1
|
Jiang X, Song Z, Li C, Hu X, Ge Y, Cheng L, Shi X, Jia Z. Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp ( Cyprinus carpio). Animals (Basel) 2024; 14:2583. [PMID: 39272368 PMCID: PMC11394664 DOI: 10.3390/ani14172583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
In fish, increasing the crude lipid level of feed can save protein and improve feed utilization. Mirror carp (Cyprinus carpio) is one of the most widely farmed fish species in the world. In this study, mirror carp larvae were fed isonitrogenous diets with different lipid levels (3%, 5%, 7%, 9%, 11%, and 13%). The rearing trial lasted for eight weeks. The results revealed that when the fat content was 9%, the AWGR, WGR, and FCR were highest, whereas FCR was lowest. The AWGR was correlated with the dietary lipid level, and the regression equation was y = -2.312x2 + 45.01x + 214.49. Compared with those in the control group, the T-CHO and TG contents were significantly greater in the 13% lipid content groups and significantly lower in the 9% lipid content groups (p < 0.05). In terms of muscle quality, the contents of MUFAs, PUFAs, and DHA + EPA were significantly greater than those in the other experimental groups (p < 0.05). Oil red O staining revealed a lipid content of 13% with severe fat deposition. In addition, the results of the analysis of antioxidant enzyme activity revealed that the activities of GSH, CAT and T-AOC were significantly greater at the 9% lipid content, and that the MDA content was significantly greater at the 13% lipid content (p < 0.05). Similarly, the mRNA levels of GH, IGF-I, FAS, and LPL were significantly highest at a lipid level of 9% (p < 0.05). The above results revealed that the optimal dietary lipid requirement for the fast growth of mirror carp (6.86 ± 0.95 g) was 9.74% on the basis of nonlinear regression analysis of the AWGR. The dietary lipid level (9%) improved the growth, stress resistance, and lipid utilization of mirror carp to a certain extent.
Collapse
Affiliation(s)
- Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhenguo Song
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lei Cheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| |
Collapse
|
2
|
He XN, Zeng ZZ, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Li SW, Feng L, Zhou XQ. Aflatoxin B1 decreased flesh flavor and inhibited muscle development in grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:27-38. [PMID: 39026602 PMCID: PMC11254537 DOI: 10.1016/j.aninu.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024]
Abstract
In nature, aflatoxins, especially aflatoxin B1 (AFB1), are the common mycotoxins, which cause serious health problems for humans and animals. This paper aimed to study the effects of AFB1 on flesh flavor and muscle development of grass carp (Ctenopharyngodon idella) and its mechanism. There were 1440 individual fish in total, with 6 treatments and each treatment replicated 3 times. The 6 treatments were fed a control diet with different doses of AFB1 (0.04, 29.48, 58.66, 85.94, 110.43 and 146.92 μg/kg diet) for 60 d. AFB1 increased myofiber diameter, as well as decreased myofiber density of grass carp muscle (P < 0.05). The contents of free amino acid decreased gradually (P < 0.05) as dietary AFB1 increased in the muscle of grass carp. The levels of reactive oxygen species, malonaldehyde and protein carbonyl (PC) were increased (P < 0.05) with the dietary AFB1 increased. The levels of antioxidant enzyme (glutathione peroxidase, glutathione, glutathione reductase, total antioxidant capacity, anti-superoxide anion, and anti-hydroxyl radical) were decreased (P < 0.05) with the dietary AFB1 increased. In addition, dietary AFB1 decreased the content of collagen, and downregulated the mRNA and protein levels of transforming growth factor-β (TGF-β)/Smads signaling pathway in grass carp muscle (P < 0.05). The mRNA and protein levels of myogenic regulatory factors were downregulated in grass carp muscle (P < 0.05). Furthermore, the activities of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) were increased (P < 0.05), and the protein levels of phosphorylate-38 mitogen-activated protein kinase (p-p38MAPK), phosphorylate-c-Jun N-terminal kinase, urokinase-type plasminogen activator (uPA), MMP-2 and MMP-9 were upregulated (P < 0.05), but collagen Ⅰ, laminin β1 and fibronectin were downregulated (P < 0.05) with the dietary AFB1 increased in the muscle of grass carp. Based on the results of this study, we can draw the following conclusion: dietary AFB1 might damage flesh flavor and inhibit the muscle development through MAPK/uPA/MMP/extracellular matrix (ECM) signaling pathway in grass carp. Moreover, the recommended safe limit of AFB1 in feed is no more than 26.77 μg/kg diet according to the PC levels in grass carp muscle.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Zhen Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
3
|
Cao M, Xie N, Zhang J, Jiang M, Huang F, Dong L, Lu X, Wen H, Tian J. Dietary supplementation with succinic acid improves growth performance and flesh quality of adult Nile tilapia ( Oreochromis niloticus) fed a high-carbohydrate diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:390-407. [PMID: 39309970 PMCID: PMC11413691 DOI: 10.1016/j.aninu.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024]
Abstract
To evaluate the effects of dietary supplementation with succinic acid on growth performance, flesh quality, glucose, and lipid metabolism of Nile tilapia (Oreochromis niloticus) fed a high-carbohydrate diet (HCD), five iso-nitrogenous and iso-lipidic diets were prepared as follows: HCD (control group) consisting of 55% corn starch and HCD supplemented with 0.5%, 1.0%, 2.0%, and 4.0% succinic acid, respectively. Tilapia with an initial body weight of 204.90 ± 1.23 g randomly assigned to 15 tanks with 3 replicates per group and 10 fish per tank fed for 8 weeks. Increasing dietary succinic acid supplementation resulted in significant second-order polynomial relationship in the weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency rate (PER), viscerosomatic index, condition factor, and contents of muscular crude lipid and glycogen (P < 0.05). The hepatosomatic index, mesenteric fat index, liver glycogen content and crude lipid contents of the whole-body and liver demonstrated significantly linear and second-order polynomial relationship (P < 0.05). Quadratic curve model analysis based on WGR, SGR, PER, and FCR demonstrated that optimal supplementation with succinic acid in the HCD of Nile tilapia ranged from 1.83% to 2.43%. Fish fed with 1.0% succinic acid had higher muscular hardness, increased the contents of alkali-soluble hydroxyproline in collagen, docosahexaenoic acid (DHA) and n-3 polyunsaturated fatty acid (n-3PUFA) in muscle, and lower total fatty acid content in muscle (P < 0.05) compared with the control group. Compared to the control group, dietary supplementation with 1.0% succinic acid significantly increased the contents of total bounding amino acid (arginine, histidine, isoleucine, lysine, methionine, alanine, proline), total flavor amino acid (free aspartic acid), the catalase (CAT) activity and total antioxidant capacity, and the mRNA relative expression levels of CAT, superoxide dismutase (SOD), and nuclearfactor erythroidderived 2-like 2 (Nrf2) in muscle (P < 0.05). Furthermore, succinic acid supplementation significantly up-regulated mRNA relative expression levels of glycolysis genes (hexokinase 2 [HK2], phosphofructokinase, muscle-A [PFKMA], and phosphofructokinase, muscle-B [PFKMB]), a key glycogen synthesis gene (glycogen synthase [GYS]), and lipid catabolism genes (carnitine palmitoyltransferase-1B [CPT1B], hormone sensitive lipase [HSL], and lipoprotein lipase [LPL]), while down-regulating the mRNA relative expression level of fatty acid synthase (FASN) in muscle (P < 0.05). In conclusion, dietary supplementation with 1.83% to 2.43% succinic acid improved muscle quality by increasing muscle antioxidant capacity and hardness, changing muscle amino acid and fatty acid composition, and regulating muscle glucose and lipid metabolism.
Collapse
Affiliation(s)
- Manxia Cao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ningning Xie
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jianmin Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Feng Huang
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lixue Dong
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Jiang Q, Xia S, Xu Z, Yang Z, Zhang L, Liu G, Xu Y, Chen A, Chen X, Liu F, Yang W, Yu Y, Tian H, Wu Y, Zhang W, Wang A. Influence of Different Feed Particle Sizes on the Growth Performance and Nutrition Composition in Crayfish, Procambarus clarkii Larvae. Animals (Basel) 2024; 14:2228. [PMID: 39123754 PMCID: PMC11311094 DOI: 10.3390/ani14152228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
A suitable feed size has a positive effect on animal feeding. For aquatic larvae, the correct feed size is very important for their growth. This experiment analyzed and compared the effect of different particle sizes of feed for larval stages on the growth performance, whole body composition, and muscle amino acid and fatty acid composition of crayfish. Five larval crayfish diets of different particle sizes, namely < 0.40 mm (Group A, control group), 0.40-0.50 mm (Group B), 0.71-0.85 mm (Group C), 0.90-1.00 mm (Group D) and 1.5 mm (Group E), were fed to 2000 crayfish (initial weight 0.0786 ± 0.0031 g) for 100 d. The results showed that as the particle size increased, final weight, weight gain (WG, p = 0.001) and specific growth rate (SGR, p = 0.000) of the crayfish tended to increase and then leveled off, with the control group being the lowest. The feed conversion ratio (FCR, p = 0.000) showed a decreasing and then equalizing trend with increasing particle size, but there was no significant difference between the groups except the control group. Broken-line regression analysis showed that the critical values for the appropriate particle feed size for crayfish larvae were 0.55 mm and 0.537 mm using SGR and FCR as indicators. Groups B, C and D had the highest crude protein content and were significantly higher than the control group (p = 0.001). Group E had the highest umami amino acid (UAA) and was significantly higher than the control group (p = 0.026). The content of isoleucine (Ile, p = 0.038) and phenylalanine (Phe, p = 0.038) was highest in group C and significantly higher than in the control group. Through principal component analysis, groups C and D were shown to contain leucine (Leu), glutamic (Glu), methionine (Met), valine (Val), histidine (His), Phe, and Ile levels significantly induced. The content of linoleic acid (C18:2n6, p = 0.000), linolenic acid (C18:3n3, p = 0.000), saturated fatty acid (SFA, p = 0.000), monounsaturated fatty acid (MUFA, p = 0.001), polyunsaturated fatty acid (PUFA, p = 0.000) and n-6 PUFA (p = 0.000) in group C was the highest and significantly higher than the control group. Principal component analysis showed that group C significantly induced the levels of C18:2n6, C18:3n3, DHA, EPA, n-3 PUFA and n-6 PUFA in muscle. Therefore, our results suggest that appropriate feed particle size can improve the growth performance and nutrient composition of crayfish. Based on the broken-line regression analysis of SGR and FCR, the critical values of optimal particle size for crayfish are 0.55 mm and 0.537 mm, and when the particle size exceeds these critical values (not more than 1.5 mm commercial feed), growth performance and FCR of the crayfish are no longer changed. Nevertheless, group C has high protein and low lipid content, as well as better nutrition with amino acids and fatty acids. Overall, combined with growth performance and nutrient composition, it is recommended that the particle size of the diet at the larval stage for crayfish is between 0.71 and 0.85 mm.
