1
|
Gong Y, Feng M, Sun J. Effect of different thermal processing methods and thermal core temperatures on the protein structure and in vitro digestive characteristics of beef. Food Chem 2024; 464:141751. [PMID: 39481305 DOI: 10.1016/j.foodchem.2024.141751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
This study aimed to investigate the effect of different thermal processing treatments on the protein digestion characteristics of beef. The beef samples were subjected to different cooking methods, namely steaming, boiling, and roasting, and different core temperatures (75 °C, 80 °C, 85 °C, and 90 °C), and were subjected to in vitro gastrointestinal digestion simulation. All the thermal processing treatments increased the protein digestibility; the samples that were steamed at 85 °C (S85), boiled at 80 °C (B80), and roasted at 80 °C (R80) showed the biggest gains. The S85 released more peptide species after gastrointestinal digestion, according to peptididomic studies. These differences were closely related to protein structure. Thermal processing treatments resulted in a higher degree of proteolysis and looser protein conformation, as evidenced by decreased intrinsic fluorescence and electrophoretic band intensity, increased surface hydrophobicity, and the change in protein secondary structure from α-helix to β-sheet and random coil. Based on the results, S85 was identified as the optimal thermal processing treatment for enhancing the digestibility of beef protein. The results provide valuable insights into the nutritional qualities and digestion of heat-processed beef protein.
Collapse
Affiliation(s)
- Yao Gong
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meiqin Feng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210038, PR China
| | - Jian Sun
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Lee S, Jo K, Choi YS, Jung S. Tracking bioactive peptides and their origin proteins during the in vitro digestion of meat and meat products. Food Chem 2024; 454:139845. [PMID: 38820629 DOI: 10.1016/j.foodchem.2024.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Ayuso P, Quizhpe J, Yepes F, Miranzo D, Avellaneda A, Nieto G, Ros G. Improving the Nutritional Quality of Protein and Microbiota Effects in Additive- and Allergen-Free Cooked Meat Products. Foods 2024; 13:1792. [PMID: 38928734 PMCID: PMC11202710 DOI: 10.3390/foods13121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The primary objective of the meat industry is to enhance the quality and positive attributes of meat products, driven by an increasing consumer demand for healthier, less processed options. One common approach to achieving this goal is the replacement of additives and allergens with natural ingredients. Nevertheless, the nutritional impact of these changes has not been extensively studied. To address these gaps, two new meat products were developed: cooked turkey breast and cooked ham. The products in question exclude additives and allergens and instead incorporate a blend of natural extracts containing vitamin C, chlorogenic acids, hydroxytyrosol, catechins, epicatechins, vinegar, and inulin fibre. The objective of this study was to evaluate the impact of these reformulations on protein quality and gut microbiota. Protein quality was evaluated using the Digestible Indispensable Amino Acid Score (DIAAS) following in vitro digestion. The microbial composition and short-chain fatty acid (SCFA) production were analysed through in vitro colonic fermentations in both normal-weight and obese participants in order to gauge their effect on gut microbiota. The results demonstrated that the reformulation of cooked turkey breast increased its digestibility by 6.4%, while that of cooked ham exhibited a significant 17.9% improvement. Furthermore, protein quality was found to have improved significantly, by 19.5% for cooked turkey breast and 32.9% for cooked ham. Notwithstanding these alterations in protein digestibility, the microbial composition at the phylum and genus levels remained largely unaltered. Nevertheless, total SCFA production was observed to increase in both groups, with a more pronounced effect observed in the normal-weight group. In conclusion, the substitution of artificial additives with natural ingredients in reformulated cooked meat products has resulted in enhanced digestibility, improved protein quality, and increased production of short-chain fatty acids.
Collapse
Affiliation(s)
- Pablo Ayuso
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Jhazmin Quizhpe
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Fani Yepes
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Domingo Miranzo
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Antonio Avellaneda
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| |
Collapse
|
4
|
Opsteegh M, Cuperus T, van Buuren C, Dam-Deisz C, van Solt-Smits C, Verhaegen B, Joeres M, Schares G, Koudela B, Egberts F, Verkleij T, van der Giessen J, Wisselink HJ. In vitro assay to determine inactivation of Toxoplasma gondii in meat samples. Int J Food Microbiol 2024; 416:110643. [PMID: 38452660 DOI: 10.1016/j.ijfoodmicro.2024.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Consumption of raw and undercooked meat is considered as an important source of Toxoplasma gondii infections. However, most non-heated meat products contain salt and additives, which affect T. gondii viability. It was our aim to develop an in vitro method to substitute the mouse bioassay for determining the effect of salting on T. gondii viability. Two sheep were experimentally infected by oral inoculation with 6.5 × 104 oocysts. Grinded meat samples of 50 g were prepared from heart, diaphragm, and four meat cuts. Also, pooled meat samples were either kept untreated (positive control), frozen (negative control) or supplemented with 0.6 %, 0.9 %, 1.2 % or 2.7 % NaCl. All samples were digested in pepsin-HCl solution, and digests were inoculated in duplicate onto monolayers of RK13 (a rabbit kidney cell line). Cells were maintained for up to four weeks and parasite growth was monitored by assessing Cq-values using the T. gondii qPCR on cell culture supernatant in intervals of one week and ΔCq-values determined. Additionally, 500 μL of each digest from the individual meat cuts, heart and diaphragm were inoculated in duplicate in IFNγ KO mice. Both sheep developed an antibody response and tissue samples contained similar concentrations of T. gondii DNA. From all untreated meat samples positive ΔCq-values were obtained in the in vitro assay, indicating presence and multiplication of viable parasites. This was in line with the mouse bioassay, with the exception of a negative mouse bioassay on one heart sample. Samples supplemented with 0.6 %-1.2 % NaCl showed positive ΔCq-values over time. The frozen sample and the sample supplemented with 2.7 % NaCl remained qPCR positive but with high Cq-values, which indicated no growth. In conclusion, the in vitro method has successfully been used to detect viable T. gondii in tissues of experimentally infected sheep, and a clear difference in T. gondii viability was observed between the samples supplemented with 2.7 % NaCl and those with 1.2 % NaCl or less.
