1
|
Silva BS, Amorim-Neto DP, Pia AKR, Campagnollo FB, Furtado MM, Carvalho ACBR, Oteiza JM, Sant'Ana AS. The fate of Salmonella enterica and Listeria monocytogenes in the pulp of eight native Brazilian and exotic fruits. Int J Food Microbiol 2024; 420:110783. [PMID: 38851046 DOI: 10.1016/j.ijfoodmicro.2024.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Despite the wide variety of native and exotic fruits in Brazil, there is limited understanding of their ability to support pathogens during storage. This study aimed to evaluate the behavior of Salmonella enterica and Listeria monocytogenes inoculated into the pulp of eight fruits native and exotic to Brazil: Jenipapo (Genipa americana L.), Umbu (Spondias tuberosa Arruda), Maná (Solanum sessiliflorum), Cajá-manga (Spondias dulcis), Physalis (Physalis angulata L.), Feijoa (Acca sellowiana), Cupuaçu (Theobroma grandiflorum) (average pH < 3.3) and in a low acidy fruit: Abiu (Pouteria caimito) (pH 6.11). The pathogens were inoculated into the different fruits and stored at 10, 20, 30 and 37 °C for up to 12 h and 6 days, respectively. Among the fruits evaluated, Abiu was the only one that allowed Salmonella growth, showing higher δ-values at 20 and 30 °C (5.6 log CFU/g for both temperatures). For Physalis and Feijoa, there was a small reduction in the pathogen concentration (<1 log-cycle), mainly at 10 and 20 °C, indicating its ability to remain in the matrices. For the other fruits, notable negative δ-values were obtained, indicating a tendency towards microbial inactivation. The survival potential was significantly affected by temperature in Abiu, Maná, Cupuaçu, and Cajá-manga (p < 0.05). The same phenomena regarding δ-value were observed for L. monocytogenes population, with the greatest survival potential observed at 20 °C in Abiu (3.3 log CFU/g). Regarding the exponential growth rates in Abiu, the highest values were observed at 30 and 37 °C, both for Salmonella (4.6 and 4.9 log (CFU/g)/day, respectively) and for L. monocytogenes (2.8 and 2.7 log (CFU/g)/day, respectively), with no significant difference between both temperatures. Regarding microbial inactivation, L. monocytogenes showed greater resistance than Salmonella in practically all matrices. Jenipapo and Umbu were the pulps that, in general, had the greatest effect on reducing the population of pathogens. Furthermore, the increase in storage temperature seems to favor the increase on inactivation rates. In conclusion, Salmonella and L. monocytogenes can grow only in Abiu pulp, although they can survive in some acidic tropical fruits kept at refrigeration and abusive temperatures.
Collapse
Affiliation(s)
- Beatriz S Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Fernanda B Campagnollo
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Carolina B R Carvalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juan M Oteiza
- Centro de Investigación y Asistencia Técnica a la Industria (CIATI AC), Neuquén, Argentina
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Characterization and Antibiotic Resistance of Listeria monocytogenes Strains Isolated from Greek Myzithra Soft Whey Cheese and Related Food Processing Surfaces over Two-and-a-Half Years of Safety Monitoring in a Cheese Processing Facility. Foods 2023; 12:foods12061200. [PMID: 36981126 PMCID: PMC10048787 DOI: 10.3390/foods12061200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Listeriosis is a serious infectious disease with one of the highest case fatality rates (ca. 20%) among the diseases manifested from bacterial foodborne pathogens in humans, while dairy products are often implicated as sources of human infection with Listeria monocytogenes. In this study, we characterized phenotypically and genetically by whole-genome sequencing (WGS) 54 L. monocytogenes strains isolated from Myzithra, a traditional Greek soft whey cheese (48 isolates), and swabs collected from surfaces of a cheese processing plant (six isolates) in the Epirus region of Greece. All but one strain of L. monocytogenes belonged to the polymerase chain reaction (PCR) serogroups IIa (16.7%) and IIb (81.5%), corresponding to serotypes 1/2a, 3a and 1/2b, 3b, 7, respectively. The latter was identified as a PCR-serogroup IVb strain (1.8%) of serotypes 4b, 4d, 4e. Bioinformatics analysis revealed the presence of five sequence types (STs) and clonal complexes (CCs); ST1, ST3, ST121, ST 155, ST398 and CC1, CC3, CC121, CC155, CC398 were thus detected in 1.9, 83.3, 11.0, 1.9, and 1.9% of the L. monocytogenes isolates, respectively. Antibiograms of the pathogen against a panel of seven selected antibiotics (erythromycin, tetracycline, benzylpenicillin, trimethoprim-sulfamethoxazole, ampicillin, ciprofloxacin, and meropenem) showed that 50 strains (92.6%), the six surface isolates also included, were intermediately resistant to ciprofloxacin and susceptible to the rest of the six antimicrobial agents tested, whereas strong resistance against the use of a single from three implicated antibiotics was recorded to four strains (7.4%) of the pathogen isolated from Myzithra cheese samples. Thence, the minimum inhibitory concentrations (MICs) were determined for erythromycin (MIC = 0.19 μg/mL), ciprofloxacin (MIC ≥ 0.19 μg/mL), and meropenem (MIC = 0.64 μg/mL), and finally, just one strain was deemed resistant to the latter antibiotic. The phylogenetic positions of the L. monocytogenes strains and their genetic variability were determined through WGS, whilst also stress response and virulence gene analysis for the isolates was conducted. Findings of this work should be useful as they could be utilized for epidemiological investigations of L. monocytogenes in the food processing environment, revealing possible contamination scenarios, and acquired antimicrobial resistance along the food production chain.