Collapse
Affiliation(s)
- Qingqing Jiang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Z.Y.); (A.C.)
| | - Silei Xia
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (Z.X.); (G.L.); (Y.X.)
| | - Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Z.Y.); (A.C.)
| | - Lu Zhang
- Key Laboratory of Aquatic Nutrition and Smart Farming, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Agricultural Development Co., Ltd., Chengdu 610093, China; (L.Z.); (X.C.)
| | - Guoxing Liu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (Z.X.); (G.L.); (Y.X.)
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; (Z.X.); (G.L.); (Y.X.)
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Z.Y.); (A.C.)
| | - Xiaoru Chen
- Key Laboratory of Aquatic Nutrition and Smart Farming, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Agricultural Development Co., Ltd., Chengdu 610093, China; (L.Z.); (X.C.)
| | - Fei Liu
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Wenping Yang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Yebing Yu
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Hongyan Tian
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Yanmin Wu
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Wuxiao Zhang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.J.); (S.X.); (F.L.); (W.Y.); (Y.Y.); (H.T.); (Y.W.)
| |
Collapse
|
5
|
Wu Y, Xiao P, Sha H, Luo X, Zou G, Liang H. Transcriptome Analysis Reveals the Potential Key Genes in Nutritional Deposition in the Common Carp ( Cyprinus carpio). Animals (Basel) 2024; 14:1939. [PMID: 38998051 PMCID: PMC11240310 DOI: 10.3390/ani14131939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The common carp (Cyprinus carpio) is one of the most important aquaculture species in China, known for its remarkable adaptability and nutritional profile. However, the specific molecular response mechanisms regulating the nutritional deposition of carp remain inadequately elucidated. This study conducted a comprehensive analysis of muscle nutritional content and transcriptome data from liver and muscle tissues of three distinct carp varieties. The aim was to elucidate the key genes and signaling pathways that regulate muscle nutritional composition in carp. The findings revealed that FFRC carp (FFRC) exhibited significantly higher levels of crude fat, total n-3 polyunsaturated fatty acids, and total n-6 polyunsaturated fatty acids in muscle tissue compared to Ying carp (YC) and Huanghe carp (HC) (p < 0.05). Transcriptomic analyses correlated these elevated levels with a marked upregulation of genes involved in the activation and transportation of fatty acid (fabp7, acsl5, acsbg2) as well as biosynthesis and elongation of long-chain unsaturated fatty acids (elovl2, fads2) within the liver. Furthermore, the flavor amino acid, essential amino acids, and crude protein content in the muscle of HC were significantly higher than in FFRC and YC (p < 0.05). Transcriptomic analyses indicated that this was associated with significant changes in the expression of genes related to amino acid metabolism (asns, alt, ldha, glul, setd, prodh, l3hypdh, hoga1) within their muscle tissue. This research provides a theoretical foundation for the precise modulation of the muscle nutritional composition in carp.
Collapse
Affiliation(s)
- Yunya Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Pengfei Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| |
Collapse
|
6
|
Liu X, Zou D, Wang Y, Zhuang Y, Liu Y, Li Y, Sun Z, Ye C. Replacement of fish meal with cottonseed protein concentrate in Chinese mitten crab ( Eriocheir sinensis): Nutrient digestibility, growth performance, free amino acid profile, and expression of genes related to nutrient metabolism. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:447-462. [PMID: 38846720 PMCID: PMC11153942 DOI: 10.1016/j.aninu.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/09/2024]
Abstract
This study aimed to investigate the application of cottonseed protein concentrate (CPC) in Chinese mitten crabs (Eriocheir sinensis). First, the apparent digestibility coefficient (ADC) of CPC, fish meal and soybean meal were compared in crabs (21.72 ± 0.33 g). The protein ADC of CPC was 90.42%, which was significantly higher than that of soybean meal (83.16%) (P < 0.05). The ADC of Phe, Cys and Glu of CPC were significantly higher than those of fish meal, while the ADC of Ile, Leu, Lys, Met, Thr and Ala of CPC were significantly lower (P < 0.05). Second, we investigated the effects of fish meal substitution by CPC on growth performance, free amino acid profile, and expression of genes related to nutrient metabolism in crabs. Six diets were formulated by replacing 0%, 15%, 30%, 45%, 60% and 75% fish meal with CPC, namely FM, CPC15, CPC30, CPC45, CPC60, and CPC75. A total of 630 crabs (1.68 ± 0.00 g) were randomly divided into 18 tanks (3 tanks per group) and fed 3 times daily for 9 weeks. Results showed that CPC75 group significantly reduced growth performance, feed conversion efficiency, and free Ile, Leu, Lys, Met, and Thr contents in muscle (P < 0.05). The contents of free amino acids (Arg, His, Ile, Leu, Lys, Met, Phe, Thr, Val, Ala, Cys, Glu, Gly, Ser and Tyr) in hepatopancreas decreased linearly with the increase of dietary CPC level (P < 0.05). The substitution of more than 45% fish meal with CPC significantly decreased the concentration of delicious amino acids (Ala, Glu and Gly) in hepatopancreas (P < 0.05), which might adversely affect crab flavor. The expression of genes related to antioxidant capacity, protein transport, TOR pathway and lipid metabolism was significantly downregulated by increasing dietary CPC level (P < 0.05). In conclusion, based on the quadratic regression analysis of FCR and PER, the optimal replacement levels of fish meal with CPC in crab diet containing 35% fish meal were 32.36% and 35.38%, respectively. It is recommended that Ile, Leu and Thr be supplemented in addition to Met and Lys in the application of CPC.
Collapse
Affiliation(s)
- Xinting Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danyang Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yizhu Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yutong Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yang Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanyu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Meng X, Yang F, Zhu L, Zhan L, Numasawa T, Deng J. Effects of Different Astaxanthin Sources on Fillet Coloration and Energy Deposition in Rainbow Trout ( Oncorhynchus mykiss). AQUACULTURE NUTRITION 2024; 2024:1664203. [PMID: 39555536 PMCID: PMC10984719 DOI: 10.1155/2024/1664203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/19/2024]
Abstract
A 9-week feeding trial was conducted to investigate the effects of different dietary sources of astaxanthin on fillet coloration, texture, and nutrient composition in rainbow trout (Oncorhynchus mykiss). Eight diets were formulated to contain 0, 25, 50, 75, 100, and 125 mg/kg astaxanthin from wall-broken Haematococcus pluvialis (WBHPA), 100 mg/kg astaxanthin from wall-unbroken H. pluvialis (WUHPA), or chemically synthesized astaxanthin (CSA). Each diet was fed to triplicate groups of rainbow trout (mean initial weight of 561 g) twice daily (07:00 and 17:00) to apparent satiation for 9 weeks. Results showed that at the 100 mg/kg astaxanthin inclusion level, the CAS group had higher fillet gross energy, dorsal fillet redness, and dorsal fillet color card score compared to the WBHPA-100 group, with both being higher than the WUHPA group (P < 0.05). Fillet astaxanthin content, dorsal fillet yellowness, and lateral line redness and yellowness did not differ significantly between the CSA and WBHPA-100 groups (P > 0.05), but were higher than the WUHPA group. When WBHPA was used, the inclusion of 50-100 mg/kg decreased fillet lightness but increased fillet redness, while better fillet texture was served at 75-125 mg/kg. Dietary 25-125 mg/kg WBHPA inclusion increased fillet astaxanthin and gross energy concentrations, with minor effects on fatty acid compositions of fillet. Inclusion of over 100 mg/kg astaxanthin regardless of source decreased fillet threonine and serine contents, and the WBHPA-100 group had lower fillet glycine and alanine contents compared to the control group (P < 0.05). In conclusion, CSA had the most significant impact on fillet coloration and energy deposition in rainbow trout, while WUHPA had the least favorable effect. Additionally, the wall-breaking treatment of H. pluvialis can improve the effect of astaxanthin on fillet coloration and nutrient composition in rainbow trout, with a recommended dose range of 75-100 mg/kg.
Collapse
Affiliation(s)
- Xiaoxue Meng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fumei Yang
- Kunming Biogenic Co. Ltd., Kunming 650220, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lingli Zhan
- Kunming Biogenic Co. Ltd., Kunming 650220, China
| | | | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
8
|
Tian Y, Zhang R, Li G, Zeng T, Chen L, Xu W, Gu T, Tao Z, Du X, Lu L. Microbial fermented feed affects flavor amino acids and yolk trimethylamine of duck eggs via cecal microbiota-yolk metabolites crosstalk. Food Chem 2024; 430:137008. [PMID: 37586289 DOI: 10.1016/j.foodchem.2023.137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Microbial fermented feed (MFF) has been demonstrated to improve nutritional status as well as promote animal health. However, only a few studies have focused on its effect on the flavor of animal products, and the potential underlying mechanisms remain poorly understood. Herein, egg amino acids and yolk trimethylamine (TMA), small intestine histomorphology, cecal microbiota and yolk metabolites were analyzed in MFF-treated ducks. The results showed that MFF significantly increased the flavor amino acids in duck eggs, along with reducing the yolk TMA. MFF caused an increase in beneficial cecal microflora, and regulated the bacteria involved in the metabolism of glucolipid, TMA and its N-oxide. Moreover, MFF regulated 34 annotated metabolites markedly enriched in four metabolic pathways. Correlation analysis showed that cecal microbiota and yolk metabolites were closely related to flavor-related indicators of duck eggs. Our study therefore provides a theoretical basis for improving avian egg flavor starting from the feed.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Ruikun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xizhong Du
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China.