Collapse
Affiliation(s)
- Marieke Opsteegh
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Tryntsje Cuperus
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Chesley van Buuren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Cecile Dam-Deisz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research, Wageningen University and Research, P.O. Box 65, 8200 AB Lelystad, the Netherlands.
| | - Bavo Verhaegen
- Sciensano, Service of Foodborne Pathogens, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium.
| | - Maike Joeres
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Centre for Toxoplasmosis, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Břetislav Koudela
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242 Brno, Czech Republic.
| | - Frans Egberts
- Dutch Meat Products Association (VNV), P.O. Box 61, 2700 AB Zoetermeer, the Netherlands.
| | - Theo Verkleij
- Wageningen Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Joke van der Giessen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, the Netherlands.
| | - Henk J Wisselink
- Wageningen Bioveterinary Research, Wageningen University and Research, P.O. Box 65, 8200 AB Lelystad, the Netherlands.
| |
Collapse
|
5
|
Jeong JW, Lee SY, Lee DY, Kim JH, Yun SH, Lee J, Mariano E, Moon SS, Hur SJ. Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review. Food Sci Anim Resour 2024; 44:533-550. [PMID: 38765288 PMCID: PMC11097009 DOI: 10.5851/kosfa.2024.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.
Collapse
Affiliation(s)
- Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
6
|
Cao X, Zhao F, Lin Z, Sun X, Zeng X, Liu H, Li Y, Yuan Z, Su Y, Wang C, Zhou G. In vitro digestion mimicking conditions in adults and elderly reveals digestive characteristics of pork from different cooking ways. Food Res Int 2024; 183:114204. [PMID: 38760136 DOI: 10.1016/j.foodres.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
This study aimed to investigate the impact of three cooking ways (sous vide (SV), frying (FR) and roasting (RO)) on pork protein digestion characteristics under conditions simulating healthy adult (control, C) and elderly individuals with achlorhydria (EA). Changes in degree of hydrolysis (DH), SDS-PAGE profiles, zeta potential, particle size and secondary structure during digestion were evaluated. Our results revealed the EA condition markedly affected the protein digestion process of pork with different cooking ways. The DH values of SV (25.62%), FR (21.38%) and RO (19.40%) under the EA condition were significantly lower than those of under the control condition (38.32%, 33.00% and 30.86%, respectively). Moreover, differences were also observed among three cooking ways under the EA condition. For a given cooking way, the differences between control and EA conditions gradually diminished from the gastric to the intestinal phase. Under a certain digestion condition, SV maintained the highest degree of digestion throughout the process, particularly under the EA condition. Therefore, we conclude that pork cooked by sous vide is more recommendable for the elderly considering protein digestibility.
Collapse
Affiliation(s)
- Xiangyue Cao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fan Zhao
- School of Chinese Medicine, School of integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyi Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomei Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haoxi Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yutong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihang Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Su
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
7
|
Lv G, Wang H, Wei X, Lu M, Yang W, Aalim H, Capanoglu E, Zou X, Battino M, Zhang D. Cooking-Induced Oxidation and Structural Changes in Chicken Protein: Their Impact on In Vitro Gastrointestinal Digestion and Intestinal Flora Fermentation Characteristics. Foods 2023; 12:4322. [PMID: 38231766 DOI: 10.3390/foods12234322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Meat digestion and intestinal flora fermentation characteristics are closely related to human dietary health. The present study investigated the effect of different cooking treatments, including boiling, roasting, microwaving, stir-frying, and deep-frying, on the oxidation of chicken protein as well as its structural and digestion characteristics. The results revealed that deep-fried and roasted chicken exhibited a relatively higher degree of protein oxidation, while that of boiled chicken was the lowest (p < 0.05). Both stir-frying and deep-frying led to a greater conversion of the α-helix structure of chicken protein into a β-sheet structure and resulted in lower protein gastrointestinal digestibility (p < 0.05), whereas roasted chicken exhibited moderate digestibility. Further, the impact of residual undigested chicken protein on the intestinal flora fermentation was assessed. During the fermentation process, roasted chicken generated the highest number of new intestinal flora species (49 species), exhibiting the highest Chao 1 index (356.20) and a relatively low Simpson index (0.88). Its relative abundance of Fusobacterium was the highest (33.33%), while the total production of six short-chain fatty acids was the lowest (50.76 mM). Although stir-fried and deep-fried chicken exhibited lower digestibility, their adverse impact on intestinal flora was not greater than that of roasted chicken. Therefore, roasting is the least recommended method for the daily cooking of chicken. The present work provides practical advice for choosing cooking methods for chicken in daily life, which is useful for human dietary health.
Collapse
Affiliation(s)
- Guanhua Lv
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengpeng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minmin Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhao Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Halah Aalim
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Maurizio Battino
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Sánchez-Terrón G, Martínez R, Ruiz J, Luna C, Estévez M. Impact of Sustained Fructose Consumption on Gastrointestinal Function and Health in Wistar Rats: Glycoxidative Stress, Impaired Protein Digestion, and Shifted Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16270-16285. [PMID: 37859404 PMCID: PMC10623553 DOI: 10.1021/acs.jafc.3c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The gastrointestinal tract (GIT) is the target of assorted pathological conditions, and dietary components are known to affect its functionality and health. In previous in vitro studies, we observed that reducing sugars induced protein glycoxidation and impaired protein digestibility. To gain further insights into the pathophysiological effects of dietary sugars, Wistar rats were provided with a 30% (w/v) fructose water solution for 10 weeks. Upon slaughter, in vivo protein digestibility was assessed, and the entire GIT (digests and tissues) was analyzed for markers of oxidative stress and untargeted metabolomics. Additionally, the impact of sustained fructose intake on colonic microbiota was also evaluated. High fructose intake for 10 weeks decreased protein digestibility and promoted changes in the physiological digestion of proteins, enhancing intestinal digestion rather than stomach digestion. Moreover, at colonic stages, the oxidative stress was harmfully increased, and both the microbiota and the intraluminal colonic metabolome were modified.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Remigio Martínez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, Universidad of Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, GISAZ Research Group, ENZOEM Competitive Research Unit, Universidad of Córdoba (UCO), Córdoba 14014, Spain
| | - Jorge Ruiz
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Carolina Luna
- Emergency Unit, Servicio Extremeño de Salud, SES, Junta de Extremadura, Cáceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| |
Collapse
|
9
|
