1
|
Jeong S, Singh H, Jung JH, Jung KW, Ryu S, Lim S. Comparative genomics of Deinococcus radiodurans: unveiling genetic discrepancies between ATCC 13939K and BAA-816 strains. Front Microbiol 2024; 15:1410024. [PMID: 38962131 PMCID: PMC11219805 DOI: 10.3389/fmicb.2024.1410024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/β hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Fu M, Mi S, Zhao J, Wang X, Gao J, Sang Y. The interaction mechanism, conformational changes and computational simulation of the interaction between surface layer protein and mannan at different pH levels. Food Chem 2022; 405:135021. [DOI: 10.1016/j.foodchem.2022.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
|
3
|
Kim W, Kim M, Hong M, Park W. Killing effect of deinoxanthins on cyanobloom-forming Microcystis aeruginosa: Eco-friendly production and specific activity of deinoxanthins. ENVIRONMENTAL RESEARCH 2021; 200:111455. [PMID: 34118245 DOI: 10.1016/j.envres.2021.111455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms caused mainly by Microcystis aeruginosa could be controlled using chemical and biological agents such as H2O2, antagonistic bacteria, and enzymes. Little is known about the possible toxic effects of bacterial membrane pigments on M. aeruginosa cells. Deinococcus metallilatus MA1002 cultured under light increased the production of several carotenoid-like compounds by upregulating two deinoxanthin biosynthesis genes: crtO and cruC. The deinoxanthin compounds were identified using thin-layer chromatography, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. D. metallilatus was cultured with agricultural by-products under light to produce the deinoxanthin compounds. Soybean meal, from six tested agricultural by-products, was selected as the single factor for making an economical medium to produce deinoxanthin compounds. The growth of axenic M. aeruginosa PCC7806, as well as other xenic cyanobacteria such as Cyanobium gracile, Trichormus variabilis, and Dolichospermum circinale, were inhibited by the deinoxanthin compounds. Scanning electron microscopic images showed the complete collapse of M. aeruginosa cells under deinoxanthin treatment, probably due to its interference with cyanobacterial membrane synthesis during cellular elongation. Deinoxanthins appeared to be nontoxic to other non-cyanobacteria such as Acinetobacter, Pseudomonas, Methylobacterium, and Bacillus species, suggesting that it can be a novel candidate for preventing cyanobacterial blooms through its specific activity against cyanobacteria.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minyoung Hong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Farci D, Kereïche S, Pangeni S, Haniewicz P, Bodrenko IV, Ceccarelli M, Winterhalter M, Piano D. Structural analysis of the architecture and in situ localization of the main S-layer complex in Deinococcus radiodurans. Structure 2021; 29:1279-1285.e3. [PMID: 34265277 DOI: 10.1016/j.str.2021.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/22/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Bacterial surface layers are paracrystalline assemblies of proteins that provide the first line of defense against environmental shocks. Here, we report the 3D structure, in situ localization, and orientation of the S-layer deinoxanthin-binding complex (SDBC), a hetero-oligomeric assembly of proteins that in Deinococcus radiodurans represents the main S-layer unit. The SDBC is resolved at 11-Å resolution by single-particle analysis, while its in situ localization is determined by cryo-electron crystallography on intact cell-wall fragments leading to a projection map at 4.5-Å resolution. The SDBC exhibits a triangular base with three comma-shaped pores, and a stalk departing orthogonally from the center of the base and oriented toward the intracellular space. Combining state-of-the-art techniques, results show the organization of this S-layer and its connection within the underlying membranes, demonstrating the potential for applications from nanotechnologies to medicine.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic.
| | - Sushil Pangeni
- Department of Life Sciences & Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Patrycja Haniewicz
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| | - Igor V Bodrenko
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Mathias Winterhalter
- Department of Life Sciences & Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland; Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy.
| |
Collapse
|
5
|
Chu X, Liu J, Gu W, Tian L, Tang S, Zhang Z, Jiang L, Xu X. Study of the properties of carotenoids and key carotenoid biosynthesis genes from Deinococcus xibeiensis R13. Biotechnol Appl Biochem 2021; 69:1459-1473. [PMID: 34159631 DOI: 10.1002/bab.2217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/14/2021] [Indexed: 02/01/2023]
Abstract
To investigate the properties of carotenoids from the extremophile Deinococcus xibeiensis R13, the factors affecting the stability of carotenoids extracted from D. xibeiensis R13, including temperature, illumination, pH, redox chemicals, metal ions, and food additives, were investigated. The results showed that low temperature, neutral pH, reducing agents, Mn2+ , and food additives (xylose and glucose) can effectively improve the stability of Deinococcus carotenoids. The carotenoids of D. xibeiensis R13 exhibited strong antioxidant activity, with the scavenging rate of hydroxyl radicals reaching 71.64%, which was higher than the scavenging efficiency for 1,1-diphenyl-2-picrylhydrazyl free radicals and 2,2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) free radicals (44.55 and 27.65%, respectively). In addition, the total antioxidant capacity reached 0.60 U/ml, which was 2.61-fold that of carotenoids from the model strain Deinococcus radiodurans R1. Finally, we predicted the gene clusters encoding carotenoid biosynthesis pathways in the genome of R13 and identified putative homologous genes. The key enzyme genes (crtE, crtB, crtI, crtLm, cruF, crtD, and crtO) in carotenoid synthesis of D. xibeiensis R13 were cloned to construct the multigene coexpression plasmids pET-EBI and pRSF-LmFDO. The carotenoid biosynthesis pathway was heterologously introduced into engineered Escherichia coli EBILmFDO, which exhibited a higher yield (7.14 mg/L) than the original strain. These analysis results can help us to better understand the metabolic synthesis of carotenoids in extremophiles.