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| |
Collapse
|
9
|
Chen X, Xiong P, Song W, Song Q, Zou Z, Huang J, Chen J, Xu C, Su W, Ai G, Wei Q. Dietary supplementation with honeycomb extracts positively improved egg nutritional and flavor quality, serum antioxidant and immune functions of laying ducks. Front Vet Sci 2023; 10:1277293. [PMID: 37901107 PMCID: PMC10600442 DOI: 10.3389/fvets.2023.1277293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Honeycomb is a traditional natural health medicine and has antioxidant, antibacterial, anti-inflammatory, antiviral and antitumor activities. It is currently unclear whether honeycomb extract supplementation has positive effects on the intensive farming laying duck production. This study aims to evaluate the effects of honeycomb extracts on the laying performance, egg nutritional and flavor quality, serum biochemical indexes, and antioxidant and immune status in laying ducks. Methods A total of 672 healthy 28-week-old Shanma laying ducks with similar laying performance and body weight were randomly distributed into four dietary treatments with 6 replicates of 28 birds. The birds in each treatment were fed the basal diet supplemented with 0 (control group), 0.5, 1.0 or 1.5 g/kg honeycomb extracts, respectively. Feed and water were provided ad libitum for 45 days. Laying performance, egg quality, egg nutrition and flavor quality, serum parameters were assessed. Results The results showed that compared with the control group, honeycomb extracts addition significantly increased the average daily feed intake but did not affect the other laying performance indexes, egg quality or serum biochemical indexes of laying ducks. Dietary supplementation with honeycomb extracts significantly increased crude protein content and decreased the contents of cholesterol and trimethylamine in eggs. Diets supplemented with 1.5 g/kg honeycomb extracts significantly improved egg total amino acids and flavor amino acids contents, monounsaturated fatty acids and polyunsaturated fatty acids composition and enhanced the serum antioxidant activity and immune functions of ducks. Discussion Duck eggs are rich in nutrients and a valuable source of high-quality food for human, while they are rarely consumed directly by consumers because of their stronger fishy odor and lower sensory quality. Many studies have showed that the influence of dietary supplementation on egg components. This study indicated that dietary supplementation with honeycomb extracts positively reduced the contents of egg cholesterol and trimethylamine, improve egg amino acids contents and fatty acid profiles, enhanced serum antioxidant and immune status of laying ducks. The recommended supplemental level of honeycomb extracts was 1.5 g/kg in the diet of laying ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
10
|
Zhang Y, Li C, Zhou X, Jiang W, Wu P, Liu Y, Ren H, Zhang L, Mi H, Tang J, Zhang R, Feng L. Implications of vitamin D for flesh quality of grass carp (Ctenopharyngodon idella): antioxidant ability, nutritional value, sensory quality, and myofiber characteristics. J Anim Sci Biotechnol 2023; 14:134. [PMID: 37759314 PMCID: PMC10523690 DOI: 10.1186/s40104-023-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/02/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Muscle represents a unique and complex system with many components and comprises the major edible part of animals. Vitamin D is a critical nutrient for animals and is known to enhance calcium absorption and immune response. In recent years, dietary vitamin D supplementation in livestock has received increased attention due to biological responses including improving shear force in mammalian meat. However, the vitamin D acquisition and myofiber development processes in fish differ from those in mammals, and the effect of vitamin D on fish flesh quality is poorly understood. Here, the influence of dietary vitamin D on fillet quality, antioxidant ability, and myofiber development was examined in grass carp (Ctenopharyngodon idella). METHODS A total of 540 healthy grass carp, with an initial average body weight of 257.24 ± 0.63 g, were allotted in 6 experimental groups with 3 replicates each, and respectively fed corresponding diets with 15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg vitamin D for 70 d. RESULTS Supplementation with 1,167.9 IU/kg vitamin D significantly improved nutritional value and sensory quality of fillets, enhancing crude protein, free amino acid, lipid, and collagen contents; maintaining an ideal pH; and reducing lactate content, shear force, and cooking loss relative to respective values in the control (15.2 IU/kg) group. Average myofiber diameter and the frequency of myofibers > 50 μm in diameter increased under supplementation with 782.5-1,167.9 IU/kg vitamin D. Levels of oxidative damage biomarkers decreased, and the expression of antioxidant enzymes and nuclear factor erythroid 2-related factor 2 signaling molecules was upregulated in the 1,167.9 IU/kg vitamin D treatment compared to respective values in the control group. Furthermore, vitamin D supplementation activated cell differentiation by enhancing the expression of myogenic regulatory factors and myocyte enhancer factors compared to that in the control group. In addition, supplementation with 1,167.9 IU/kg vitamin D improved protein deposition associated with protein synthesis molecule (target of rapamycin) signaling and vitamin D receptor paralogs, along with inhibition of protein degradation (forkhead box protein 1) signaling. CONCLUSIONS Overall, the results demonstrated that vitamin D strengthened antioxidant ability and myofiber development, thereby enhancing nutritional value and sensory quality of fish flesh. These findings suggest that dietary vitamin D supplementation is conducive to the production of nutrient-rich, high quality aquaculture products.
Collapse
Affiliation(s)
- Yao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chaonan Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Zhang
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, 610041, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistant Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Hu Z, Li H, Liu S, Xue R, Sun J, Ji H. Assessment of black soldier fly ( Hermetia illucens) larvae meal as a potential substitute for soybean meal on growth performance and flesh quality of grass carp Ctenopharyngodon idellus. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:425-449. [PMID: 37649678 PMCID: PMC10463206 DOI: 10.1016/j.aninu.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 09/01/2023]
Abstract
A 90-day feeding trial was conducted to assess the effects of black soldier fly larvae meal (BSFLM) as a replacement for soybean meal (SM) on growth performance and flesh quality of grass carp. A total of 420 grass carp (299.93 ± 0.85 g) were randomly divided into 7 groups (triplicate) and fed 7 diets with SM substitution of 0% (SM, control), 15% (BSFLM15), 30% (BSFLM30), 45% (BSFLM45), 60% (BSFLM60), 75% (BSFLM75) and 100% (BSFLM100) by BSFLM. The growth performance of grass carp in the BSFLM75 and BSFLM100 groups were significantly lower compared to other groups (P < 0.05). The mid-gut villus height was the lowest in the BSFLM100 group (P < 0.05). Muscle nutritional value was improved due to increased DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), total HUFA (highly unsaturated fatty acids) and glycine levels, and reached the optimum in the BSFLM100 group (P < 0.05). According to the results of principal component analysis and weight analysis of muscle texture and body color, all the BSFLM diets except BSFLM15 could improve muscle texture and body color and reached the optimum level in the BSFLM100 group. Muscle drip loss and hypoxanthine content were the lowest and muscle antioxidant capacity was the highest in the BSFLM75 group, and water- and salt-soluble protein contents reached the optimum level in the BSFLM60 group (P < 0.05). Dietary BSFLM significantly reduced muscle fiber area and diameter, and increased muscle fiber density and the proportion of small fiber (diameter <20 μm) (P < 0.05). Additionally, sarcomere lengths in the BSFLM75 and BSFLM100 groups were significantly higher than that in the SM group (P < 0.05). The mRNA relative expression levels of MyoD, Myf5, MyHC and FGF6b were remarkably up-regulated at an appropriate dietary BSFLM level (P < 0.05). In conclusion, BSFLM could replace up to 60% SM without an adverse effect on growth performance and improve the flesh quality of grass carp. The optimum levels of dietary BSFLM were 71.0 and 69.1 g/kg diet based on the final body weight and feed conversion ratio. The flesh quality was optimal when dietary SM was completely replaced with BSFLM (227 g/kg diet).
Collapse
Affiliation(s)
| | | | - Sha Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Pan L, Zhang CJ, Bai Z, Liu YY, Zhang Y, Tian WZ, Zhou Y, Zhou YY, Liao AM, Hou YC, Yu GH, Hui M, Huang JH. Effects of different strains fermentation on nutritional functional components and flavor compounds of sweet potato slurry. Front Nutr 2023; 10:1241580. [PMID: 37693241 PMCID: PMC10483827 DOI: 10.3389/fnut.2023.1241580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
In this paper, we study the effect of microbial fermentation on the nutrient composition and flavor of sweet potato slurry, different strains of Aspergillus niger, Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to ferment sweet potato slurry. After 48 h of fermentation with different strains (10% inoculation amount), we compared the effects of several strains on the nutritional and functional constituents (protein, soluble dietary fiber, organic acid, soluble sugar, total polyphenol, free amino acid, and sensory characteristics). The results demonstrated that the total sugar level of sweet potato slurry fell significantly after fermentation by various strains, indicating that these strains can utilize the nutritious components of sweet potato slurry for fermentation. The slurry's total protein and phenol concentrations increased significantly, and many strains demonstrated excellent fermentation performance. The pH of the slurry dropped from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 free amino acids, and the change in free amino acid content is closely correlated with the flavor of the sweet potato fermentation slurry. The gas chromatography-mass spectrometry results reveal that microbial fermentation can effectively increase the kinds and concentration of flavor components in sweet potato slurry, enhancing its flavor and flavor profile. The results demonstrated that Aspergillus niger fermentation of sweet potato slurry might greatly enhance protein and total phenolic content, which is crucial in enhancing nutrition. However, Bacillus coagulans fermentation can enhance the concentration of free amino acids in sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. After fermentation by Bacillus coagulans, the concentration of lactic acid and volatile flavor substances also achieved its highest level, which can considerably enhance its flavor. The above results showed that Aspergillus niger and Bacillus coagulans could be the ideal strains for sweet potato slurry fermentation.