Zhang T, Chen T, Jiang H, Zhang M, Gong P, Liu J, Liu X. Effect of pH treatment on egg white protein digestion and the peptidomics of their in vitro digests. Food Res Int 2023; 173:113327. [PMID: 37803637 DOI: 10.1016/j.foodres.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The pH treatment significantly enhanced the functional properties of egg white protein (EWP), but little is known about the relationship between pH treatment and in vitro digestion of EWP. In this paper, we explored the effect of pH treatment (pH 2, pH 2-7, pH 12 and pH 12-7) on the digestibility of egg white protein and peptide profiling using the digestion kinetics and peptidomics methods, separately. The results implied that all pH treatment reduced the protein digestibility in gastric phase, while alkaline pH (pH 12 and pH 12-7) showed greater digestion level and more gastric peptides, and more importantly, produced a greater amount of potentially bioactive peptides than acid treated samples. Besides, the least number of potentially bioactive peptides was obtained at pH 2, but this could be improved by adjusting pH 2 back to 7. Notably, the unique bioactive peptides induced by pH were mainly relevant to DPP IV inhibitor. These differences of digestibility and peptide profiling might be attributed to the change of protein structure and the formation of molten sphere, altering cleavage sites of digestive enzymes. This work would give an enlightening insight into the digestive and nutritional characteristics of the pH-induced EWP to expand their application in the field of food and healthcare.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tingting Chen
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ping Gong
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
10
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
11
|
Pan N, Bai X, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. The dynamic change in the degradation and in vitro digestive properties of porcine myofibrillar protein during freezing storage. Int J Biol Macromol 2023; 234:123682. [PMID: 36796280 DOI: 10.1016/j.ijbiomac.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The myofibrillar protein (MP) degradation and in vitro digestive properties of porcine longissimus during freezing at -8, -18, -25 and - 40 °C for 1, 3, 6, 9 and 12 months were investigated. As the freezing temperature and duration of frozen storage increased, the amino nitrogen and TCA (trichloroacetic acid)-soluble peptides of the samples were significantly increased, while the total sulfhydryl content and band intensity of myosin heavy chain, actin, troponin T, tropomyosin were significantly decreased (P < 0.05). At higher freezing storage temperatures and durations, the particle size of MP samples and the green fluorescent spots detected using a laser particle size analyzer and confocal laser scanning microscopy became large. After 12 months of freezing, the digestibility and the degree of hydrolysis of the trypsin digestion solution of the samples frozen at -8 °C were significantly decreased by 15.02 % and 14.28 %, respectively, when compared to fresh samples, whereas, the mean surface diameter (d3,2) and mean volume diameter (d4,3) were significantly increased by 14.97 % and 21.53 %, respectively. Therefore, frozen storage induced protein degradation and impaired the ability of digestion in the pork proteins. This phenomenon was more evident as the samples were frozen at high temperatures over a long storage period.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
12
|
Ren ST, Fu JJ, He FY, Chai TT, Yu-Ting L, Jin DL, Chen YW. Characteristics and antioxidant properties of Harpadon nehereus protein hydrolysate-xylose conjugates obtained from the Maillard reaction by ultrasound-assisted wet heating in a natural deep eutectic solvents system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2273-2282. [PMID: 36620949 DOI: 10.1002/jsfa.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Harpadon nehereus is a high-protein marine fish. A valuable way to add value to H. nehereus is to convert it into protein hydrolysate. The Maillard reaction is an effective way to improve the functional properties of peptides and proteins, which are affected by many factors such as reactant concentration, water activity, pH, temperature, and heating time. However, the traditional Maillard reaction method is inefficient. The purpose of this study was therefore to explore the effect of the ultrasound-assisted wet heating method on the Maillard reaction of H. nehereus protein hydrolysate (HNPH) in a new-type green solvent - a natural hypereutectic solvent (NADES). RESULTS Harpadon nehereus protein hydrolysate-xylose (Xy) conjugates were prepared via a Maillard reaction in a NADES system using an ultrasound-assisted wet heating method. The effects of different treatment conditions on the Maillard reaction were studied. The optimized glycation degree (DG) of HNPH-Xy conjugates was obtained with a water content of 10%, a reaction temperature of 80 °C, a reaction time of 35 min, and an ultrasonic power level of 300 W. Compared with HNPH, the structure of HNPH-Xy conjugates were significantly changed. Moreover, the functional properties and antioxidant activity of HNPH-Xy were all superior to the HNPH. CONCLUSIONS An ultrasound-assisted wet-heating Maillard reaction between HNPH and Xy in the NADES system could be a promising way to improve the functional properties of HNPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Liu Yu-Ting
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
13
|
Zou L, Yu X, Zhou Y, Chen C, Xiao G. In vitro digestibility of proteins, peptidomic analysis and antioxidant ability of sodium-reduced pork sausage with partial substitution of NaCl by KCl. Meat Sci 2023; 197:109049. [PMID: 36473271 DOI: 10.1016/j.meatsci.2022.109049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
High salt (NaCl) consumption can impact on human health, and KCl is the most widely used replacement salt in meat products. This study investigated the effects of 0% NaCl (NS), 3% NaCl (HS), 1.95% NaCl (RS), 1.95% NaCl+1.05% KCl (RS + K) on protein digestibility of pork sausage in vitro. The results indicated that RS + K showed the highest gastrointestinal digestibility (GID) because of the structure of looser cross-linked strands and uniform cavities, while HS exhibited the lowest GID. RS + K released more peptides (2499) during gastrointestinal than NS (2301), RS (2130) and HS (2235), with a higher proportion of peptides with molecular weights <1000 Da, and more unique peptides. Meanwhile, the digestion product of RS + K exhibited excellent radical scavenging activity and improved the antioxidant abilities to reduce oxidative injury which was induced by H2O2 in HepG2 cells. These results demonstrated that partial substitution with KCl can be an effective strategy for improving the digestibility of sodium-reduced gel-type meat products.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
14
|
Khalid W, Maggiolino A, Kour J, Arshad MS, Aslam N, Afzal MF, Meghwar P, Zafar KUW, De Palo P, Korma SA. Dynamic alterations in protein, sensory, chemical, and oxidative properties occurring in meat during thermal and non-thermal processing techniques: A comprehensive review. Front Nutr 2023; 9:1057457. [PMID: 36712529 PMCID: PMC9876618 DOI: 10.3389/fnut.2022.1057457] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Meat processing represents an inevitable part of meat and meat products preparation for human consumption. Both thermal and non-thermal processing techniques, both commercial and domestic, are able to induce chemical and muscle's proteins modification which can have implication on oxidative and sensory meat characteristics. Consumers' necessity for minimally processed foods has paved a successful way to unprecedented exploration into various novel non-thermal food processing techniques. Processing of meat can have serious implications on its nutritional profile and digestibility of meat proteins in the digestive system. A plethora of food processing techniques can potentially induce alterations in the protein structure, palatability, bioavailability and digestibility via various phenomena predominantly denaturation and Maillard reaction. Apart from these, sensory attributes such as color, crispness, hardness, and total acceptance get adversely affected during various thermal treatments in meat. A major incentive in the adoption of non-thermal food processing is its energy efficiency. Considering this, several non-thermal processing techniques have been developed for evading the effects of conventional thermal treatments on food materials with respect to Maillard reactions, color changes, and off-flavor development. Few significant non-thermal processing techniques, such as microwave heating, comminution, and enzyme addition can positively affect protein digestibility as well as enhance the value of the final product. Furthermore, ultrasound, irradiation, high-pressure processing, and pulsed electric fields are other pivotal non-thermal food processing technologies in meat and meat-related products. The present review examines how different thermal and non-thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect meat proteins, chemical composition, oxidation, and sensory profile.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jasmeet Kour