Collapse
Affiliation(s)
- Xiaoting Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Jie Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Wanyi Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Liqing Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Susu Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Farci D, Aksoyoglu MA, Farci SF, Bafna JA, Bodrenko I, Ceccarelli M, Kirkpatrick J, Winterhalter M, Kereïche S, Piano D. Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features. J Biol Chem 2020; 295:4224-4236. [PMID: 32071085 PMCID: PMC7105295 DOI: 10.1074/jbc.ra119.012174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Indexed: 11/06/2022] Open
Abstract
In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02776 Warsaw, Poland.
| | | | - Stefano Francesco Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Igor Bodrenko
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Joanna Kirkpatrick
- Leibniz Institute on Ageing-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague 128 00, Czech Republic.
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02776 Warsaw, Poland.
| |
Collapse
|
7
|
Mineev KS, Volynsky PE, Galimzyanov TR, Tretiakova DS, Bobrov MY, Alekseeva AS, Boldyrev IA. Archaeal cyclopentane fragment in a surfactant's hydrophobic tail decreases the Krafft point. SOFT MATTER 2020; 16:1333-1341. [PMID: 31934706 DOI: 10.1039/c9sm02000d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Archaea are prokaryotic microorganisms famous for their ability to adapt to extreme environments, including low and high temperatures. Archaeal lipids often are macrocycles with two polar heads and a hydrophobic core that contains methyl groups and in-line cycles. Here we present the design of novel general-purpose surfactants that have inherited features of archaeal lipids. These are C12 and C14 carboxylic acids containing in-line cyclopentanes. The cyclopentanes disturb the chain packing, which results in remarkable expansion of the operational range of the surfactant into the low-temperature region. We report synthesis and properties of these novel archaea-like surfactants and details of their chain packing derived from thermodynamics model predictions, molecular dynamics simulations, and experimental data on CMC and Krafft points.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Adamec F, Farci D, Bína D, Litvín R, Khan T, Fuciman M, Piano D, Polívka T. Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans. Photochem Photobiol Sci 2020; 19:495-503. [DOI: 10.1039/d0pp00031k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An ultrafast transient absorption experiment on the SDBC, which binds the carotenoid deinoxanthin, reveals a non-specific binding site that loosely binds the carotenoid, but protects the carotenoid from the outer environment.
Collapse
Affiliation(s)
- František Adamec
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| | - Domenica Farci
- Department of Plant Physiology
- Warsaw University of Life Sciences - SGGW
- Warsaw
- Poland
| | - David Bína
- Institute of Chemistry
- Faculty of Science
- University of South Bohemia
- Czech Republic
- Biology Centre
| | - Radek Litvín
- Institute of Chemistry
- Faculty of Science
- University of South Bohemia
- Czech Republic
- Biology Centre
| | - Tuhin Khan
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| | - Marcel Fuciman
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| | - Dario Piano
- Department of Plant Physiology
- Warsaw University of Life Sciences - SGGW
- Warsaw
- Poland
- Laboratory of Photobiology and Plant Physiology
| | - Tomáš Polívka
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| |
Collapse
|
9
|
Farci D, Guadalupi G, Bierła K, Lobinski R, Piano D. The Role of Iron and Copper on the Oligomerization Dynamics of DR_2577, the Main S-Layer Protein of Deinococcus radiodurans. Front Microbiol 2019; 10:1450. [PMID: 31333601 PMCID: PMC6615493 DOI: 10.3389/fmicb.2019.01450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Surface (S)-layers are cryptic structures that coat the external surface of the bacterial cell in many species. The paracrystalline regularity of the S-layer is due to the self-assembling of one or more protein units. The property of self-assembling seems to be mediated by specific topologies of the S-layer proteins as well as the presence of specific ions that provide support in building and stabilizing the bi-dimensional S-layer organization. In the present study, we have investigated the self-assembling mechanism of the main S-layer protein of Deinococcus radiodurans (DR_2577) finding an unusual role played by Fe3+ and Cu2+ in the oligomerization of this protein. These findings may trace a structural and functional metallo-mediated convergence between the role of these metals in the assembling of the S-layer and their well-known roles in protecting against oxidative stress in D. radiodurans.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Laboratory of Photobiology and Plant Physiology, Department of Life and Environmental Sciences University of Cagliari, Cagliari, Italy
| | - Giulia Guadalupi
- Laboratory of Photobiology and Plant Physiology, Department of Life and Environmental Sciences University of Cagliari, Cagliari, Italy
| | - Katarzyna Bierła
- Laboratory of Analitycal and Bioinorganic Chemistry and Environment, UMR5254 Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau, France
| | - Ryszard Lobinski
- Laboratory of Analitycal and Bioinorganic Chemistry and Environment, UMR5254 Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), Pau, France