Collapse
Affiliation(s)
- Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Cun-Jin Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhe Bai
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ying-Ying Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yu Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei-Zhi Tian
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yu Zhou
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuan-Yuan Zhou
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ai-Mei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yin-Chen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Guang-Hai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ming Hui
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- School of Food and Pharmacy, Xuchang University, Xuchang, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
13
|
Zhang J, Du Y, Sun Y, Zhou L, Xu J, Sun J, Qiu T. Effect of orange solid waste diet on flesh quality and metabolic profile of common carp (Cyprinus carpio). Food Chem 2023; 425:136427. [PMID: 37245462 DOI: 10.1016/j.foodchem.2023.136427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
In this study, we aimed to evaluate the effects of solid waste of Citrus sinensis (SWC) supplementation in diet on common carp (Cyprinus carpio) flesh quality and the potential mechanisms underlying these effects. Four diets, each with different levels of SWC (0%, 5%, 10%, and 15%), were formulated and administered to C. carpio (48.83 ± 5.59 g) for 60 days. The results showed that SWC diet significantly enhanced specific growth rate, muscle sweetness (via sweet amino acids and sweet molecules), and the nutritional value of fish meat (increased protein, α-vitamin E, and allopurinol). Chromatography-mass spectrometry analyses indicated that SWC supplementation increased the essential amino acid content in the diet. In addition, SWC diet promoted biosynthesis of non-essential amino acids in muscle by enhancing glycolysis and the tricarboxylic acid cycle. In conclusion, SWC could be a cost-effective solution for providing nutritious and flavourful aquatic products.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yishuai Du
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, Qingdao 266071, China
| | - Yue Sun
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, Shandong Province, China
| | - Li Zhou
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, Qingdao 266071, China
| | - Jianping Xu
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, Qingdao 266071, China
| | - Jianming Sun
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, Qingdao 266071, China
| | - Tianlong Qiu
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, Qingdao 266071, China.
| |
Collapse
|
14
|
Li Q, Huang Y, Zhang X, Zou C, Lin L. Improvement of muscle quality in tilapia (Oreochromis niloticus) with dietary faba bean (Vicia faba L.). Front Nutr 2023; 10:1153323. [PMID: 37051120 PMCID: PMC10083396 DOI: 10.3389/fnut.2023.1153323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Tilapia (Oreochromis niloticus) is a freshwater fish which is farmed worldwide. Improving the muscle quality of fish has become a major goal while maintaining a sustainable aquaculture system. This research attempts to assess the effect of 0% (FB0), 40%(FB40), 50%(FB50), 60%(FB60) and 70% (FB70) faba bean on the texture parameter, histological analysis, proximate, amino acids, and fatty acids composition in tilapia fed 90 days. The results showed that hardness, chewiness, and shear force of tilapia muscle fed FB60, and FB70 were considerably more in comparison to fish fed FB0 at 90 days (p < 0.05). Tilapia fed faba beans had higher muscle fiber density, wider spaces between muscle fibers and smaller fiber diameter, with the greatest difference in tilapia fed FB60. The total protein content in tilapia fed FB40 was considerably more in comparison to in fish fed FB70 (p < 0.05), where the total protein content in muscle first increased and then reduced with increasing dietary faba bean level. The muscle ∑TAA, ∑EAA, valine, tyrosine, cysteine, aspartic acid, methionine, isoleucine, glutamic acid, leucine, arginine, and serine, contents in tilapia fed FB60 were much more in contrast to in fish fed FB0 (p < 0.05), which initially increased and then reduced with increasing dietary faba bean level. The muscle ∑PUFA content in tilapia fed dietary faba beans was greater compared with fish fed FB0, whereas the ∑SFA contents in tilapia fed FB50 and FB60 were lower in contrast to in fish fed FB0. In summary, dietary faba beans can improve muscle texture, muscle fibers, amino acids content and fatty acids content in tilapia. The research’s results make a contribution to the improved knowledge of the association among muscle quality in tilapia and dietary faba beans.
Collapse
Affiliation(s)
- Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Zhongshan Tilapia Science and Technology Backyard, Ministry of Education, Guangzhou, Guangdong, China
| | - Yao Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Xingqian Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Cuiyun Zou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Zhongshan Tilapia Science and Technology Backyard, Ministry of Education, Guangzhou, Guangdong, China
- *Correspondence: Li Lin,
| |
Collapse
|
15
|
Xue R, Li H, Liu S, Hu Z, Wu Q, Ji H. Substitution of soybean meal with Clostridium autoethanogenum protein in grass carp (Ctenopharygodon idella) diets: Effects on growth performance, feed utilization, muscle nutritional value and sensory characteristics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Bu X, Song Y, Cai X, Tang L, Huang Q, Wang X, Du Z, Qin C, Qin JG, Chen L. Enhancement of protein deposition and meat quality of male Chinese mitten crab (Eriocheir sinensis): Application of myo-inositol in crustacean nutrition. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Comparative analysis of muscle nutrient in two types of hybrid bream and native bream. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Jin Y, Xu M, Jin Y, Deng S, Tao N, Qiu W. Simultaneous Detection and Analysis of Free Amino Acids and Glutathione in Different Shrimp. Foods 2022; 11:foods11172599. [PMID: 36076785 PMCID: PMC9455249 DOI: 10.3390/foods11172599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
An amino acid analyzer method for the simultaneous determination of 20 free amino acids (FAAs) and glutathione (GSH) in Penaeus vannamei (PV), Penaeus vannamei, Penaeus hidulis (PH) and Penaeus japonicus (PJ) were developed. The effects of different concentrations of trichloroacetic acid (TCA) and ethanol on the extraction of free amino acids were investigated, and 120 g·L−1 TCA was found to be ideal. The target analytes were eluted in sodium citrate buffer B1 (pH = 3.3) containing 135 mL·L−1 ethanol and 1 mol·L−1 sodium hydroxide (7 mL) and at the optimizing conversion time of sodium citrate buffer B2 (pH = 3.2) and sodium citrate buffer B3 (pH = 4.0) of 5.6 min, and the effective separation was achieved within 29.5 min. The developed method showed good linearity (R2 ≥ 0.9991) in the range of 1–250 µg·mL−1 with good intra-day and inter-day precision (relative standard deviations ≤ 2.38%) and spike recovery (86.42–103.64%). GSH and cysteine were used to identify marine prawn and freshwater shrimp. Hydroxyproline and serine were used to distinguish PV and Macrobrachium nipponense (MN) from others, respectively. The highest content of the total FAAs was found in PV, and principal component analysis revealed that PV had the highest comprehensive score for FAAs and GSH. Arginine was found to have the greatest influence on shrimp flavor.
Collapse
Affiliation(s)
- Yinzhe Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingshan Jin
- College of Bioscience and Technology, Yangzhou University, Yangzhou 277600, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.T.); (W.Q.)
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.T.); (W.Q.)
| |
Collapse
|
19
|
Song D, Yun Y, He Z, Mi J, Luo J, Jin M, Zhou Q, Nie G. Effects of faba bean (Vicia faba L.) on fillet quality of Yellow River carp (Cyprinus carpio) via the oxidative stress response. Food Chem 2022; 388:132953. [PMID: 35483280 DOI: 10.1016/j.foodchem.2022.132953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
In order to further explain the fillet texture improvement of Yellow River carp (Cyprinus carpio) fed with faba bean (Vicia faba L.), a three-month rearing trial was conducted to investigate fatty acid composition, antioxidant capacity, myofiber development, collagen deposition and transcriptome in white muscle of two farmed carp groups (One was fed only faba bean, the other was fed commercial diet). As a strong oxidant, faba bean changed fatty acids composition in white muscle, especially DHA and EPA, up-regulated the levels of reactive oxygen species (ROS) and down-regulated major antioxidant enzyme activities in the hepatopancreas and white muscle. Through the analysis of transcriptome and subsequent verification analysis, we speculated that the increase of ROS led to the decrease of myofiber diameter and collagen metabolism. This study provides a theoretical basis for further understanding the regulation of faba bean on fillet texture characteristic of Yellow River carp.
Collapse
Affiliation(s)
- Dongying Song
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yinghao Yun
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zijie He
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jiali Mi
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
20
|
Wu B, Xu Z, Cao J, Wang Q, Mei J, Xie J. Effects of β-1,3-glucan and ascorbic acid on the nutritional-immune response and antioxidant signaling pathways of live tiger grouper during simulated transport. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Xiao Z, Niu M, Niu Y. Comparative Study on Volatile Compounds and Taste Components of Different Durian Cultivars Based on GC-MS, UHPLC, HPAEC-PAD, E-Tongue and E-Nose. Molecules 2022; 27:molecules27041264. [PMID: 35209052 PMCID: PMC8880792 DOI: 10.3390/molecules27041264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
In order to comprehensively evaluate the aroma-active substances and taste components of durian, solid-phase microextraction combined with gas chromatography mass spectrometry (SPME/GC-MS), high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and ultra-high-performance liquid chromatography (UHPLC) were used to test the key components of three popular durian cultivars. A total of 27 volatile compounds, 5 sugars, 27 organic acids and 19 free amino acids were detected in Black Thorn (BT) durian. A total of 38 volatile compounds, 4 sugars, 27 organic acids and 19 free amino acids were detected in Monthong (MT) durian. A total of 36 volatile compounds, 4 sugars, 27 organic acids and 20 free amino acids were detected in Musang King (MK) durian. Finally, the flavor differences of the three durians were evaluated using electronic nose (e-nose) and electronic tongue (e-tongue), and different cultivars were classified through principal component analysis (PCA).
Collapse
Affiliation(s)
- Zuobing Xiao
- Shanghai Institute of Technology, School of Perfume and Aroma Technology, Shanghai 201418, China; (Z.X.); (M.N.)
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minxing Niu
- Shanghai Institute of Technology, School of Perfume and Aroma Technology, Shanghai 201418, China; (Z.X.); (M.N.)
| | - Yunwei Niu
- Shanghai Institute of Technology, School of Perfume and Aroma Technology, Shanghai 201418, China; (Z.X.); (M.N.)
- Correspondence: ; Tel./Fax: +86-021-60873424
| |
Collapse
|
22
|
Zhao L, Zhao JL, Bai Z, Du J, Shi Y, Wang Y, Wang Y, Liu Y, Yu Z, Li MY. Polysaccharide from dandelion enriched nutritional composition, antioxidant capacity, and inhibited bioaccumulation and inflammation in Channa asiatica under hexavalent chromium exposure. Int J Biol Macromol 2022; 201:557-568. [PMID: 35007636 DOI: 10.1016/j.ijbiomac.2021.12.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 01/17/2023]
Abstract
Taraxacum mongolicum polysaccharide (TMP) exhibits anti-inflammatory and antioxidant activity, making it an attractive candidate for aquatic-product-safety applications. Here, this study was aimed to investigate the effects of dietary TMP on the growth, nutritional composition, antioxidant capacity, bioaccumulation and inflammation in Channa asiatica under hexavalent chromium stress. The C. asiatica was randomly distributed into five groups: The first group served as the blank control group (CK), the subsequent groups were fed TMP-supplemented feed (0, 0.5, 1.0 and 2.0 g/kg), respectively, and exposed to waterborne Cr6+ for 28 days. Our results indicated that the TMP effectively increased (P < 0.05) C. asiatica muscle flavour amino acid, total free amino acids, monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), and EPA + DHA contents, enhanced positively antioxidant enzyme activity (GPX, SOD, CAT, T-AOC), reduced oxidative stress parameters (MDA, PC), and up-regulated antioxidant-related genes mRNA expression. Meanwhile, the appropriate amount of TMP supplementation also inhibited the bioaccumulation of Cr6+ in tissues and alleviated the inflammatory response (P < 0.05). Furthermore, sensory evaluation implied that the overall score of sashimi and cooked fillet in the 2.0 g/kg TMP group was the highest in the experimental group, second only to CK. In brief, these results elucidate that TMP-supplemented diets excellently ameliorated the growth, enriched nutritional composition and antioxidant capacity, and inhibited bioaccumulation and inflammation in C. asiatica exposed to waterborne Cr6+.