- Department of Food Science and Technology, Padma Shri Padma Sachdev Government PG College for Women, Jammu, Jammu and Kashmir, India
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Noman Aslam
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Faizan Afzal
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Parkash Meghwar
- Department of Food Science and Technology, University of Karachi, Karachi, Pakistan
| | | | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Bai X, Shi S, Kong B, Chen Q, Liu Q, Li Z, Wu K, Xia X. Analysis of the influencing mechanism of the freeze–thawing cycles on in vitro chicken meat digestion based on protein structural changes. Food Chem 2023; 399:134020. [DOI: 10.1016/j.foodchem.2022.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|
16
|
Zhang K, Wen Q, Wang Y, Li T, Nie B, Zhang Y. Study on the in vitro digestion process of green wheat protein: Structure characterization and product analysis. Food Sci Nutr 2022; 10:3462-3474. [PMID: 36249975 PMCID: PMC9548370 DOI: 10.1002/fsn3.2947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the in vitro digestion process of green wheat protein (GWP) was explored by simulating the gastrointestinal digestion. The digestibility of GWP was 65.23%, and was mainly digested by trypsin. During the digestion process of GWP, large-size particles are digested by pepsin, and medium-sized particles are digested by trypsin into smaller particles; irregular large block structure with smooth surface was gradually turned into smaller blocks with porous surface; and the spatial conformation was loosened mainly by the unfolding of β-sheet structure. Gel electrophoresis demonstrated that HMW glutenin and ω-gliadins in GWP were completely digested, while LMW glutenin and α/β/γ-gliadins were partially digested. Additionally, the peptide lengths were relatively dispersed after pepsin digestion. Most of the peptides (76.5%) fell into the range 3-15 amino acid after pepsin and trypsin digestion. The molecular weight (MW) of most pepsin digestion products was above 2000 Da, whereas the MW of trypsin digestion products was mainly concentrated in 500-2000 Da. Besides, the sensitizing peptide sequence of wheat protein was detected in the final digestion products of GWP. This research provided a theoretical guidance for the development and application of GWP.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
- Henan International Joint Laboratory of Whole Grain Wheat Products ProcessingZhengzhouChina
- Henan Province Whole Grain Fresh Food Processing Engineering Technology Research CenterZhengzhouChina
| | - Qingyu Wen
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
- Henan International Joint Laboratory of Whole Grain Wheat Products ProcessingZhengzhouChina
- Henan Province Whole Grain Fresh Food Processing Engineering Technology Research CenterZhengzhouChina
| | - Yufei Wang
- School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanChina
| | - Tianqi Li
- Henan Ankang Food Science and Technology Research InstituteZhengzhouChina
- Henan Ankang Future Food Technology Co., LtdZhengzhouChina
| | - Bin Nie
- Resource Utilization Department of Henan Provincial Department of Agriculture and RuralZhengzhouChina
| | - Yu Zhang
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chem 2022; 387:132917. [DOI: 10.1016/j.foodchem.2022.132917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
18
|
Peptidomics insights into the interplay between the pre-digestion effect of mixed starters and the digestive pattern of sausage proteins. Food Res Int 2022; 162:111963. [DOI: 10.1016/j.foodres.2022.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
19
|
Insights into in vitro digestion properties and peptide profiling of Chinese rubing PDO cheese prepared using different acidification technology. Food Res Int 2022; 158:111564. [DOI: 10.1016/j.foodres.2022.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
20
|
Wang C, Zhao F, Bai Y, Li C, Xu X, Kristiansen K, Zhou G. Effect of gastrointestinal alterations mimicking elderly conditions on in vitro digestion of meat and soy proteins. Food Chem 2022; 383:132465. [PMID: 35183956 DOI: 10.1016/j.foodchem.2022.132465] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
Among the physiological functions declining with aging, decreased secretion of gastric fluid, achlorhydria, is commonly observed. We evaluated the digestion of meat (chicken, beef, and pork) and soy proteins using in vitro conditions mimicking gastrointestinal (GI) digestion in adults (control, C) and elderly individuals with achlorhydria (EA). Changes in degrees of hydrolysis (DH), SDS-PAGE profiles, peptide concentrations, and proteomic profiles during digestion were investigated. Digestion under the EA conditions markedly decreased DH, especially for soy proteins. SDS-PAGE profiling and proteomics showed that myofibrillar/sarcoplasmic proteins from meat and glycinin/beta-conglycinin from soy were most affected by digestion conditions. Our results indicated that differences in the digestibility of meat protein between EA and control conditions gradually narrowed from the gastric to the intestinal phase for meat protein, while a pronounced difference persisted in the intestinal phase for soy protein. Our work provides new insight of value for future dietary recommendations for elderly individuals.
Collapse
Affiliation(s)
- Chong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark; Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, PR China; BGI-Shenzhen, Shenzhen 518083, PR China.
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Guo J, Xu F, Xie Y, Chen B, Wang Y, Nie W, Zhou K, Zhou H, Xu B. Effect of Xuanwei Ham Proteins with Different Ripening Periods on Lipid Metabolism, Oxidative Stress and Gut Microbiota in Mice. Mol Nutr Food Res 2022; 66:e2101020. [DOI: 10.1002/mnfr.202101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Guo
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Feiran Xu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
- Anhui Qingsong Food Co., Ltd. No.28 Ningxi Road Hefei 231299 China
| | - Yong Xie
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Bo Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Ying Wang
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Wen Nie
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Kai Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Hui Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| | - Baocai Xu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Engineering Research Center of Bio‐process Ministry of Education Hefei University of Technology Hefei 230601 China
| |
Collapse
|
22
|
Mitra B, Kristensen L, Lametsch R, Ruiz-Carrascal J. Cooking affects pork proteins in vitro rate of digestion due to different structural and chemical modifications. Meat Sci 2022; 192:108924. [PMID: 35878433 DOI: 10.1016/j.meatsci.2022.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
The effect of thermal processing on the in vitro digestibility of pork proteins was studied. Raw samples were considered the control group, while the thermal treatments included 58, 80, 98 and 160 °C for 72 min, 118 °C for 8 min and 58 °C for 17 h, resembling a range of different cooking procedures. Samples were subsequently subjected to pepsin digestion at pH 3.00 in the gastric phase followed by trypsin and α-chymotrypsin at pH 8.00 in the intestinal phase. Pork cooked at 58 °C for 72 min had a significantly higher pepsin digestibility rate than meat cooked at 80 °C or 160 °C. The trend was similar in the intestinal phase, with samples cooked at 58 °C for 72 min having enhanced digestion rate over other treatments after 120 min of digestion. A PLS model pointed out to an inverse relationship between in vitro proteolysis rate and variables like Maillard reaction compounds or protein structural changes.