Collapse
|
3
|
Occurrence of Listeria spp. in Soft Cheese and Ice Cream: Effect of Probiotic Bifidobacterium spp. on Survival of Listeria monocytogenes in Soft Cheese. Foods 2022; 11:foods11213443. [DOI: 10.3390/foods11213443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes is one of the most important emerging foodborne pathogens. The objectives of this work were to investigate the incidence of Listeria spp. and L. monocytogenes in soft cheese and ice cream in Assiut city, Egypt, and to examine the effect of some probiotic Bifidobacterium spp. (Bifidobacterium breve, Bifidobacterium animalis, or a mixture of the two) on the viability of L. monocytogenes in soft cheese. The existence of Listeria spp. and L. monocytogenes was examined in 30 samples of soft cheese and 30 samples of ice cream. Bacteriological analyses and molecular identification (using 16S rRNA gene and hlyA gene for Listeria spp. and L. monocytogenes, respectively) were performed on those samples. Additionally, Bifidobacterium spp. were incorporated in the making of soft cheese to study their inhibitory impacts on L. monocytogenes. Out of 60 samples of soft cheese and ice cream, 25 samples showed Listeria spp., while L. monocytogenes was found in only 2 soft cheese samples. Approximately 37% of soft cheese samples (11 out of 30) had Listeria spp. with about 18.0% (2 out of 11) exhibiting L. monocytogenes. In ice cream samples, Listeria spp. was presented by 47% (14 out of 30), while L. monocytogenes was not exhibited. Moreover, the addition of B. animalis to soft cheese in a concentration of 5% or combined with B. breve with a concentration of 2.5% for each resulted in decreasing L. monocytogenes efficiently during the ripening of soft cheese for 28 d. Listeria spp. is widely found in milk products. Probiotic bacteria, such as Bifidobacterium spp., can be utilized as a natural antimicrobial to preserve food and dairy products.
Collapse
|
4
|
Silva R, Pimentel TC, Eustáquio de Matos Junior F, Esmerino EA, Freitas MQ, Fávaro-Trindade CS, Silva MC, Cruz AG. Microencapsulation with spray-chilling as an innovative strategy for probiotic low sodium requeijão cremoso processed cheese processing. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Irkin R, Özgür N, Tas N. Usıng optımızatıon method for determınıng lactıc acıd bacterıa counts ın whıte cheese wıth dıfferent salt concentratıons. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Reyhan Irkin
- Izmir Democracy University Health Sciences Faculty, Nutrition and Dietetics Dept Izmir Turkey
| | - Nihal Özgür
- Balikesir University Science and Art Faculty Mathematics Department TR10145 Balikesir Turkey
| | - Nihal Tas
- Balikesir University Science and Art Faculty Mathematics Department TR10145 Balikesir Turkey
| |
Collapse
|
6
|
Combined effect of various salt concentrations and lactic acid bacteria fermentation on the survival of Escherichia coli O157:H7 and Listeria monocytogenes in white kimchi at different temperatures. Food Sci Biotechnol 2021; 30:1593-1600. [PMID: 34868707 DOI: 10.1007/s10068-021-00979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
This study was conducted to investigate the effect of lactic acid fermentation and salt on the survival of Escherichia coli O157:H7 and Listeria monocytogenes in white kimchi containing various salt concentrations during storage at 4 and 15 °C. The survivals of pathogens during fermentation differed depending on salt concentrations and storage temperature. The survival of pathogens in kimchi containing 3% salt was higher than that in kimchi containing 1 and 2% salt, which may be related to the fact that lactic acid bacteria remained constant throughout the initial stage of fermentation. Thus, there was a lower reduction in the pH of kimchi containing 3% salt regardless of storage temperature. These protective effects may result from a gradual reduction in pH; however, the mechanisms are not clearly understood. Therefore, further investigations are needed to explain the mechanism by which lactic acid fermentation and salt in kimchi affect the growth of foodborne pathogens.