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.,Laboratory of Photobiology and Plant Physiology, Department of Life and Environmental Sciences University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Li J, Webster TJ, Tian B. Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile Deinococcus radiodurans for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900600. [PMID: 30925017 DOI: 10.1002/smll.201900600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The development of functionalized nanomaterial biosynthesis processes is important to expand many cutting-edge nanomaterial application areas. However, unclear synthesis mechanisms and low synthesis efficiency under various chemical stresses have limited the use of these biomaterials. Deinococcus radiodurans is an extreme bacterium well known for its exceptional resistance to radiation oxidants and electrophilic agents. This extremophile, which possesses a spontaneous self-assembled surface-layer (S-layer), has been an optimal model organism to study microbial nanomaterial biotemplates and biosynthesis under various stresses. This review summarizes the S-layers from D. radiodurans as an excellent biotemplate for various pre-synthesized nanomaterials and multiple applications, and highlights recent progresses about the biosynthesis of functionalized gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), as well as gold and silver bimetallic nanoparticles using D. radiodurans. Their formation mechanisms, properties, and applications are discussed and summarized to provide significant insights into the design or modification of functionalized nanomaterials via natural materials. Grand challenges and future directions to realize the multifunctional applications of these nanomaterials are highlighted for a better understanding of their biosynthesis mechanisms and functionalized modifications.
Collapse
Affiliation(s)
- Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, Boston, MA, 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, Boston, MA, 02115, USA
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
11
|
Tian B, Li J, Pang R, Dai S, Li T, Weng Y, Jin Y, Hua Y. Gold Nanoparticles Biosynthesized and Functionalized Using a Hydroxylated Tetraterpenoid Trigger Gene Expression Changes and Apoptosis in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37353-37363. [PMID: 30295457 DOI: 10.1021/acsami.8b09206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Understanding the synthetic mechanisms and cell-nanoparticle interactions of biosynthesized and functionalized gold nanoparticles (AuNPs) using natural products is of great importance for developing their applications in nanomedicine. In this study, we detailed the biotransformation mechanism of Au(III) into AuNPs using a hydroxylated tetraterpenoid deinoxanthin (DX) from the extremophile Deinococcus radiodurans. During the process, Au(III) was rapidly reduced to Au(I) and subsequently reduced to Au(0) by deprotonation of the hydroxyl head groups of the tetraterpenoid. The oxidized form, deprotonated 2-ketodeinoxanthin (DX3), served as a surface-capping agent to stabilize the AuNPs. The functionalized DX-AuNPs demonstrated stronger inhibitory activity against cancer cells compared with sodium citrate-AuNPs and were nontoxic to normal cells. DX-AuNPs accumulated in the cytoplasm, organelles, and nuclei, and induced reactive oxygen species generation, DNA damage, and apoptosis within MCF-7 cancer cells. In the cells treated with DX-AuNPs, 374 genes, including RRAGC gene, were upregulated; 135 genes, including the genes encoding FOXM1 and NR4A1, were downregulated. These genes are mostly involved in metabolism, cell growth, DNA damage, oxidative stress, autophagy, and apoptosis. The anticancer activity of the DX-AuNPs was attributed to the alteration of gene expression and induction of apoptosis. Our results provide significant insight into the synthesis mechanism of AuNPs functionalized with natural tetraterpenoids, which possess enhanced anticancer potential.
Collapse
Affiliation(s)
- Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Renjiang Pang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Yulan Weng
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Ye Jin
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences , Zhejiang University , No. 268, Kaixuan Road , Hangzhou 310029 , China
| |
Collapse
|
12
|
Farci D, Farci SF, Esposito F, Tramontano E, Kirkpatrick J, Piano D. On the S-layer of Thermus thermophilus and the assembling of its main protein SlpA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1554-1562. [PMID: 29803693 DOI: 10.1016/j.bbamem.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
Abstract
We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Life and Environmental Sciences, Laboratory of Photobiology and Plant Physiology, University of Cagliari, V.le S. Ingnazio da Laconi 13, 09123 Cagliari, Italy.
| | - Stefano Francesco Farci
- Department of Life and Environmental Sciences, Laboratory of Photobiology and Plant Physiology, University of Cagliari, V.le S. Ingnazio da Laconi 13, 09123 Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, Laboratory of Molecular Virology, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Laboratory of Molecular Virology, University of Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042 Monserrato, Cagliari, Italy
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutebergstraβe 11, 07745 Jena, Germany
| | - Dario Piano
- Department of Life and Environmental Sciences, Laboratory of Photobiology and Plant Physiology, University of Cagliari, V.le S. Ingnazio da Laconi 13, 09123 Cagliari, Italy.
| |
Collapse
|