Collapse
Affiliation(s)
- Bhaskar Mitra
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Lars Kristensen
- Danish Meat Research Institute, Gregersensvej 9, 2630 Taastrup, Denmark
| | - Rene Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Jorge Ruiz-Carrascal
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark; Institute of Meat and Meat Products, University of Extremadura, Av. Ciencias s/n, 10003 Caceres, Spain.
| |
Collapse
|
23
|
Wang C, Zhao F, Bai Y, Li C, Xu X, Kristiansen K, Zhou G. In vitro digestion mimicking conditions in young and elderly reveals marked differences between profiles and potential bioactivity of peptides from meat and soy proteins. Food Res Int 2022; 157:111215. [DOI: 10.1016/j.foodres.2022.111215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
|
24
|
Nutritional quality of protein flours of fava bean (Vicia faba L.) and in vitro digestibility and bioaccesibility. Food Chem X 2022; 14:100303. [PMID: 35450143 PMCID: PMC9018142 DOI: 10.1016/j.fochx.2022.100303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
25
|
Liu H, Li Q, Jiang S, Zhang M, Zhao D, Shan K, Li C. Exploring the underlying mechanisms on NaCl-induced reduction in digestibility of myoglobin. Food Chem 2022; 380:132183. [DOI: 10.1016/j.foodchem.2022.132183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
26
|
Boskovic Cabrol M, Martins JC, Malhão LP, Alfaia CM, Prates JAM, Almeida AM, Lordelo M, Raymundo A. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods 2022; 11:foods11091345. [PMID: 35564067 PMCID: PMC9103800 DOI: 10.3390/foods11091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The incorporation of sustainable protein sources in animal feeding is a growing trend. So far, no study has investigated in vitro digestion of meat, from broilers fed microalgae, in a human model. This research aimed to evaluate the effect of incorporating Chlorella vulgaris in the broilers diet on human protein digestibility, and mineral bioaccessibility. The study used 240 male Ross 308 broilers randomly allocated to groups fed a control diet or a diet where soybean meal was replaced with 10% (CV10%), 15% (CV15%), or 20% (CV15%) of C. vulgaris for 40 days. The microalga supplementation increased the protein and lowered the fat content in the muscle. Results on the percentages of amino acids highlighted that arginine and threonine proportions increased and lysine and cysteine proportions decreased with microalga inclusion. CV15% and CV20% meat had higher amount of K, Ca, Mg, P, and Fe in raw breasts, improving the nutrient composition of the meat. Cooking caused a decrease in Na and K and an increase in other minerals. CV20% had higher bioaccessibility of K, Ca, Mg, P, and Mg, compared to the control. Replacing soybean meal in broiler feed with higher concentrations of C. vugaris could improve the digestibility of meat protein and minerals.
Collapse
Affiliation(s)
- Marija Boskovic Cabrol
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.C.M.); (L.P.M.); (A.M.A.); (M.L.); (A.R.)
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| | - Joana C. Martins
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.C.M.); (L.P.M.); (A.M.A.); (M.L.); (A.R.)
| | - Leonardo P. Malhão
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.C.M.); (L.P.M.); (A.M.A.); (M.L.); (A.R.)
| | - Cristina M. Alfaia
- CIISA—Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Alto da Ajuda, 1300-477 Lisboa, Portugal; (C.M.A.); (J.A.M.P.)
| | - José A. M. Prates
- CIISA—Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Alto da Ajuda, 1300-477 Lisboa, Portugal; (C.M.A.); (J.A.M.P.)
| | - André M. Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.C.M.); (L.P.M.); (A.M.A.); (M.L.); (A.R.)
| | - Madalena Lordelo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.C.M.); (L.P.M.); (A.M.A.); (M.L.); (A.R.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (J.C.M.); (L.P.M.); (A.M.A.); (M.L.); (A.R.)
| |
Collapse
|
27
|
Xie Y, Ma Y, Cai L, Jiang S, Li C. Reconsidering Meat Intake and Human Health: A Review of Current Research. Mol Nutr Food Res 2022; 66:e2101066. [PMID: 35199948 DOI: 10.1002/mnfr.202101066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Meat consumption is gradually increasing and its impact on health has attracted widespread attention, resulting in epidemiological studies proposing a reduction in meat and processed meat intake. This review briefly summarizes recent advances in understanding the effects of meat or processed meat on human health, as well as the underlying mechanisms. Meat consumption varies widely among individuals, populations, and regions, with higher consumption in developed countries than in developing countries. However, increasing meat consumption may not be the main cause of increasing incidence of chronic disease, since the development of chronic disease is a complex physiological process that involves many factors, including excessive total energy intake and changes in food digestion processes, gut microbiota composition, and liver metabolism. In comparison, unhealthy dietary habits and a sedentary lifestyle with decreasing energy expenditure are factors more worthy of reflection. Meat and meat products provide high-value protein and many key essential micronutrients. In short, as long as excessive intake and overprocessing of meats are avoided, meat remains an indispensable source of nutrition for human health.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linlin Cai
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Ku SK, Kim J, Kim SM, Yong HI, Kim BK, Choi YS. Combined Effects of Pressure cooking and Enzyme Treatment to Enhance
The Digestibility and Physicochemical Properties of Spreadable Liver Sausage. Food Sci Anim Resour 2022; 42:441-454. [PMID: 35611079 PMCID: PMC9108956 DOI: 10.5851/kosfa.2022.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to determine the effect of enzyme, guar gum, and pressure
processing on the digestibility and physicochemical properties of age-friendly
liver sausages. Liver sausages were manufactured by adding proteolytic enzyme
(Bromelain) and guar gum, and pressure-cooking (0.06 MPa), with the following
treatments: control, without proteolytic enzyme; T1, proteolytic enzyme; T2,
proteolytic enzyme and guar gum; T3, pressure-cooking; T4, proteolytic enzyme
and pressure-cooking; T5, proteolytic enzyme, guar gum, and pressure-cooking.
The pH was high in the enzyme- and pressure-processed groups. The
pressure-processed groups had lower apparent viscosity than other cooking
groups, and it decreased during enzyme treatment. Hardness was lower in the
enzyme- and pressure-processed groups than in the control, and the T4 was the
lowest. Digestibility was the highest in T4 at 82.58%, and there was no
significant difference with that in T5. The general cooking group with enzyme
and guar gum also showed higher digestibility than the control (77.50%).