Collapse
|
7
|
Effect of Salt Content Reduction on Food Processing Technology. Foods 2021; 10:foods10092237. [PMID: 34574347 PMCID: PMC8469246 DOI: 10.3390/foods10092237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Higher salt intake is associated with the risk of cardiovascular and kidney diseases, hypertension and gastric cancer. Salt intake reduction represents an effective way to improve people’s health, either by the right choice of food or by a reduction of added salt. Salt substitutes are often used and also herb homogenates are treated by high pressure technology. Salt reduction significantly influences the shelf life, texture, pH, taste, and aroma of cheese. The composition of emulsifying salts or starter cultures must be modified to enact changes in microbial diversity, protease activity and the ripening process. The texture becomes softer and aroma atypical. In bakery products, a salt reduction of only 20–30% is acceptable. Water absorption, dough development, length and intensity of kneading and stability of dough are changed. Gluten development and its viscoelastic properties are affected. The salt reduction promotes yeast growth and CO2 production. Specific volume and crust colour intensity decreased, and the crumb porosity changed. In meat products, salt provides flavour, texture, and shelf life, and water activity increases. In this case, myofibrillar proteins’ solubility, water binding activity and colour intensity changes were found. The composition of curing nitrite salt mixtures and starter cultures must be modified.
Collapse
|
8
|
Makki GM, Kozak SM, Jencarelli KG, Alcaine SD. Evaluation of the efficacy of commercial protective cultures to inhibit mold and yeast in cottage cheese. J Dairy Sci 2021; 104:2709-2718. [PMID: 33455745 DOI: 10.3168/jds.2020-19136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Biopreservation is defined as using microbes, their constituents, or both to control spoilage while satisfying consumer demand for clean-label products. The study objective was to investigate the efficacy of bacterial cultures in biopreserving cottage cheese against postprocessing fungal contamination. Cottage cheese curd and dressing were sourced from a manufacturer in New York State. Dressing was inoculated with 3 different commercial protective cultures-PC1 (mix of Lacticaseibacillus spp. and Lactiplantibacillus spp.), PC2 (Lacticaseibacillus rhamnosus), and PC3 (Lactic. rhamnosus)-following the manufacturer recommended dosage and then mixed with curd. A control with no protective culture was included. Nine species of yeast (Candida zeylanoides, Clavispora lusitaniae, Debaryomyces hansenii, Debaryomyces prosopidis, Kluyveromyces marxianus, Meyerozyma guilliermondii, Pichia fermentans, Rhodotorula mucilaginosa, and Torulaspora delbrueckii) and 11 species of mold (Aspergillus cibarius, Aureobasidium pullulans, Penicillium chrysogenum, Penicillium citrinum, Penicillium commune, Penicillium decumbens, Penicillium roqueforti, Mucor genevensis, Mucor racemosus, Phoma dimorpha, and Trichoderma amazonicum) were included in the study. Fungi strains were previously isolated from dairy processing environments and were inoculated onto the cheese surface at a rate of 20 cfu/g. Cheese was stored at 6 ± 2°C. Yeast levels were enumerated at 0, 7, 14, and 21 d postinoculation. Mold growth was visually observed on a weekly basis through d 42 of storage and imaged. Overall, the protective cultures were limited in their ability to delay the outgrowth in cottage cheese, with only 8 of the 20 fungal strains showing an effect of the cultures compared with the control. The protective cultures were not very effective against yeast, with only PC1 able to delay the outgrowth of 3 strains: D. hansenii, Tor. delbrueckii, and Mey. guilliermondii. The efficacy of these protective cultures against molds in cottage cheese was more promising, with all protective cultures showing the ability to delay spoilage of at least 1 mold strain. Both PC1 and PC2 were able to delay Pen. chrysogenum and Pho. dimorpha outgrowth, and PC1 also delayed Pen. commune, Pen. decumbens, and Pen. roqueforti to different extents compared with the controls. This study demonstrates that commercial lactic acid bacteria cultures vary in their performance to delay mold and yeast outgrowth, and thus each protective culture should be evaluated against the specific strains of fungi of concern within each specific dairy facility.
Collapse
Affiliation(s)
- Ghadeer M Makki
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850
| | - Sarah M Kozak
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850
| | | | - Samuel D Alcaine
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850.
