor 3, and mannose receptor mainly. These results suggested the potential utilization of MC-1 as an attractive functional food supplement candidate for hypoimmunity population.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Guang Wang
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
| | - Furao Lai
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
- Guangdong Provincial Key Laboratory of Green Agricultural Products Processing, Guangzhou, Guangdong 510640, China
| | - Hui Wu
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, Guangdong 510640, China
| |
Collapse
|