As a result of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
the enzyme- and pressure-treated groups (T4, T5) were degraded more into
low-molecular-weight peptides (≤37 kDa) than the control and other
treatments. Viscoelasticity showed similar trends for viscous and elastic
moduli. Similarly, combined pressure processing and enzymatic treatment
decreased viscoelasticity, while guar gum increased elasticity but decreased
viscosity. Therefore, the tenderized physical properties and improved
digestibility by enzyme and pressurization treatment could be used to produce
age-friendly spreadable liver sausages.
Collapse
Affiliation(s)
- Su-Kyung Ku
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Jake Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Se-Myung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Bum-Keun
Kim, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9335, Fax: +82-63-219-9076, E-mail:
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang
Choi, Research Group of Food Processing, Korea Food Research Institute, Wanju
55365, Korea, Tel: +82-63-219-9387, Fax: +82-63-219-9076, E-mail:
| |
Collapse
|
29
|
Jia Z, Guo Z, Wang W, Yi S, Li X, Li J, Zhou G. Effect of compound phosphate on the water‐holding capacity and nutritional quality of sea bass (
Lateolabrax japonicus
) fillets. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi‐Hui Jia
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Zhi‐Han Guo
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Wei Wang
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Shu‐Min Yi
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Xue‐Peng Li
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
| | - Jian‐Rong Li
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products National R & D Branch Center of Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou, Liaoning 121013 People 's Republic of China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian, Liaoning 116034 People 's Republic of China
| | - Guangwen Zhou
- Shandong University of Science and Technology Taian Shandong 266590 People 's Republic of China
| |
Collapse
|
30
|
Effect of traditional and dry package ageing on physicochemical properties and protein digestibility of pork Longissimus thoracis muscle. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Ye T, Zhu Y, Wang Y, Liu R, Lin L, Zheng Z, Lu J. Effect of high pressure shucking on the gel properties and in vitro digestibility of myofibrillar proteins from red swamp crayfish (Procambarus clarkii). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, Prieto MA, Bohrer B, Lorenzo JM. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants (Basel) 2021; 11:60. [PMID: 35052564 PMCID: PMC8773412 DOI: 10.3390/antiox11010060] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Muscle foods and their products are a fundamental part of the human diet. The high protein content found in muscle foods, as well as the high content of essential amino acids, provides an appropriate composition to complete the nutritional requirements of humans. However, due to their special composition, they are susceptible to oxidative degradation. In this sense, proteins are highly susceptible to oxidative reactions. However, in contrast to lipid oxidation, which has been studied in depth for decades, protein oxidation of muscle foods has been investigated much less. Moreover, these reactions have an important influence on the quality of muscle foods, from physico-chemical, techno-functional, and nutritional perspectives. In this regard, the loss of essential nutrients, the impairment of texture, water-holding capacity, color and flavor, and the formation of toxic substances are some of the direct consequences of protein oxidation. The loss of quality for muscle foods results in consumer rejection and substantial levels of economic losses, and thus the control of oxidative processes is of vital importance for the food industry. Nonetheless, the complexity of the reactions involved in protein oxidation and the many different factors that influence these reactions make the mechanisms of protein oxidation difficult to fully understand. Therefore, the present manuscript reviews the fundamental mechanisms of protein oxidation, the most important oxidative reactions, the main factors that influence protein oxidation, and the currently available analytical methods to quantify compounds derived from protein oxidation reactions. Finally, the main effects of protein oxidation on the quality of muscle foods, both from physico-chemical and nutritional points of view, are also discussed.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Benjamin Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
- Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
33
|
Bao Y, Ertbjerg P, Estévez M, Yuan L, Gao R. Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation. Compr Rev Food Sci Food Saf 2021; 20:5548-5569. [PMID: 34564951 DOI: 10.1111/1541-4337.12841] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/03/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Over the recent decades,protein oxidation in muscle foods has gained increasing research interests as it is known that protein oxidation can affect eating quality and nutritional value of meat and aquatic products. Protein oxidation occurs during freezing/thawing and frozen storage of muscle foods, leading to irreversible physicochemical changes and impaired quality traits. Controlling oxidative damage to muscle foods during such technological processes requires a deeper understanding of the mechanisms of freezing-induced protein oxidation. This review focus on key physicochemical factors in freezing/thawing and frozen storage of muscle foods, such as formation of ice crystals, freeze concentrating and macromolecular crowding effect, instability of proteins at the ice-water interface, freezer burn, lipid oxidation, and so on. Possible relationships between these physicochemical factors and protein oxidation are thoroughly discussed. In addition, the occurrence of protein oxidation, the impact on eating quality and nutrition, and controlling methods are also briefly reviewed. This review will shed light on the complicated mechanism of protein oxidation in frozen muscle foods.
Collapse
Affiliation(s)
- Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mario Estévez
- Meat and Meat Products Research Institute, University of Extremadura, Cáceres, Spain
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Thermal processing implications on the digestibility of meat, fish and seafood proteins. Compr Rev Food Sci Food Saf 2021; 20:4511-4548. [PMID: 34350699 DOI: 10.1111/1541-4337.12802] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, Lincoln, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, India
| |
Collapse
|
35
|
West EAL, Xu AX, Bohrer BM, Corradini MG, Joye IJ, Wright AJ, Rogers MA. Sous Vide Cook Temperature Alters the Physical Structure and Lipid Bioaccessibility of Beef Longissimus Muscle in TIM-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8394-8402. [PMID: 34313430 DOI: 10.1021/acs.jafc.1c03422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Changes in the physical states, induced with different sous vide cooking temperatures, significantly (P < 0.05) altered lipid bioaccessibility measured in the TNO-simulated gastrointestinal tract model-1 of AAA boneless beef striploin, containing the longissimus lumborum muscle. The denaturation of actin significantly correlates with the total cumulative free fatty acid (FFA) bioaccessibility, whereby the striploin cooked to 60 °C presents the maximum lipid bioaccessibility (15.8 ± 1.0%), rate constant (ka) for FFA hydrolysis (0.087 ± 0.003 min-1), and greatest actin denaturation enthalpy (-0.57 ± 0.06 ΔH). Thus, thermal treatments above 60 °C significantly decrease the kinetics of lipolysis (70 °C = 0.042 ± 0.002 min-1 and 80 °C = 0.047 ± 0.002 min-1) and the resultant total lipid bioaccessibility (70 °C = 8.6 ± 0.7 and 80 °C = 8.3 ± 0.5%). This research highlights the potential to manipulate the physical food structure to alter digestion kinetics, supporting the need to understand supramolecular structures in food and their nutritional outcomes.