| |
Collapse
|
9
|
Sameli N, Skandamis PN, Samelis J. Application of Enterococcus faecium KE82, an Enterocin A-B-P-Producing Strain, as an Adjunct Culture Enhances Inactivation of Listeria monocytogenes during Traditional Protected Designation of Origin Galotyri Processing. J Food Prot 2021; 84:87-98. [PMID: 33411927 DOI: 10.4315/jfp-20-278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
ABSTRACT The ability of the enterocin A-B-P-producing Enterococcus faecium KE82 adjunct strain to inactivate Listeria monocytogenes during protected designation of origin Galotyri processing was evaluated. Three trials were conducted with artisan cheeses made from traditionally "boiled" (85°C) ewe's milk. The milk was cooled at 42°C and divided in two treatments. A1 milk was inoculated with Streptococcus thermophilus ST1 and Lactococcus lactis subsp. cremoris M78, and A2 was inoculated with the basic starter ST1+M78 plus KE82 (step 1). All milks were fermented at 20 to 22°C for 24 h (step 2), and the curds were drained at 12°C for 72 h (step 3) and then salted with 1.5 to 1.8% salt to obtain the fresh Galotyri cheeses (step 4). These fresh cheeses were then ripened at 4°C for 30 days (step 5). Because artificial listerial contamination in the dairy plant was prohibited, samples of A1 and A2 cheese milk (200 mL) or curd (200 g) were collected after steps 1 through 5, inoculated with L. monocytogenes 10 (3 to 4 log CFU/mL or g), incubated at 37, 22, 12, and 4°C for predefined periods, and analyzed for microbial levels and pH. L. monocytogenes levels declined in all cheese curd portions contaminated after steps 2 through 5 (pH 4.36 to 4.84) when stored at 4 or 12°C for 15 days. The final net reductions in Listeria populations were 2.00-, 1.07-, 0.54-, and 0.61-log greater in the A2 than in the A1 curd portions after steps 2, 3, 4, and 5, respectively. In step 1, conducted to simulate the whole cheese milk fermentation process, L. monocytogenes levels declined by 1.47 log CFU/mL more in the A2 than in the A1 milk portions after 72 h at 22°C; however, slight growth (0.6 log CFU/mL) occurred during the first 6 h at 37°C. E. faecium KE82 was compatible with the starter culture and enhanced inactivation of L. monocytogenes during all steps of Galotyri cheese processing. The antilisterial effects of the combined acid and enterocin were the weakest in the fermenting milks, the strongest in the unsalted fermented curds, and declined again in the salted fresh cheeses. HIGHLIGHTS
Collapse
Affiliation(s)
- Nikoletta Sameli
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece.,Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - John Samelis
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece.,(ORCID: https://orcid.org/0000-0002-4921-5649 [J.S.])
| |
Collapse
|
10
|
Margalho LP, Jorge GP, Noleto DAP, Silva CE, Abreu JS, Piran MVF, Brocchi M, Sant'Ana AS. Biopreservation and probiotic potential of a large set of lactic acid bacteria isolated from Brazilian artisanal cheeses: From screening to in product approach. Microbiol Res 2020; 242:126622. [PMID: 33099234 DOI: 10.1016/j.micres.2020.126622] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/21/2022]
Abstract
The increasing interest in products with functional properties has encouraged the search for new lactic acid bacteria (LAB) present in natural sources, as traditional fermented foods. In this study, a large set of wild LAB isolates (n = 220) from Brazilian artisanal cheeses (BAC) were assessed for their probiotic and biopreservation potential. First, the rational selection was performed. From the tested isolates, 92 (41.8 %) were resistant to low pH (2 and 3). These isolates were submitted to bile salt (0.4 % Oxgall powder) resistance, and 22 were selected and submitted to adhesion assays. The autoaggregation values ranged from 68.5-99% and were considered moderate to high (20-70 %). Hydrophobicity values varied significantly between LAB (5.0-64.3%), and seven isolates presented values higher than 40 %. All selected LAB (n=22) were capable of adhering to Caco-2 (> 70 %) cells, and none isolate displayed any tested gene for biogenic amine production. Most isolates (18/22) showed less than 1 log CFU reduction after passage through the simulated gastrointestinal tract (GIT) conditions. A total of twenty isolates satisfied key in vitro criteria to be considered as probiotics. A hierarchical cluster analysis (HCA) was performed, and two clusters were observed, showing high variability between Lactobacillus plantarum isolates regarding adhesion properties and survival to GIT stress and one influence of the source of isolation on these properties. After screening, the antimicrobial activity of Lb. plantarum (1QB77) was tested in microcheeses in which survival of two relevant pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes) was monitored along ripening and after a simulated GIT passage, concomitantly. L. plantarum (1QB77) has shown the ability to reach high counts (∼ 9 log CFU/g) at the end of ripening. This isolate was also able to reduce counts of S. aureus and L. monocytogenes in microcheeses in approx. 2.3 and 2.5 log CFU/g, respectively, until the 21st day of ripening; and about 3.2 and 3.5 log CFU/g after simulated GIT passage. Overall, the assessment of the probiotic properties of a large set of LAB was fundamental for gaining insights on the technological, functional, and potential regional traits of wild LAB isolates that can be used to develop starter cultures for tailored applications.