Collapse
Affiliation(s)
- Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Jun-Liang Zhao
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Zhihui Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Jiahua Du
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yanchao Shi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yi Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yuyao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yunzhuo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Zhe Yu
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mu-Yang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
23
|
Sun Y, Geng S, Yuan T, Liu Y, Zhang Y, Di Y, Li J, Zhang L. Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers. Animals (Basel) 2021; 11:ani11123470. [PMID: 34944247 PMCID: PMC8697934 DOI: 10.3390/ani11123470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Manganese is a vital trace element for the growth of broilers. In order to meet the requirement of manganese in broiler production, the additives of manganese sources are usually added into the diet for broilers. Manganese hydroxychloride is a category of hydroxy trace minerals. The present study investigated the effect of dietary supplemental manganese as manganese hydroxychloride for growth performance, antioxidant capacity, tibial quality, and manganese deposition of broilers and recommended that optimal supplementation with manganese as manganese hydroxychloride in diets for broilers was 50–90 mg/kg. This study provides a rational recommendation for the application of manganese hydroxychloride in broiler diets. Abstract This study was conducted to investigate the effects of dietary supplementation with manganese hydroxychloride (MHC) on production performance, antioxidant capacity, tibial quality, and manganese (Mn) deposition of broilers. A total of 756 one-day-old male Arbor Acres broilers were randomly allotted to 7 treatments of 6 replicates with 18 broilers per replicate. Broilers were fed corn-soybean meal basal diets supplemented of 100 mg/kg Mn as Mn sulfate (MnSO4), or 0, 20, 40, 60, 80, 100 mg/kg Mn as MHC for 42 days. The growth performance of broilers was not affected by dietary MnSO4 or MHC (p > 0.05), whereas the dressing percentage increased linearly (p < 0.05) with increasing of dietary MHC addition level. The activities of catalase (CAT) and manganese superoxide dismutase (MnSOD), and total antioxidant capability (T-AOC) in serum and liver on day 42 increased linearly (p < 0.05) with increasing of dietary MHC level, while malondialdehyde (MDA) concentration reduced linearly (p < 0.05). The length, strength, and density index of tibia increased linearly (p < 0.05) on day 21 as MHC supplementation level increased; there were no differences between MnSO4 group and 40–100 mg/kg Mn as MHC groups in tibial parameters of broilers (p > 0.05). As supplemental MHC levels increased, the Mn contents in heart, liver, kidney, and tibia increased linearly on day 42 (p < 0.05). In summary, dietary supplementation with MHC improved antioxidant capacity, bone quality, and Mn contents in broilers, but no effects on growth performance were detected. Based on the results of this study, dietary inclusion of 50–90 mg/kg Mn in the form of MHC to broilers is recommended.
Collapse
|
24
|
Effects of dietary methionine on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis of on-growing grass carp ( Ctenopharyngodon idella). Br J Nutr 2021; 126:321-336. [PMID: 32718370 DOI: 10.1017/s0007114520002998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the current research, a 60-d experiment was conducted with the purpose of exploring the impacts of methionine (Met) on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis as well as the related signalling pathway. Six diets (iso-nitrogenous) differing in Met concentrations (2·54, 4·85, 7·43, 10·12, 12·40 and 15·11 g/kg diets) were fed to 540 grass carp (178·47 (SD 0·36) g). Results showed (P < 0·05) that compared with Met deficiency, optimal level of dietary Met (1) increased feed intake, feed efficiency, specific growth rate and percentage weight gain (PWG); (2) increased fish muscle protein, lipid and free amino acid contents and improved fish muscle fatty acid profile as well as increased protein content in part associated with the target of rapamycin complex 1 (TORC1)/S6K1 signalling pathway; (3) increased the frequency distribution of muscle fibre with >50 µm of diameter; (4) increased type I collagen synthesis partly related to the transforming growth factor-β1/Smads and CK2/TORC1 signalling pathways. In conclusion, dietary Met improved muscle growth, which might be due to the regulation of muscle nutritive deposition, muscle fibre growth and type I collagen synthesis-related signal molecules. Finally, according to PWG and muscle collagen content, the Met requirements for on-growing grass carp (178-626 g) were estimated to be 9·56 g/kg diet (33·26 g/kg protein of diet) and 9·28 g/kg diet (32·29 g/kg of dietary protein), respectively.
Collapse
|
25
|
Wang J, Jiang H, Alhamoud Y, Chen Y, Zhuang J, Liu T, Cai L, Shen W, Wu X, Zheng W, Feng F. Integrated metabolomic and gene expression analyses to study the effects of glycerol monolaurate on flesh quality in large yellow croaker (Larimichthys crocea). Food Chem 2021; 367:130749. [PMID: 34375886 DOI: 10.1016/j.foodchem.2021.130749] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
To improve the quality of cultured large yellow croaker (Larimichthys crocea), this study was performed to study the impacts of glycerol monolaurate (GML) on the nutritional value, growth performance, muscle texture, and taste intensity of L. crocea. The results showed that GML as a feed additive significantly increased the crude lipid content and reduced the diameters of muscle fibers, which in turn markedly altered the flesh texture in terms of cohesiveness. Moreover, the taste indicators (umami and richness) and flavor-related amino acid (glutamic acid, glycine, and proline) contents of L. crocea muscle were significantly higher in the GML group. Metabolomic and gene expression analyses showed that GML supplementation could significantly improve amino acid biosynthesis and metabolism, promote protein and lipid synthesis, and activate myogenic-related signaling pathways of L. crocea. Consequently, adding an appropriate amount of GML to fish feed would be conducive to providing healthy, nutrient-rich and acceptably flavored aquatic-products.
Collapse
Affiliation(s)
- Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huiqi Jiang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yasmin Alhamoud
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Engineering, Faculty of Chemical and Petroleum Engineering, Al-Baath University, Homs, Syria
| | - Yong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310058, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Luyun Cai
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo 315100, China
| | - Xiongfei Wu
- Ningbo Academy of Oceanology and Fishery, Ningbo 315100, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China
| | - Fengqin Feng
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
GUILLÉN-SÁNCHEZ EJ, PACHECO-AGUILAR R, SCHEUREN-ACEVEDO SM, CARVALLO-RUIZ MG, NAVARRO-GARCÍA G, RAMÍREZ-SUÁREZ JC. Shelf-life of loricariid catfish (Pterygoplichthys disjunctivus [Weber, 1991]) roe stored in ice. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.14920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Hu B, Zhou J, Qiu H, Lai X, Li J, Wu D, Sheng J, Hong Y. Comparison of nutritional quality and volatile flavor compounds among bighead carp from three aquaculture systems. Saudi J Biol Sci 2021; 28:4291-4299. [PMID: 34354411 PMCID: PMC8325028 DOI: 10.1016/j.sjbs.2021.03.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/11/2022] Open
Abstract
To explore the differences in the nutritional quality of the muscles of bighead carp from different environments and aquaculture systems, we investigated three types of water bodies typically used for aquaculture: A common culture pond (NC), a natural lake (PY), and a cold water reservoir (XHK). Parameters affecting quality were evaluated, including muscle microstructure, fatty acid profiles, amino acid profiles, and volatile compounds. Fish from the XHK reservoir had the smallest muscle fiber diameter and the highest muscle fiber density (25.3 fibers/0.01 mm2), while muscle fiber density was lowest in fish from the NC pond (9.7 fibers/0.01 mm2). The bighead carp from the XHK reservoir had a much wider variety of unsaturated fatty acids, as well as higher levels of total polyunsaturated fatty acids. Eicosapentaenoic acid (EPA), docosahexenoic acid (DHA), and arachidonic acid (AA) were all significantly more abundant in the XHK group, increases of 7.48%, 12.12%, and 17.49%, respectively (P < 0.05). The bighead carp from NC contained more “fishy” volatile flavor substances, as well as hydrocarbons with higher threshold values. Fish from XHK and NC had a greater umami intensity due to the presence of abundant volatiles with special aromas, including 1-Octene-3ol, DL-Menthol, and 2-ethyl-.
Collapse
Affiliation(s)
- Beijuan Hu
- School of Life Science, Nanchang University, Nanchang 330031, China.,Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang 330031, China
| | - Jie Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huimin Qiu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xinxin Lai
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jing Li
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Di Wu
- School of Life Science, Nanchang University, Nanchang 330031, China.,Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang 330031, China
| | - Junqing Sheng
- School of Life Science, Nanchang University, Nanchang 330031, China.,Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang 330031, China
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang 330031, China.,Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang 330031, China
| |
Collapse
|
28
|
Huang D, Maulu S, Ren M, Liang H, Ge X, Ji K, Yu H. Dietary Lysine Levels Improved Antioxidant Capacity and Immunity via the TOR and p38 MAPK Signaling Pathways in Grass Carp, Ctenopharyngodon idellus Fry. Front Immunol 2021; 12:635015. [PMID: 33717179 PMCID: PMC7947207 DOI: 10.3389/fimmu.2021.635015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
An 8-week rearing trial was designed to appraise the dietary lysine levels on intestinal antioxidant capacity and immunity of grass carp fry. Six practical diets were prepared with graded levels of lysine (1.44, 1.79, 1.97, 2.44, 2.56 and 2.87% dry matter), and these diets were fed to grass carp fry. The results showed that the activities of intestinal antioxidant factors including catalase and glutathione peroxidase were markedly improved by the 2.44% dietary lysine compared with the control diet (1.44% dietary lysine) (P < 0.05). In terms of antioxidants, compared with the control diet, the 2.44% diet markedly upregulated the mRNA expression levels of target of rapamycin, S6 kinase1 and nuclear factor erythroid 2-related factor 2 pathway-related antioxidant genes, containing catalase and glutathione peroxidase 1α (P < 0.05) and downregulated the mRNA levels of Kelch-like ECH-associated protein 1 (P > 0.05). The mRNA levels of 4E-binding protein 2 showed the opposite trend compared with those of target of rapamycin, and the minimum value was observed in the group of 1.97% dietary lysine (P < 0.05). In terms of immunity, compared with the 1.44% diet, the 2.44% diet markedly suppressed the intestinal p38 mitogen-activated protein kinase and interferon γ2 mRNA levels (P < 0.05). Moreover, nuclear factor-kappa B p65, tumor necrosis factor α, interleukin 6, interleukin 8, and interleukin 15 mRNA levels all exhibited the same trend as p38 mitogen-activated protein kinase and interferon γ2; however, the difference among all the lysine treatments groups was not significant (P > 0.05). The anti-inflammatory cytokines transforming growth factor β2 and interleukin 4/13B mRNA levels in the intestine were remarkably upregulated by high dietary lysine levels (2.56 and 2.87%) (P < 0.05), and when the dietary lysine level reached 2.44%, the interleukin 4/13A mRNA levels were strikingly increased (P < 0.05). Overall, the data suggested that 2.44% dietary lysine could strengthen the immune and antioxidant capacities of grass carp fry via activating the target of rapamycin (TOR) signaling pathway, and suppressing the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway, which then improve the survival rate.