Collapse
Affiliation(s)
- E A L West
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - A X Xu
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - B M Bohrer
- Department of Animal Science, Ohio State University, Columbus, Ohio 43201, United States
| | - M G Corradini
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
- Arrell Food Institute, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - I J Joye
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - A J Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
36
|
Liu F, Dong X, Shen S, Shi Y, Ou Y, Cai W, Chen Y, Zhu B. Changes in the digestion properties and protein conformation of sturgeon myofibrillar protein treated by low temperature vacuum heating during in vitro digestion. Food Funct 2021; 12:6981-6991. [PMID: 34137398 DOI: 10.1039/d0fo03247f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The digestion properties of sturgeon myofibrillar protein (MF) treated by low temperature vacuum heating (LTVH) at different processing temperatures (50, 60 and 70 °C) and times (15 and 30 min) were studied and compared with those of sturgeon MF treated by traditional cooking (TC). The results showed that as the temperature and time increased, the protein digestibility decreased, whereas the particle size and protein aggregation increased. It was observed that the band intensity of myosin heavy chain and myosin heavy chain 7 weakened; however, the band intensity of actin showed little change. MALDI-TOF-MS analysis revealed that the digested products of the samples treated by LTVH had a larger proportion of 750-1000 Da peptides than those treated by TC, which was consistent with the trend of the number of unique peptides identified in each group. Fourier transmission infrared (FT-IR) spectroscopy showed that the contents of α-helices and β-sheets exhibited negative and positive correlations with the temperature, respectively. Overall, compared to TC, LTVH can relieve the heat stress of protein conformation, reduce protein aggregation to improve the accessibility of the protein to digestive protease, and increase digestibility.
Collapse
Affiliation(s)
- Feijian Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu H, Li Q, Zhao D, Zhang M, Jiang S, Li C. Changes in the structure and digestibility of myoglobin treated with sodium chloride. Food Chem 2021; 363:130284. [PMID: 34120050 DOI: 10.1016/j.foodchem.2021.130284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Myoglobin is a protein not easily broken down by digestive enzymes due to its rigid structure. This study evaluated the structural characteristics of myoglobin under various sodium chloride treatments (0.4-0.8 mol/L for 5-10 h) and the impacts on its digestibility using spectroscopic and molecular dynamics simulation techniques. Myoglobin digestibility was 40% following pepsin digestion and 60% after being sequentially digested by pepsin and trypsin. The α-helix content of myoglobin did not change significantly following sodium chloride treatment but hydrophobic amino acids were exposed and the binding of phenylalanine targeted by some digestive enzymes became more stable, leading to the reduced digestibility.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100641] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
|
40
|
Yao H, Xu YL, Liu W, Lu Y, Gan JH, Liu Y, Tao NP, Wang XC, Xu CH. Taste compounds generation and variation of broth in pork meat braised processing by chemical analysis and an electronic tongue system. J Food Biochem 2021; 46:e13766. [PMID: 34060115 DOI: 10.1111/jfbc.13766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
The aim was to unveil the generation and variation rule of the main taste components in braised broth for 10 quantitative repeated braising cycles. The major taste compounds of three groups (MS, broth cooked with meat and spices; M, broth cooked with meat; and S, broth cooked with spices) were systematically analyzed by the state-of-art chromatography and electronic sensory technology. As braising cycles progressed, contents of free 5'-nucleotides and amino acids were increased in MS and M, while those nucleotides were not detected in S. A significant discrimination of taste in MS and M was revealed by electronic tongue evaluation during the process. As the formation rates (FR) of taste compounds and the transformation rates (TR) of taste compounds to volatile compounds were mainly accounting for the generation and variation of flavor in broth, a hypothesis was proposed to illustrate the whole variation of taste compounds in the process integrally that the ratio of FR/TR dividing the process into three stages, Degradation, Balance, and Accumulation. PRACTICAL APPLICATIONS: The traditional braising process and formula are empirical and extensive, which impede the increase in meat products output. Nowadays, the industry of braising products is facing a problem of standardization and quality control, and needs to carry out scientific and quantitative process improvement efficiently. Therefore, the developed comprehensive approach demonstrates great potential for braised meat broth flavor monitoring and quality control in an objective and holistic manner. It provides data support and new ideas of technology development for quality control in the process of meat braising.
Collapse
Affiliation(s)
- Hui Yao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Ye-Ling Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Wei Liu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Ying Lu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Jian-Hong Gan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ning-Ping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Xi-Chang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P.R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
41
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Non-thermal processing has an impact on the digestibility of the muscle proteins. Crit Rev Food Sci Nutr 2021; 62:7773-7800. [PMID: 33939555 DOI: 10.1080/10408398.2021.1918629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, India
| |
Collapse
|
42
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Jiang S, Feng X, Zhang F, Wang R, Zeng M. Effects of cooking methods on the Maillard reaction products, digestibility, and mineral bioaccessibility of Pacific oysters (Crassostrea gigas). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
In vitro and in vivo digestion of red cured cooked meat: oxidation, intestinal microbiota and fecal metabolites. Food Res Int 2021; 142:110203. [PMID: 33773678 DOI: 10.1016/j.foodres.2021.110203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
Mechanisms explaining epidemiological associations between red (processed) meat consumption and chronic disease risk are not yet elucidated, but may involve oxidative reactions, microbial composition alterations, inflammation and/or the formation of toxic bacterial metabolites. First, in vitro gastrointestinal digestion of 23 cooked beef-lard minces, to which varying doses of nitrite salt (range 0-40 g/kg) and sodium ascorbate (range 0-2 g/kg) were added, showed that nitrite salt decreased protein carbonylation up to 3-fold, and inhibited lipid oxidation, demonstrated by up to 4-fold lower levels of 'thiobarbituric acid reactive substances', 32-fold lower 4-hydroxynonenal, and 21-fold lower hexanal values. The use of ascorbate increased the antioxidant effect of low nitrite salt levels, whereas it slightly increased protein carbonylation at higher doses of nitrite salt. The addition of a low dose of ascorbate without nitrite salt slightly promoted oxidation during digestion, whereas higher doses had varying antioxidant effects. Second, 40 rats were fed a diet of cooked chicken- or beef-lard minces, either or not cured, for three weeks. Beef, compared to chicken, consumption increased lipid oxidation (2- to 4-fold) during digestion, and gut protein fermentation (cecal iso-butyrate, (iso-)valerate, and fecal indole, cresol), but oxidative stress and inflammation were generally not affected. Cured, compared to fresh, meat consumption significantly increased stomach protein carbonylation (+16%), colonic Ruminococcaceae (2.1-fold) and cecal propionate (+18%), whereas it decreased cecal butyrate (-25%), fecal phenol (-69%) and dimethyl disulfide (-61%) levels. Fecal acetaldehyde and diacetyl levels were increased in beef-fed rats by 2.8-fold and 5.9-fold respectively, and fecal carbon disulfide was 4-fold higher in rats consuming cured beef vs. fresh chicken. Given their known toxicity, the role of acetaldehyde and carbon disulfide in the relation between meat consumption and health should be investigated in future studies.