Collapse
Affiliation(s)
- Larissa P Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Genesy P Jorge
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Deise A P Noleto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Christian E Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Júlia S Abreu
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcos V F Piran
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
11
|
Furtado MM, Silva BS, Faviero C, Alvarenga VO, Sant’Ana AS. Impact of carrier agents and temperature during storage of dry inocula of Salmonella enterica: A contribution to the validation of low water activity foods processing interventions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
De Filippis A, Ullah H, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment. Int J Mol Sci 2020; 21:E4929. [PMID: 32668581 PMCID: PMC7404341 DOI: 10.3390/ijms21144929] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) diseases, which include gastrointestinal reflux disease, gastric ulceration, inflammatory bowel disease, and other functional GI disorders, have become prevalent in a large part of the world population. Metabolic syndrome (MS) is cluster of disorders including obesity, hyperglycemia, hyperlipidemia, and hypertension, and is associated with high rate of morbidity and mortality. Gut dysbiosis is one of the contributing factors to the pathogenesis of both GI disorder and MS, and restoration of normal flora can provide a potential protective approach in both these conditions. Bioactive dietary components are known to play a significant role in the maintenance of health and wellness, as they have the potential to modify risk factors for a large number of serious disorders. Different classes of functional dietary components, such as dietary fibers, probiotics, prebiotics, polyunsaturated fatty acids, polyphenols, and spices, possess positive impacts on human health and can be useful as alternative treatments for GI disorders and metabolic dysregulation, as they can modify the risk factors associated with these pathologies. Their regular intake in sufficient amounts also aids in the restoration of normal intestinal flora, resulting in positive regulation of insulin signaling, metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. This review is designed to focus on the health benefits of bioactive dietary components, with the aim of preventing the development or halting the progression of GI disorders and MS through an improvement of the most important risk factors including gut dysbiosis.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Alessandra Baldi
- TefarcoInnova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Hao K, Meng R, Bu X, Liu Z, Yan H, Zhang Y, Guo NA. Antibacterial Effect of Caprylic Acid and Potassium Sorbate in Combination against Listeria monocytogenes ATCC 7644. J Food Prot 2020; 83:920-927. [PMID: 32428934 DOI: 10.4315/0362-028x.jfp-19-458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/14/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a common foodborne pathogen that cause life-threatening infection with high mortality rates. Biofilm development of L. monocytogenes decreases its sensitivity to antibiotics, which has long attracted attention globally. Caprylic acid (CA) and potassium sorbate (PS) are both widely used food preservatives, but their synergistic effect against L. monocytogenes has not been described. This study explored the antibacterial activities of the CA-PS combination against L. monocytogenes ATCC 7644 grown in planktonic or biofilm cultures. The fractional inhibitory concentration index values, determined by the checkerboard microdilution method, were 0.37 ± 0.03 and 0.31 ± 0.04, showing their synergistic antimicrobial effects against L. monocytogenes ATCC 7644 in planktonic and biofilm cultures, respectively. CA-PS effectively eradicated the biofilm biomass to 10.8% by crystal violet assay and to 8.63% by fluorescence microscopic analysis compared with the control. The apoptosis rates of microbial cells embedded within biofilm significantly increased to 51.4%. Subsequent analysis revealed that the combination inhibited biofilm formation by affecting extracellular DNA release and polysaccharide intercellular adhesion expression, which was decreased from 8.93 to 1.04 ng of extracellular DNA per relative biomass and to 54.7% of the control, respectively. In addition, the combination inhibited the growth of L. monocytogenes ATCC 7644 by up to 0.67 ± 0.05 and 0.30 ± 0.03 log CFU/cm2 in planktonic and biofilm modes on a carrot surface, respectively. The synergistic antibacterial effects of CA-PS against L. monocytogenes ATCC 7644 were statistically significant, and the combination is an excellent candidate to be a novel food preservative. HIGHLIGHTS
Collapse
Affiliation(s)
- Kun Hao
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Rizeng Meng
- Jilin Entry-exit Inspection and Quarantine Bureau, 130062 Changchun, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Zonghui Liu
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Yan Zhang
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - N A Guo
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| |
Collapse
|
14
|
Pereira MO, Guimarães JT, Ramos GL, do Prado-Silva L, Nascimento JS, Sant’Ana AS, Franco RM, Cruz AG. Inactivation kinetics of Listeria monocytogenes in whey dairy beverage processed with ohmic heating. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Bansal V, Mishra SK. Reduced-sodium cheeses: Implications of reducing sodium chloride on cheese quality and safety. Compr Rev Food Sci Food Saf 2020; 19:733-758. [PMID: 33325171 DOI: 10.1111/1541-4337.12524] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Sodium chloride (NaCl) universally well-known as table salt is an ancient food additive, which is broadly used to increase the storage stability and the palatability of foods. Though, in recent decades, use of table salt in foods is a major concern among the health agencies of the world owing to ill effects of sodium (Na) that are mostly linked to hypertension and cardiovascular diseases. As a result, food scientists are working to decrease the sodium content in food either by decreasing the rate of NaCl addition or by partial or full replacement of NaCl with other suitable salts like potassium chloride (KCl), calcium chloride (CaCl2 ), or magnesium chloride (MgCl2 ). However, in cheese, salt reduction is difficult to accomplish owing to its multifaceted role in cheese making. Considering the significant contribution in dietary salt intake (DSI) from cheese, researchers across the globe are exploring various technical interventions to develop reduced-sodium cheeses (RSCs) without jeopardizing the quality and safety of cheeses. Thus, the purpose of this study is to provide an insight of NaCl reduction on sensory, physicochemical, and technofunctional attributes of RSCs with an aim to explore various strategies for salt reduction without affecting the cheese quality and safety. The relationship between salt reduction and survival of pathogenic and spoilage-causing microorganisms and growth of RSCs microflora is also discussed. Based on the understanding of conceptual and applied information on the complex changes that occur in the development of RSCs, the quality and safety of RSCs can be accomplished effectively in order to reduce the DSI from cheese.