Collapse
Affiliation(s)
- Dongyu Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Sahya Maulu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
29
|
Liu T, Li C, Zhong H, Feng F. Dietary medium-chain α-monoglycerides increase BW, feed intake, and carcass yield in broilers with muscle composition alteration. Poult Sci 2021; 100:186-195. [PMID: 33357680 PMCID: PMC7772667 DOI: 10.1016/j.psj.2020.09.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glycerol monolaurate (GML), a member of medium-chain α-monoglycerides (MG), is proved to be beneficial for productive performance, feed efficiency, and health of broilers based on recent research. The present study aims to evaluate the effect of MG mixture rich in GML and glycerol monodecanoate on performance, intestinal development, serum parameters, carcass yield, and muscle composition in broilers. A total of 528 chicks were weighed and randomly assigned into 4 groups (22 chicks/replicate, 6 replicates/group) for a 56-d experiment. The control group received a basal diet containing 0 mg/kg MG (CON), and the treated groups fed basal diets containing 300 (MG300), 450 and 600 mg/kg MG. The results revealed that the BW (P < 0.05), ADG, and ADFI were notably increased in MG-containing groups during the finisher phase compared with the CON group. Remarkable intestinal improvements were observed in the duodenum and jejunum of MG-treated groups, but no statistical differences were obtained. Dietary MG significantly (P < 0.05) increased the serum high-density lipoprotein cholesterol, total protein, and superoxide dismutase content in broilers. Inclusion of 300 mg/kg MG in diet increased the eviscerated yield (P = 0.066), leg muscle (P < 0.01) and breast muscle yield (P = 0.083), and improved the fresh meat quality with reduced drip loss (P < 0.01) and pH decline (P < 0.01) compared with the CON group. Moreover, the saturated fatty acid (P = 0.073), flavor amino acid (P < 0.05), and total amino acid (P < 0.05) content was notably higher in the muscle of the MG300 group than that in the CON group. In summary, these findings revealed that mixed MG can be used as an effective and novel feed supplement to improve productive performance and quality of broilers.
Collapse
Affiliation(s)
- Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Zhejiang University, Ningbo 315100, China
| | - Chuang Li
- School of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hao Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Zhejiang University, Ningbo 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Institute of Zhejiang University, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
30
|
Wu P, Liu XW, Feng L, Jiang WD, Kuang SY, Tang L, Shi HQ, Zhou XQ, Liu Y. (2-Carboxyethyl) dimethylsulfonium bromide supplementation in non-fish meal diets for on-growing grass carp (Ctenopharyngodon idella): Beneficial effects on immune function of the immune organs via modulation of NF-κB and TOR signalling pathway. FISH & SHELLFISH IMMUNOLOGY 2020; 107:309-323. [PMID: 33096248 DOI: 10.1016/j.fsi.2020.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The immune function of immune organs is extremely crucial for maintaining organism health status, which ultimately affects fish growth. Our previous study has found that dietary supplementation of (2-carboxyethyl)dimethylsulfonium Bromide (Br-DMPT) in non-fish meal (NFM) diet could promote the growth of grass carp (Ctenopharyngodon idella), whereas the underlying reason or mechanism for this results is largely unclear. Herein, we further explored whether dietary supplementation of Br-DMPT promoted fish growth is connected with the enhanced immune function in the immune organs (the head kidney, spleen and skin). In this study, 540 fish (216.49 ± 0.29 g) were irregularly distributed to six groups with three replicates (30 fish replicate-1) and fed corresponding diets group containing a fish meal (FM) diet group and five different NFM diets supplemented with gradational Br-DMPT (0-520.0 mg/kg level) group for 60 days. After the 60-days feeding trial, 8 fish from each replicate were selected and then conducted a challenge test with A. hydrophila for 14 days. Our results indicated that in the NFM diets, appropriate Br-DMPT: (1) significantly decreased the morbidity of skin haemorrhage and lesion after A. hydrophila infection (P < 0.05). (2) significantly improved the innate and adaptive immune components (lysozyme, complement 3, immunoglobulin M and antibacterial peptides et al.) (P < 0.05). (3) increased the gene expressions of main anti-inflammatory cytokines partially by referring to TOR signalling pathway, and decreased the gene expressions of main pro-inflammatory cytokines partially by referring to NF-kB signalling pathway (P < 0.05). Strikingly, no statistical difference could be found in the most of above immune parameters between 260.0 mg/kg Br-DMPT diet group and FM diet group (P > 0.05). Taken together, in non-fish meal diet, appropriate supplementation of Br-DMPT could improve the disease resistance capacity, non-specific immunity and ameliorate inflammation, and simultaneously could mitigate these adverse effects induced by the non-fish meal diet in fish immune organs. Moreover, this study may be helpful to decipher the underlying mechanisms of how Br-DMPT promote fish growth by immune organs and also provide scientific theoretical evidence for the future application of Br-DMPT as a new immunopotentiator in aquaculture industry.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Xing-Wei Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - He-Qun Shi
- Guangzhou Cohoo Biotech Co., Ltd., Guangzhou 510635, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
31
|
Zhou C, Lin H, Huang Z, Wang J, Wang Y, Yu W. Effects of dietary leucine levels on intestinal antioxidant status and immune response for juvenile golden pompano (Trachinotus ovatus) involved in Nrf2 and NF-κB signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2020; 107:336-345. [PMID: 33080319 DOI: 10.1016/j.fsi.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The aim of the study was to evaluate the effects of dietary leucine level on growth performance, intestinal antioxidant status and immune response involved in Nrf2 and NF-κB signaling pathway in juvenile golden pompano (Trachinotus ovatus). A total of 450 juvenile golden pompano (9.15 ± 0.04 g) were fed three isonitrogenous diets with graded leucine levels [1.25% (control), 2.77% and 5.84%] for 8 weeks. The results showed that, compared with the control group, the WG was significantly improved in fish fed with 2.77% of dietary leucine (P < 0.05), and the 5.84% dietary leucine group had a tendency to increase. Compared to control group, 5.84% dietary leucine group significantly decreased the moisture and ash contents of whole body (P < 0.05), meanwhile, 2.77% dietary leucine group significantly decreased moisture content of whole body, but significantly improved the whole body crude lipid content (P < 0.05). Compared with the control group, the ALP level was significantly improved in fish fed with 2.77% of dietary leucine (P < 0.05). Inversely, the AST and ALT activities were significantly decreased in fish fed with 2.77% dietary leucine level (P < 0.05). Compared with the control group, GPx, T-AOC, SOD activities in group of 2.77% dietary arginine level were significantly increased (P < 0.05). However, MDA level showed a reverse trend, which was significantly decreased in fish fed with 2.77% dietary leucine level (P < 0.05). 2.77% dietary leucine levels significantly increased the relative expressions of Nrf2, HO-1, Cu/Zn-SOD, Mn-SOD and CAT (P < 0.05). In contrast, the relative expression of Keap1 showed a converse trend. Compared with the control group, the relative expressions of NF-κB, TNF-α and IL1-β were significantly lowered in fish fed with 2.77% of dietary leucine (P < 0.05). Additionally, 2.77% dietary leucine level significantly improved the relative expressions of TGF-β and IL-10 (P < 0.05). The 2.77% dietary leucine level significantly increased the muscular thickness compared with 5.84% dietary leucine level (P < 0.05). Furthermore, compared with the control group, the villus height and goblet cell counts were significantly improved in fish fed with 2.77% of dietary leucine (P < 0.05). These results indicated that the optimum dietary leucine plays an important role in promoting growth, enhancing antioxidant and immunity to maintain the intestinal health status of juvenile golden pompano.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China.
| | - Zhong Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| |
Collapse
|
32
|
Yu Q, Fang C, Ma Y, He S, Ajuwon KM, He J. Dietary resveratrol supplement improves carcass traits and meat quality of Pekin ducks. Poult Sci 2020; 100:100802. [PMID: 33518308 PMCID: PMC7936143 DOI: 10.1016/j.psj.2020.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
With the increase of consumer demand for high-quality animal protein, it becomes imperative to improve meat quality through nutritional strategy. Resveratrol is a plant polyphenol that exists in grapes and grape products, and it has been considered as a potential functional feed additive. Here, we aimed to explore the optimal dose of resveratrol in Pekin ducks' diet and its effect on improving meat quality. A total of 432 male Pekin ducks (1-day-old) were selected and randomly allotted to 4 treatment groups, with each group containing 6 replicates. Four different levels of resveratrol were evaluated (0, 150, 300, and 450 mg/kg) for 42 d. The carcass traits, meat quality, and muscle fiber characteristics of Pekin ducks were investigated. Results showed that a∗24h, b∗24h, intramuscular fat, crude protein, total flavor amino acid content of duck breast muscle, and a∗45min of duck leg muscle were increased (P < 0.05) by resveratrol. Resveratrol also reduced abdominal fat deposition, shear force, L∗45min of breast muscle and drip loss, shear force, and L∗45min of leg muscle. In addition, the breast muscle fibers of resveratrol-fed ducks had lower diameter and cross-sectional area and higher density (P < 0.05). Overall, we conclude that dietary resveratrol supplement can effectively improve Pekin duck meat quality, the optimal additional range in diet being 300 to 450 mg/kg. Its underlying mechanism might be partly through stimulation of intramuscular fat and flavor amino deposition and alteration of muscle fiber characteristics.