Collapse
|
45
|
Tandem mass tag-labeled quantitative proteomic analysis of tenderloins between Tibetan and Yorkshire pigs. Meat Sci 2021; 172:108343. [DOI: 10.1016/j.meatsci.2020.108343] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
|
46
|
Application of artificial neural networks to predict multiple quality of dry-cured ham based on protein degradation. Food Chem 2020; 344:128586. [PMID: 33229149 DOI: 10.1016/j.foodchem.2020.128586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
This study investigated protein degradation and quality changes during the processing of dry-cured ham, and then established the multiple quality prediction model based on protein degradation. From the raw material to the curing period, proteolysis index of external samples were higher than that of internal samples, however, the difference gradually decreased from the drying period to the maturing period. Protein degradation can be used as indicators for controlling quality of the hams. With protein degradation index as input variables, the back propagation-artificial neural networks (BP-ANN) models were optimized, with training function of trainlm, transfer function of logsig in input-hidden layer and tansig in hidden-output layer, and 20 hidden layer neurons. Furthermore, the relative errors of predictive data and experimental data of 12 samples were approximately 0 with the BP-ANN model. Results indicated that the BP-ANN has great potential in predicting multiple quality of dry-cured ham based on protein degradation.
Collapse
|
47
|
Zou X, He J, Zhao D, Zhang M, Xie Y, Dai C, Wang C, Li C. Structural Changes and Evolution of Peptides During Chill Storage of Pork. Front Nutr 2020; 7:151. [PMID: 33072793 PMCID: PMC7536345 DOI: 10.3389/fnut.2020.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
In this work, we investigated changes in protein structures in vacuum-packed pork during chill storage and its impact on the in vitro protein digestion. Longissimus dorsi muscles were vacuum packed and stored at 4°C for 3 days. Samples were subjected to Raman spectroscopy, in vitro digestion and nano LC-MS/MS. The 3 d samples had lower α-helix content, but higher β-sheet, β-turn, and random coil contents than the 0 d samples (P < 0.05). SDS-PAGE revealed significant protein degradation in the 3 d samples and the differences in digested products across the storage time. Proteome analysis indicated that the 3 d samples had the higher susceptibility to digestion. Increasing protein digestibility was mainly attributed to the degradation of myofibrillar proteins. Thus, exposure of more enzymatic sites in loose protein structure during chill storage could increase protein degradation in meat.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jing He
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Min Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Chong Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Kęska P, Wójciak KM, Stasiak DM. Influence of Sonication and Taraxacum Officinale Addition on the Antioxidant and Anti-ACE Activity of Protein Extracts from Sous Vide Beef Marinated with Sour Milk and after In Vitro Digestion. Molecules 2020; 25:molecules25204692. [PMID: 33066429 PMCID: PMC7587380 DOI: 10.3390/molecules25204692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
The present study assessed the effect of pretreating beef as a raw material for sous vide steak preparation. The pretreatment involved maceration of a batch of meat in sour milk with the simultaneous use of ultrasound (250 or 500 W) as well as the addition of Taraxacum officinale. The biological activity profile of the peptides was assessed in terms of their antioxidant activity and inhibiting activity against angiotensin-converting enzyme (ACE). Changes in the biological activity of peptides under the influence of hydrolysis by gastrointestinal enzymes, i.e., pepsin and pancreatin, were also considered. There was no significant effect of T. officinale addition and sonication of beef batches on the protein content (except for lot S6, after sonication at 500 W as acoustic power and with the addition of dandelion). It was observed that the interaction of maceration in sour milk with simultaneous ultrasound treatment as the initial production step of sous vide beef steak generates the formation of peptides with antioxidant properties. Moreover, peptide formation can be further enhanced by adding dandelion (based on the results of antiradical and chelating activity tests). In addition, the progression of hydrolysis under the influence of gastrointestinal enzymes promotes the release of peptides with antioxidant and anti-ACE activity.
Collapse
|
49
|
Li Q, Zhao D, Liu H, Zhang M, Jiang S, Xu X, Zhou G, Li C. "Rigid" structure is a key determinant for the low digestibility of myoglobin. Food Chem X 2020; 7:100094. [PMID: 32617526 PMCID: PMC7322683 DOI: 10.1016/j.fochx.2020.100094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 01/13/2023] Open
Abstract
Myoglobin, a critical protein responsible for meat color, has been shown insusceptible to digestion. The underlying mechanism is not clear. The present study aimed to evaluate whether the structural properties of myoglobin are associated with its insusceptibility to digestion using spectroscopic and computational techniques. Myoglobin was degraded by only 7.03% by pepsin and 33.00% by pancreatin. The structure of myoglobin still maintained α-helix after the two-step digestion, with the exposure of some aromatic residues. In addition, molecular dynamics modeling suggested that hydrophobic amino acid residues (Phe 111, Leu 10, Ala 115, Pro 116) in pepsin and polar amino acid residues (Tyr 146, Thr 95) in myoglobin were found in the proximity of binding sites, which could result in the low digestibility of myoglobin. Our findings provide a new insight into the underlying mechanisms on the difficulty in digestion of myoglobin.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Wang W, Li Y, Zhou X, Li C, Liu Y. Changes in the extent and products of In vitro protein digestion during the ripening periods of Chinese dry-cured hams. Meat Sci 2020; 171:108290. [PMID: 32949821 DOI: 10.1016/j.meatsci.2020.108290] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
A long ripening period is essential for developing dry-cured ham flavor, but the effect of ripening process on its in vitro digestion product has not been extensively studied. Here, we investigated the in vitro digestion profiles from Chinese dry-cured ham (Jinhua, Rugao and Xuanwei) with different ripening periods by particle size measurement, gel eletrophoresis analysis and nano liquid chromatography-tandem mass spectrometry. The results showed that the in vitro digestibility of ham was in a good agreement with the particle size of digestion products. Among the three types dry-cured ham, Xuanwei showed the highest digestibility (93.46%), followed by Jinhua (74.46%). In term of ripening period, the 2-year Xuanwei and Jinhua showed the diversity of peptides (especially for peptide with molecular weight < 2500 Da), besides their good digestibility. Moreover, the highest amount of peptides (404) was observed in 2-year Jinhua compared to other hams. Our finding gave a new insight into the digestion profiles and nutritional properties of Chinese dry-cured hams.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Food Science &Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xirui Zhou
- Department of Food Science &Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Animal Products Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yuan Liu
- Department of Food Science &Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|