Collapse
Affiliation(s)
- Venus Bansal
- Department of Dairy Technology, College of Dairy Science & Technology, Guru Angad Dev Veterinary & Animal Sciences University, Ludhiana, India
| | - Santosh Kumar Mishra
- Department of Dairy Microbiology, College of Dairy Science & Technology, Guru Angad Dev Veterinary & Animal Sciences University, Ludhiana, India
| |
Collapse
|
16
|
Ben Othman M, Sakamoto K. Effect of inactivated Bifidobacterium longum intake on obese diabetes model mice (TSOD). Food Res Int 2019; 129:108792. [PMID: 32036897 DOI: 10.1016/j.foodres.2019.108792] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Obesity and diabetes have been increasing at an alarming rate worldwide. Studies have shown the futility of chemical drugs in the treatment of obesity and diabetes. Bifidobacterium longum (BL), a common member of the gut microbiota throughout the human lifespan, has been widely reported to play a role in host health and disease. Here, we evaluated the effects of inactivated cells of BL (IBL) on obesity and blood glucose levels in TSOD mice by administering IBL orally for 5 weeks. The treated mice showed a significant decrease of body weight gain, adipose tissue mass and blood glucose levels, as well as a significant reduction in blood glucose during an oral glucose tolerance test. The treatment also resulted in reduced levels of cholesterol, triglycerides, and NEFA. Moreover, serum and urine analysis showed low creatinine levels in IBL-treated mice. These data demonstrate that IBL may have the potential to prevent obesity and diabetes.
Collapse
Affiliation(s)
- Mahmoud Ben Othman
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
17
|
Kariyawasam KMGMM, Jeewanthi RKC, Lee NK, Paik HD. Characterization of cottage cheese using Weissella cibaria D30: Physicochemical, antioxidant, and antilisterial properties. J Dairy Sci 2019; 102:3887-3893. [PMID: 30827567 DOI: 10.3168/jds.2018-15360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
This study aimed to evaluate the potential of Weissella cibaria D30 as an adjunct culture in cottage cheese, including an assessment of antioxidant, antilisterial, and compositional parameters. Cottage cheese samples were manufactured using a commercial starter culture and probiotic strains Lactobacillus rhamnosus GG (GG) or W. cibaria D30 (W) and without probiotic (control). Samples were stored at 4 ± 1°C for 28 d. Bacterial cell counts (log cfu/g) of control, GG, and W samples were counted at 0, 7, 14, 21, and 28 d. Counts of W. cibaria D30 in the W samples remained at 6.85 log cfu/g after 28 d. Total solids, fat, protein, ash, and pH were measured and no significant differences were observed in compositional parameters or pH after 28 d of storage in all cheeses except those inoculated to Listeria monocytogenes. To measure the antilisterial effect, Listeria monocytogenes was inoculated into the cottage cheese samples and bacterial cell counts were obtained at 0, 6, 12, 24, 48, 72, 96, 120, and 144 h. Listeria monocytogenes counts were less than the analytical limit of detection (<10 cfu/g) in the inoculated GG and W samples, whereas the counts of L. monocytogenes in the inoculated control sample remained at 3.0 log cfu/g after 144 h. We used the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity assays to assess antioxidant activity: GG and W samples exhibited significant increases in antioxidant activity compared with the control sample. These results indicate that W. cibaria D30 has potential as an adjunct culture in the dairy industry.