Collapse
Affiliation(s)
- Qifang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yujing Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shaoping He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Kolapo Matthew Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
33
|
Liu XW, Zhang JX, Feng L, Jiang WD, Wu P, Kuang SY, Tang L, Shi HQ, Zhou XQ, Liu Y. Protective effects and potential mechanisms of (2-Carboxyethyl) dimethylsulfonium Bromide (Br-DMPT) on gill health status of on-growing grass carp (Ctenopharyngodon idella) after infection with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2020; 106:228-240. [PMID: 32771611 DOI: 10.1016/j.fsi.2020.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, the protective effects and potential mechanisms of (2-Carboxyethyl) dimethylsulfonium Bromide (Br-DMPT) were evaluated in relation to the gill health status of on-growing young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (216.49 ± 0.29 g) were randomly distributed into five treatments of three replicates each (30 fish per replicate) and were fed diets supplemented with gradational Br-DMPT (0-520.0 mg/kg levels) for 60 days. Subsequently, the fish were challenged with Flavobacterium columnare for 3 days, and the gills were sampled to evaluate antioxidant status and immune responses evaluation. Our results showed that, when compared to the control group, dietary supplementation with appropriate Br-DMPT levels resulted in the following: (1) decreased gill rot morbidity and improved gill histological symptoms after exposure to F. columnare (P < 0.05); (2) improved activities and gene expression levels (except GSTP2 gene) of antioxidant enzymes and decreased oxidative damage parameter values (reactive oxygen species, malondialdehyde and protein carbonyl) (P < 0.05), which may be partially associated with the nuclear factor-erythroid 2-related factor 2 (Nrf2) signalling pathway (P < 0.05); (3) increased lysozyme (LZ) and acid phosphatase (ACP) activities and complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and upregulated genes expressions of antibacterial peptides (liver-expressed antimicrobial peptide-2A, -2B, hepcidin, β-defensin and mucin2) (P < 0.05); (4) upregulated gene expressions of anti-inflammatory cytokines (except IL--4/13B) that may be partially to the TOR/(S6K1, 4E-BP1) signalling pathway, and downregulated gene expressions of pro-inflammatory cytokines (except IL-12P35) may be partially to the IKK β, γ/IκBα/NF-kB) signalling pathway (P < 0.05). Taken together, our results indicate that dietary supplementation with appropriate amounts of Br-DMPT may effectively protect on-growing grass carp from F. columnare by strengthening gill antioxidant capacity and immunity. Furthermore, based on measures of combatting gill rot, antioxidant indices (MDA) and immune indices (LZ), the dietary Br-DMPT supplementation levels for on-growing grass carp are recommended to be 291.14, 303.38 and 312.01 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xing-Wei Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin-Xiu Zhang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - He-Qun Shi
- Guangzhou Cohoo Biotech Co Ltd., Guangzhou, 510663, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
34
|
Xu H, Turchini GM, Francis DS, Liang M, Mock TS, Rombenso A, Ai Q. Are fish what they eat? A fatty acid’s perspective. Prog Lipid Res 2020; 80:101064. [DOI: 10.1016/j.plipres.2020.101064] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
|
35
|
Liu T, Tang J, Feng F. Glycerol monolaurate improves performance, intestinal development, and muscle amino acids in yellow-feathered broilers via manipulating gut microbiota. Appl Microbiol Biotechnol 2020; 104:10279-10291. [PMID: 33026495 DOI: 10.1007/s00253-020-10919-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Recent studies reveal that glycerol monolaurate (GML) is regarded as an effective feed supplement in the production of broilers; however, the underlying mechanism remains unknown. The current study aimed to investigate how GML affected production performance and meat quality in yellow-feathered broilers. A total of 528 chicks were randomly assigned into four groups for a 56-day feeding trial. The control group received a basal diet, and the treated groups fed basal diet containing 300 (GML300), 450 (GML450), and 600 (GML600) mg/kg GML. Results revealed that dietary GML notably increased the average daily feed intake (p < 0.05) and body weight in broilers during 28-56 days of age and improved the duodenum and jejunum morphology. Dietary GML increased the total cholesterol in broilers (p < 0.05), but the hepatic, abdominal, and muscular fat deposition, as well as muscle fatty acids, were not affected. The flavor amino acids and total amino acids in muscle of GML300 and GML 450 groups were notably (p < 0.05) increased. GML supplementation selectively increased the colonization of an unclassified genus of Lachnospiraceae family and Bifidobacteriaceae, which were significantly (p < 0.05) correlated with the increase of muscle amino acids. Meanwhile, dietary GML notably increased short chain fatty acids content and the microbial DNA abundance of carbohydrate, amino acids and lipid metabolism pathway in cecum. These findings demonstrated that dietary GML improved performance, intestinal morphology, and muscle amino acids in broilers mainly by manipulating community, function and metabolites of gut microbiota. KEY POINTS: • GML improves performance, muscle composition, and feed efficiency in broilers. • GML alters gut microbiota community, function, and microbial metabolites in broilers. • Improvements of broilers by GML closely associated with gut microbiota alteration. Graphical abstract.
Collapse
Affiliation(s)
- Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Institute of Zhejiang University, Ningbo, 315100, China
| | - Jun Tang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Ningbo Institute of Zhejiang University, Ningbo, 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,Ningbo Institute of Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
36
|
The mechanism for improving the flesh quality of grass carp (Ctenopharyngodon idella) following the micro-flowing water treatment using a UPLC-QTOF/MS based metabolomics method. Food Chem 2020; 327:126777. [PMID: 32446027 DOI: 10.1016/j.foodchem.2020.126777] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/15/2023]
Abstract
The micro-flowing water system can improve the flesh quality of freshwater fish using the traditional pond farming method. However, the mechanism of this phenomenon has not yet been explored. This study intends to examine the changes of metabolites in freshwater fish after treatment with the micro-flowing purification system (MFPS). The UPLC-QTOF/MS based metabolomics method was utilized to screen the metabolites and predict the major possible metabolic pathways after MFPS treatment. There were 377 types of metabolites identified in the fish muscle, of which 54-71 represented significant different metabolites identified during different stages of MFPS treatments. The main mechanism of MFPS treatment in improving the quality of grass carp fish muscle was investigated, and the MFPS treatment was shown to improve the flesh quality and the flavor of grass carp fish muscle. This study could provide the theoretical basis for improving the quality of aquatic products.
Collapse
|
37
|
Song Y, Yan L, Jiang W, Xiao W, Feng L, Wu P, Liu Y, Kuang S, Tang L, Zhou X. Enzyme-treated soy protein supplementation in low protein diet improved flesh tenderness, juiciness, flavor, healthiness, and antioxidant capacity in on-growing grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:213-230. [PMID: 31701282 DOI: 10.1007/s10695-019-00710-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
An 8-week feeding trial was conducted to investigate the effects of enzyme-treated soy protein (ETSP) supplementation in low protein diets on growth performance as well as flesh sensory quality and healthiness in on-growing grass carp. A total of 540 on-growing grass carp (initial average weight 325.72 ± 0.60 g) were fed six diets, which included a normal protein diet (28% crude protein) and five low protein diets (26% crude protein) supplemented with graded levels of ETSP (0.0, 0.8, 1.2, 1.6, and 2.0%). The results showed that reducing dietary protein by 2% decreased percentage weight gain, feed intake, and flesh flavor (aspartic acid, glutamic acid, histidine, and 5'-inosinic acid contents) and healthiness-related indices (linolenic acid (LA) and docosahexaenoic acid (DHA) contents and polyunsaturated fatty acids to saturated fatty acids ratio). Under the condition of reducing dietary protein by 2%, 0.8-1.2% ETSP supplementation restored above parameters to levels equal or superior to those in 28% crude protein diet group. Although reducing dietary protein by 2% did not deteriorate flesh tenderness and juiciness, 0.8-1.2% ETSP supplementation in low protein diets also improved the two indices compared with 28% crude protein diet. Moreover, ETSP-improved flesh quality was partly related to increased muscle antioxidant enzymes activities and their mRNA levels. In addition, ESTP-enhanced antioxidant enzyme mRNA levels were partly associated with the upregulation of NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Collectively, 0.8-1.2% ETSP supplementation in low protein diets improved growth performance as well as flesh sensory quality and healthiness in on-growing grass carp.
Collapse
Affiliation(s)
- Yan Song
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - LiangChao Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - WeiDan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- The Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - WeiWei Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Chengdu Mytech Biotech Co., Ltd., Chengdu, 610222, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- The Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- The Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- The Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - ShengYao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - XiaoQiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- The Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
38
|
Jiao J, Wang T, Zhou J, Degen AA, Gou N, Li S, Bai Y, Jing X, Wang W, Shang Z. Carcass parameters and meat quality of Tibetan sheep and Small-tailed Han sheep consuming diets of low-protein content and different energy yields. J Anim Physiol Anim Nutr (Berl) 2020; 104:1010-1023. [PMID: 31984565 DOI: 10.1111/jpn.13298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Today, consumers are very health conscious and are more aware of the nutritional value of food, especially of meat, than they were in the past. The aim of this study was to evaluate the carcass parameters and meat quality of Tibetan sheep and Small-tailed Han sheep when consuming a diet of low-protein (~7%) and different energy yields (digestible energy, 8.21, 9.33, 10.45 and 11.57 MJ/kg) in the cold season. Twelve sheep of each breed were divided randomly into four treatments of different diets with three replicates per treatment per breed. Crude protein of the meat decreased linearly (p < .05), whereas energy increased linearly (p < .05) with an increase in energy level. Tibetan sheep tended to have a higher (p < .1) dressing percentage and rib eye area, while live body weight and hot carcass weight did not differ between breeds but increased linearly (p < .01) with an increase in energy level. Water holding capacity, as indicated by pressing loss and drip loss, did not differ between breeds and was not affected by dietary energy. The concentration of n-3 polyunsaturated fatty acids (PUFAs) was greater in Tibetan sheep meat but saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and n-6 PUFA did not differ between breeds. With an increase in energy content of the diet, SFA decreased (p < .05), whereas MUFA increased (p < .05). The n-6:n-3 PUFA ratio was lower (p < .001) in Tibetan sheep meat, while the atherogenic index did not differ between breeds, but tended to decrease (p < .1) with an increase in dietary energy content. The essential amino acid (EAA) content and ratio of EAA:NEAA (non-essential amino acid) were close to the world standards for healthy meat. In summary, (a) Tibetan sheep meat was preferable to Small-tailed Han sheep meat, although differences between breeds were small; and (b) some carcass parameters and meat quality were improved with an increase in dietary energy level when a low-protein diet was offered.