Collapse
Affiliation(s)
- K M G M M Kariyawasam
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - R K C Jeewanthi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - N-K Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - H-D Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
18
|
Andritsos ND, Kallitsis T, Roukas D. Growth potential of
Listeria monocytogenes
in ready‐to‐eat Feta cheese‐based sauce stored at 4°C. J Food Saf 2018. [DOI: 10.1111/jfs.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Dimokritos Roukas
- Athens Analysis Laboratories S.A., Microbiology Laboratory Athens Greece
| |
Collapse
|
19
|
Greek functional Feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiol 2018; 74:21-33. [DOI: 10.1016/j.fm.2018.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
|
20
|
Rostami H, Hamedi H, Ghaderi M. Viability of commercial probiotic cultures in cottage cheese containing black cumin seed. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
de Oliveira Elias S, Noronha TB, Tondo EC. Assessment of Salmonella spp. and Escherichia coli O157:H7 growth on lettuce exposed to isothermal and non-isothermal conditions. Food Microbiol 2018; 72:206-213. [PMID: 29407399 DOI: 10.1016/j.fm.2017.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/11/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to assess the growth of Salmonella and Escherichia coli O157:H7 on lettuce exposed to isothermal and non-isothermal conditions. Pathogens were inoculated on lettuce separately and stored under isothermal condition at 5 °C, 10 °C, 25 °C, 37 °C for both bacteria, at 40 °C for Salmonella and 42 °C for E. coli O157:H7. Growth curves were built by fitting the data to the Baranyi's DMFit, generating R2 values greater than 0.92 for primary models. Secondary models were fitted with Ratkowsky equations, generating R2 values higher than 0.91 and RMSE lower than 0.1. Experimental data showed that both bacteria could grow at all temperatures. Also, the growth of both pathogens under non-isothermal conditions was studied simulating temperatures found from harvest to supermarkets in Brazil. Models were analysed by R2, RMSE, bias factor (Bf) and accuracy factor (Af). Salmonella and E. coli O157:H7 were able to grow in this temperature profile and the models could predict the behavior of these microorganisms on lettuce under isothermal and non-isothermal conditions. Based on the results, a negligible growth time (ς) was proposed to provide the time which lettuce could be exposed to a specific temperature and do not present an expressive growth of bacteria. The ς was developed based on Baranyi's primary model equation and on growth potential concept. ς is the value of lag phase added of the time necessary to population grow 0.5 log CFU/g. The ς of lettuce exposed to 37 °C was 1.3 h, while at 5 °C was 3.3 days.
Collapse
Affiliation(s)
- Susana de Oliveira Elias
- Departamento de Ciências dos Alimentos, Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Av. Bento Gonçalves, 9500 Prédio 43212 Agronomia, CEP: 91505-970, Porto Alegre, RS, Brazil.
| | - Tiago Baptista Noronha
- Departamento de Ensino, Pesquisa e Extensão, Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Rua General Balbão, 81, CEP 96745-000, Charqueadas, RS, Brazil.
| | - Eduardo Cesar Tondo
- Departamento de Ciências dos Alimentos, UFRGS/ICTA, Av. Bento Gonçalves, 9500 Prédio 43212 Agronomia, CEP: 91505-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
A multiplex PCR detection method for milk based on novel primers specific for Listeria monocytogenes 1/2a serotype. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Oliveira RB, Lopes LS, Baptista RC, Chincha AA, Portela JB, Nascimento JS, Costa LE, Cruz AG, Sant’Ana AS. Occurrence, populations, diversity, and growth potential of spore-forming bacteria in “requeijão cremoso”. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Campagnollo FB, Margalho LP, Kamimura BA, Feliciano MD, Freire L, Lopes LS, Alvarenga VO, Cadavez VAP, Gonzales-Barron U, Schaffner DW, Sant'Ana AS. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol 2018. [PMID: 29526214 DOI: 10.1016/j.fm.2018.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Artisanal raw milk cheeses are highly appreciated dairy products in Brazil and ensuring their microbiological safety has been a great need. This study reports the isolation and characterization of lactic acid bacteria (LAB) strains with anti-listerial activity, and their effects on Listeria monocytogenes during refrigerated shelf-life of soft Minas cheese and ripening of semi-hard Minas cheese. LAB strains (n = 891) isolated from Minas artisanal cheeses (n = 244) were assessed for anti-listerial activity by deferred antagonism assay at 37 °C and 7 °C. The treatments comprised the production of soft or semi-hard Minas cheeses using raw or pasteurized milk, and including the addition of selected LAB only [Lactobacillus brevis 2-392, Lactobacillus plantarum 1-399 and 4 Enterococcus faecalis (1-37, 2-49, 2-388 and 1-400)], L. monocytogenes only, selected LAB co-inoculated with L. monocytogenes, or without any added cultures. At 37 °C, 48.1% of LAB isolates showed anti-listerial capacity and 77.5% maintained activity at 7 °C. Selected LAB strains presented a bacteriostatic effect on L. monocytogenes in soft cheese. L. monocytogenes was inactivated during the ripening of semi-hard cheeses by the mix of LAB added. Times to attain a 4 log-reduction of L. monocytogenes were 15 and 21 days for semi-hard cheeses produced with raw and pasteurized milk, respectively. LAB with anti-listerial activity isolated from artisanal Minas cheeses can comprise an additional barrier to L. monocytogenes growth during the refrigerated storage of soft cheese and help shorten the ripening period of semi-hard cheeses aged at ambient temperature.