Collapse
Affiliation(s)
- Jianxin Jiao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ting Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianwei Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nana Gou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shanshan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanfu Bai
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoping Jing
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Weiwei Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
39
|
Jiang WD, Chen L, Liu Y, Feng L, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Impact and consequences of dietary riboflavin deficiency treatment on flesh quality loss in on-growing grass carp (Ctenopharyngodon idella). Food Funct 2019; 10:3396-3409. [PMID: 31112144 DOI: 10.1039/c8fo01943f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fish is among the cheapest and most promising sources of animal protein. The main edible portion of fish is muscle. This study explored the impact of dietary riboflavin on fish flesh quality and showed the possible role of muscle antioxidant defense in flesh quality in relation to dietary riboflavin. On-growing grass carp (initial average weight of 275.82 ± 0.57 g) were fed diets containing graded levels of riboflavin (0.63, 1.95, 3.98, 6.02, 7.96, and 10.04 mg kg-1 diet) for eight weeks. The results indicated that compared with the optimal riboflavin levels (3.98 and/or 6.02 mg riboflavin per kg diet), riboflavin deficiency treatment (0.63 mg riboflavin per kg diet) significantly reduced the muscle nutrients, including the protein, lipid, flavor amino acid, and total essential amino acid contents. Furthermore, the muscle shear force, pH value, and hydroxyproline concentration were reduced, while the muscle cooking loss and lactic acid content increased (P < 0.05). Compared with optimal riboflavin levels, the riboflavin deficiency treatment increased the reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl contents, while riboflavin treatments of 3.98-10.04 mg riboflavin per kg diet showed the lowest ROS and MDA contents (P < 0.05). Compared with the optimal riboflavin levels, the riboflavin deficiency treatment decreased the activities of copper/zinc superoxide dismutase (CuZnSOD), glutathione reductase (GR), catalase (CAT), and glutathione peroxidase (GPx), and reduced the glutathione (GSH) content (P < 0.05). Furthermore, the relative mRNA levels of antioxidant enzymes, including CuZnSOD, CAT, GR and GPx, and antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) and casein kinase 2, were down-regulated, while those of Kelch-like ECH-associated protein 1b were up-regulated (P < 0.05). Collectively, the present study indicates that riboflavin deficiency treatment reduces the flesh quality, partly due to inhibition of the antioxidant defense through the Nrf2 signaling pathway, while optimal riboflavin levels reverse these negative effects.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou F, Wang X. Effect of heat extraction on water-soluble taste substances in processing products of chilled large yellow croaker ( Pseudosciaena crocea). Food Sci Nutr 2019; 7:3863-3872. [PMID: 31890164 PMCID: PMC6924313 DOI: 10.1002/fsn3.1213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
In this paper, we analyzed the umami amino acids composition and content in minced meat (MM), fish head meat (HM), and fish roe (R). According to different ratios of material to liquid, we extracted water-soluble taste substances from the three materials and then compared composition and content of the umami amino acids and taste nucleotides in the different water-soluble taste substances. Finally, we analyzed Taste Activity Value (TAV) and the Equivalent Umami Concentration (EUC) between umami amino acids and taste nucleotides. The results showed that umami amino acids total content in MM, HM, and R samples were, respectively, 50.63 mg/100 g, 41.95 mg/100 g, and 67.06 mg/100 g. When the water-soluble taste substances extracted from the above samples were in the "D" state (MM), the "C" state (HM), and the "C" state (R), respectively, the umami amino acid content could be comparable to the original sample. And the highest EUCs were respectively 1.37 g MSG/100 g, 0.87 g MSG/100 g, and 0.49 g MSG/100 g (MSG: Sodium Glutamate). To some extent, the results of this study indicated that the water-soluble taste substances could be equivalent to the original sample and could be further applied as a taste regulator in some respects.
Collapse
Affiliation(s)
- Fen Zhou
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Xi‐Chang Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
41
|
Yu H, Liang H, Ren M, Ji K, Yang Q, Ge X, Xi B, Pan L. Effects of dietary fenugreek seed extracts on growth performance, plasma biochemical parameters, lipid metabolism, Nrf2 antioxidant capacity and immune response of juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2019; 94:211-219. [PMID: 31499200 DOI: 10.1016/j.fsi.2019.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Dietary administration of some plant-derived substances have been proved of great economic value in aquaculture. In order to investigate the effects of dietary fenugreek seed extracts (FSE) on juvenile blunt snout bream (Megalobrama amblycephala), a feeding trial was conducted for 8 weeks. The results showed that final weight (FW), weight gain (WG), feed conversion ratio (FCR) and specific growth rate (SGR) were not significantly affected by dietary FSE levels. The whole body lipid contents of fish fed with 0.04%, 0.08% and 0.16% FSE diets were significantly lowered compared to the control group. Dietary FSE diets significantly affected plasma complement component 3 (C3), immunoglobulin M (IgM), albumin (ALB) and total protein (TP). The relative expressions of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS) and sterol regulatory element binding protein-1 (SREBP1) mRNA in the liver of fish decreased significantly with increasing dietary FSE levels from 0% up to 0.04%. FSE supplementation diets lowered the liver pro-inflammatory genes expressions by regulating tumor necrosis factor-α (TNF-α) and interleukin 8 (IL-8) mRNA levels and increased anti-inflammatory genes expression by regulating transforming growth factor (TGF-β) and interleukin 10 (IL-10). FSE diets increased growth factor-1 (IGF-1) and target of rapamycin (TOR) mRNA levels from 0% up to 0.04%, 0.04% FSE diets significantly increased growth factor-1 (IGF-1) mRNA levels and S6 kinase-polypeptide 1 (S6K1) mRNA levels compared to the control group. 0.04% FSE diets significantly increased superoxide dismutase (SOD) activities and 0.08% FSE diets significantly increased catalase (CAT) and glutathione peroxidase (GPx) activities, 0.16% FSE diets significantly increased total antioxidant capacity (T-AOC) activities compared to the control group. Additionally, compared to the control group, 0.04% dietary FSE significantly up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA levels and glutathione peroxidase-1 (GPx1) mRNA levels, at the same time, 0.02%, 0.04%, 0.08%, 0.16% FSE diets significantly down-regulated kelch-like ECH-associated protein 1 (Keap1) mRNA levels. However, no significant effects were observed on copper zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD). Our study indicated that dietary FSE could improve plasma biochemical parameters, regulate lipid metabolism related genes, promote Nrf2 antioxidant capacity and enhance immune response of juvenile blunt snout bream.
Collapse
Affiliation(s)
- Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Yang
- Jiangsu Tianshen Co., Ltd, Huai'an, 223003, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
42
|
Yang B, Jiang WD, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Tang WN, Wang SW, Zhou XQ, Feng L. Soybean isoflavones improve the health benefits, flavour quality indicators and physical properties of grass carp (Ctenopharygodon idella). PLoS One 2019; 14:e0209570. [PMID: 30699129 PMCID: PMC6353095 DOI: 10.1371/journal.pone.0209570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
Health benefits, flavour quality indicators and physical properties were analysed after feeding grass carp graded concentrations of soybean isoflavones (SIF) (0, 25, 50, 75, 100 and 125 mg/kg) for 60 days. The results demonstrated that optimal dietary SIF supplementation improved the protein and total PUFA content, especially healthcare n-3 PUFA (C18: 3n-3, EPA and DHA), and increased the flavour-related free amino acid [especially umami amino acid] and 5'-inosine monophosphate content, improving the health benefits and flavour quality indicators in the muscle of grass carp. In addition, optimal dietary SIF supplementation (25 or 50 mg SIF/kg diet) enhanced some physical properties [water-holding capacity and tenderness] and increased the collagen content; however, it reduced cathepsin activity and apoptosis. SIF supplementation enhanced the glutathione content and the activity of antioxidant enzymes (except CuZnSOD) by regulating their gene expression. The gene expression could be regulated by NF-E2-related factor 2 (Nrf2) signalling in the muscle of grass carp. We demonstrated that optimal dietary SIF supplementation elevated the health benefits, flavour quality indicators and physical properties of fish muscle.
Collapse
Affiliation(s)
- Bo Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, Sichuan, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, Sichuan, China
| | | | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
43
|
Liang H, Mokrani A, Ji K, Ge X, Ren M, Xie J, Liu B, Xi B, Zhou Q. Dietary leucine modulates growth performance, Nrf2 antioxidant signaling pathway and immune response of juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2018; 73:57-65. [PMID: 29203449 DOI: 10.1016/j.fsi.2017.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 05/13/2023]
Abstract
The present study assessed the effects of dietary leucine on growth performance, antioxidant status and immunity in juvenile blunt snout bream. Fish were fed six practical diets of graded leucine levels ranging from 0.90% to 2.94% of dry basis for 8 weeks. Trail results showed that compared to control group (0.90%), 1.72% dietary leucine level significantly improved final weight (FW), weight gain rate (WG) and specific growth rate (SGR), and significantly lowered feed conversion ratio (FCR). Based on WG and SGR, the optimal dietary leucine level was obtained at 1.40% and 1.56%, respectively. Whole body crude lipid and protein contents were improved with increasing dietary leucine up to 2.14% and thereafter showed a downward trend, while whole body moisture content showed a converse trend. No significant change was found in whole body ash content. 1.72% dietary leucine level significantly improved the antioxidant capacity of fish by regulating the plasma superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, total antioxidant capacity (T-AOC) activity, catalase (CAT) activity, aspartate aminotransferase (AST) activities and malondialdehyde (MDA) content, furthermore, 1.72% dietary leucine level also significantly improved the antioxidant genes expressions of associated with Nrf2 signaling pathway by regulating heme oxygenase-1 (HO-1), GPx, copperezinc superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD), 2.14% dietary leucine levels also significantly improved glutathione transferase (GST) mRNA level. Dietary leucine levels significantly affected plasma immunity parameters such as the contents of plasma complement component 3 (C3), immunoglobulin M (IgM) and lowered the hepatopancreas genes expressions of pro-inflammatory factor by regulating interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumour necrosis factor-α (TNF-α) mRNA levels. The present study indicated that optimal dietary leucine level plays an important role in improving growth, enhancing antioxidant and immune status to maintain the health in juvenile blunt snout bream.
Collapse
Affiliation(s)
- Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Bingwen Xi
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| |
Collapse
|
44
|
Ganguly S, Mahanty A, Mitra T, Mohanty S, Das BK, Mohanty BP. Nutrigenomic studies on hilsa to evaluate flesh quality attributes and genes associated with fatty acid metabolism from the rivers Hooghly and Padma. Food Res Int 2018; 103:21-29. [DOI: 10.1016/j.foodres.2017.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
|