Collapse
Affiliation(s)
- Fernanda B Campagnollo
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Larissa P Margalho
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Bruna A Kamimura
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo D Feliciano
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Letícia S Lopes
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Verônica O Alvarenga
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Vasco A P Cadavez
- CIMO Mountain Research Center, School of Agriculture, Polytechnic Institute of Braganza, Braganza, Portugal
| | - Ursula Gonzales-Barron
- CIMO Mountain Research Center, School of Agriculture, Polytechnic Institute of Braganza, Braganza, Portugal
| | - Donald W Schaffner
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers - The State University of New Jersey, New Brunswick, NJ, USA
| | - Anderson S Sant'Ana
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
25
|
Sporeforming bacteria in beer: Occurrence, diversity, presence of hop resistance genes and fate in alcohol-free and lager beers. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Cho TJ, Kim NH, Hong YJ, Park B, Kim HS, Lee HG, Song MK, Rhee MS. Development of an effective tool for risk communication about food safety issues after the Fukushima nuclear accident: What should be considered? Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
|
28
|
Xue J, Davidson PM, Zhong Q. Inhibition of Escherichia coli O157:H7 and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
de Almada CN, Almada CN, Martinez RC, Sant'Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Espitia PJ, Batista RA, Azeredo HM, Otoni CG. Probiotics and their potential applications in active edible films and coatings. Food Res Int 2016; 90:42-52. [DOI: 10.1016/j.foodres.2016.10.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
|
31
|
Moosavy MH, Esmaeili S, Mortazavian AM, Mostafavi E, Habibi-Asl B, Hosseini H, Khatibi SA. Behaviour of Listeria monocytogenes
in Lighvan cheese following artificial contamination during making, ripening and storage in different conditions. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mir-Hassan Moosavy
- Department of Food Hygiene and Aquatics; Faculty of Veterinary Medicine; University of Tabriz; P.O. Box 51666-16471 Tabriz Iran
| | - Saber Esmaeili
- Department of Epidemiology; Pasteur Institute of Iran; P.O. Box 13169-43551 Tehran Iran
- Department of Bacteriology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Amir Mohammad Mortazavian
- Department of Food Science and Technology; Faculty of Nutrition Sciences, Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; P.O. Box 19395-4741 Tehran Iran
| | - Ehsan Mostafavi
- Department of Epidemiology; Pasteur Institute of Iran; P.O. Box 13169-43551 Tehran Iran
| | - Bohlol Habibi-Asl
- Department of Pharmacology; Faculty of Pharmacy; Tabriz University of Medical Sciences; P.O. Box 51664-14766 Tabriz Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology; Faculty of Nutrition Sciences, Food Science and Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; P.O. Box 19395-4741 Tehran Iran
| | - Seyed Amin Khatibi
- Department of Food Hygiene; Faculty of Veterinary Medicine; University of Tehran; P.O. Box 14155-6453 Tehran Iran
| |
Collapse
|
32
|
Balthazar CF, Silva HLA, Vieira AH, Neto RPC, Cappato LP, Coimbra PT, Moraes J, Andrade MM, Calado VMA, Granato D, Freitas MQ, Tavares MIB, Raices RSL, Silva MC, Cruz AG. Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Res Int 2016; 91:38-46. [PMID: 28290325 DOI: 10.1016/j.foodres.2016.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/12/2023]
Abstract
The objective of this study was to assess the effects of different prebiotic dietary oligosaccharides (inulin, fructo-oligosaccharide, galacto-oligossacaride, short-chain fructo-oligosaccharide, resistant starch, corn dietary oligosaccharide and polydextrose) in non-fat sheep milk ice cream processing through physical parameters, water mobility and thermal analysis. Overall, the fat replacement by dietary prebiotic oligosaccharides significantly decreased the melting time, melting temperature and the fraction and relaxation time for fat and bound water (T22) while increased the white intensity and glass transition temperature. The replacement of sheep milk fat by prebiotics in sheep milk ice cream constitutes an interesting option to enhance nutritional aspects and develop a functional food.
Collapse
Affiliation(s)
- C F Balthazar
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Brazil
| | - H L A Silva
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Brazil
| | - A H Vieira
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Brazil; Instituto GPA - NATA, 24750-213 São Gonçalo, Brazil
| | - R P C Neto
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Macromoléculas Professora Eloisa Mano (IMA), 21941-598 Rio de Janeiro, Brazil
| | - L P Cappato
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Departamento de Tecnologia de Alimentos (DTA), 23890-000 Seropédica, Rio de Janeiro, Brazil
| | - P T Coimbra
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - J Moraes
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - M M Andrade
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - V M A Calado
- Universidade Federal do Rio de Janeiro (UFRJ), Escola de Química (EQ), 21949-900 Rio de Janeiro, Brazil
| | - D Granato
- Universidade Estadual de Ponta Grossa, Departamento de Engenharia de Alimentos, 84030-900 Ponta Grossa, Brazil
| | - M Q Freitas
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, 24230-340, Niterói, Brazil
| | - M I B Tavares
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Macromoléculas Professora Eloisa Mano (IMA), 21941-598 Rio de Janeiro, Brazil
| | - R S L Raices
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - M C Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil
| | - A G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil.
| |
Collapse
|