1
|
Little A, Mendonca A, Dickson J, Fortes-Da-Silva P, Boylston T, Lewis B, Coleman S, Thomas-Popo E. Acid Adaptation Enhances Tolerance of Escherichia coli O157:H7 to High Voltage Atmospheric Cold Plasma in Raw Pineapple Juice. Microorganisms 2024; 12:1131. [PMID: 38930513 PMCID: PMC11205674 DOI: 10.3390/microorganisms12061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogens that adapt to environmental stress can develop an increased tolerance to some physical or chemical antimicrobial treatments. The main objective of this study was to determine if acid adaptation increased the tolerance of Escherichia coli O157:H7 to high voltage atmospheric cold plasma (HVACP) in raw pineapple juice. Samples (10 mL) of juice were inoculated with non-acid-adapted (NAA) or acid-adapted (AA) E. coli to obtain a viable count of ~7.00 log10 CFU/mL. The samples were exposed to HVACP (70 kV) for 1-7 min, with inoculated non-HVACP-treated juice serving as a control. Juice samples were analyzed for survivors at 0.1 h and after 24 h of refrigeration (4 °C). Samples analyzed after 24 h exhibited significant decreases in viable NAA cells with sub-lethal injury detected in both NAA and AA survivors (p < 0.05). No NAA survivor in juice exposed to HVACP for 5 or 7 min was detected after 24 h. However, the number of AA survivors was 3.33 and 3.09 log10 CFU/mL in juice treated for 5 and 7 min, respectively (p < 0.05). These results indicate that acid adaptation increases the tolerance of E. coli to HVACP in pineapple juice. The potentially higher tolerance of AA E. coli O157:H7 to HVACP should be considered in developing safe juice processing parameters for this novel non-thermal technology.
Collapse
Affiliation(s)
- Allison Little
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| | - James Dickson
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Paulo Fortes-Da-Silva
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Terri Boylston
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Braden Lewis
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shannon Coleman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Emalie Thomas-Popo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
2
|
Wang Y, Liu Y, Zhao Y, Sun Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Food Res Int 2023; 173:113204. [PMID: 37803533 DOI: 10.1016/j.foodres.2023.113204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
As an emerging food processing technology, cold atmospheric plasma (CAP) has attracted great attention in the field of microbial inactivation. Although CAP has been proven to effectively inactivate a variety of foodborne pathogens, there is less research on the inactivation of Bacillus cereus, and the exact inactivation mechanism is still unclear. Elucidating the inactivation mechanism will help to develop and optimize this sterilization method, with the prospective application in industrialized food production. This study aims to explore the bactericidal efficacy difference between air and nitrogen CAP on B. cereus, a typical Gram-positive bacterium, and reveals the inactivation mechanism of CAP at the cellular and molecular level, by observing the change of the cell membrane, cell morphological damage, intracellular antioxidant enzyme activity and cellular biomacromolecules changes. The results showed that both air CAP and nitrogen CAP could effectively inactivate B. cereus, which was due to the reactive oxygen and nitrogen species (RONS) generated by the plasma causing bacterial death. The damage pathways of CAP on Gram-positive bacteria could be explained by disrupting the bacterial cell membrane and cell morphology, disturbing the intracellular redox homeostasis, and destroying biomacromolecules in the cells. The differences in active species generated by the plasma were the main reason for the different bactericidal efficiencies of air CAP and nitrogen CAP, where air CAP producing RONS with stronger oxidative capacity in a shorter time. This study indicates that air CAP is an effective, inexpensive and green technology for B. cereus inactivation, providing a basis for industrial application in food processing.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
3
|
Zhao Y, Meng Z, Shao L, Dai R, Li X, Jia F. Employment of cold atmospheric plasma in chilled chicken breasts and the analysis of microbial diversity after the shelf-life storage. Food Res Int 2022; 162:111934. [DOI: 10.1016/j.foodres.2022.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
|
4
|
Katsigiannis AS, Bayliss DL, Walsh JL. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2022; 21:1086-1124. [DOI: 10.1111/1541-4337.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Danny L. Bayliss
- Processing & Production Research Department Campden BRI Gloucestershire UK
| | - James L. Walsh
- Department of Electrical Engineering & Electronics University of Liverpool Liverpool UK
| |
Collapse
|
5
|
Wu RA, Yuk HG, Liu D, Ding T. Recent advances in understanding the effect of acid-adaptation on the cross-protection to food-related stress of common foodborne pathogens. Crit Rev Food Sci Nutr 2021; 62:7336-7353. [PMID: 33905268 DOI: 10.1080/10408398.2021.1913570] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acid stress is one of the most common stresses that foodborne pathogens encounter. It could occur naturally in foods as a by-product of anaerobic respiration (fermentation), or with the addition of acids. However, foodborne pathogens have managed to survive to acid conditions and consequently develop cross-protection to subsequent stresses, challenging the efficacy of hurdle technologies. Here, we cover the studies describing the cross-protection response following acid-adaptation, and the possible molecular mechanisms for cross-protection. The current and future prospective of this research topic with the knowledge gaps in the literature are also discussed. Exposure to acid conditions (pH 3.5 - 5.5) could induce cross-protection for foodborne pathogens against subsequent stress or multiple stresses such as heat, cold, osmosis, antibiotic, disinfectant, and non-thermal technology. So far, the known molecular mechanisms that might be involved in cross-protection include sigma factors, glutamate decarboxylase (GAD) system, protection or repair of molecules, and alteration of cell membrane. Cross-protection could pose a serious threat to food safety, as many hurdle technologies are believed to be effective in controlling foodborne pathogens. Thus, the exact mechanisms underlying cross-protection in a diversity of bacterial species, stress conditions, and food matrixes should be further studied to reduce potential food safety risks. HighlightsFoodborne pathogens have managed to survive to acid stress, which may provide protection to subsequent stresses, known as cross-protection.Acid-stress may induce cross-protection to many stresses such as heat, cold, osmotic, antibiotic, disinfectant, and non-thermal technology stress.At the molecular level, foodborne pathogens use different cross-protection mechanisms, which may correlate with each other.
Collapse
Affiliation(s)
- Ricardo A Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Effect of Non-Thermal Atmospheric Plasma on Food-Borne Bacterial Pathogens on Ready-to Eat Foods: Morphological and Physico-Chemical Changes Occurring on the Cellular Envelopes. Foods 2020; 9:foods9121865. [PMID: 33327565 PMCID: PMC7765070 DOI: 10.3390/foods9121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Currently, there is a need for new technological interventions to guarantee the microbiological safety of ready-to-eat (RTE) foods. Non-thermal atmospheric plasma (NTAP) has emerged as a promising strategy for inactivating microorganisms on thermo-sensitive foods, and the elucidation of its mechanisms of action will aid the rational optimization and industrial implementation of this technology for potential applications in the food industry. In this study, the effectiveness of NTAP for inactivating strains of Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes contaminating the surface of different sliced RTE foods (“chorizo”, salami, bacon, smoked salmon, tofu and apple) was investigated. In addition, to further assess the bacterial inactivation mechanisms of NTAP, the morphological and physico-chemical damages in bacterial cells were analyzed. NTAP was effective for the surface decontamination of all products tested and, especially, of cut apple, where the microbial populations were reduced between 1.3 and 1.8 log units for the two Salmonella strains and E. coli O157: H7, respectively, after 15 min of exposure. In the rest of foods, no significant differences in the lethality obtained for the E. coli O157:H7 strain were observed, with inactivation rates of between 0.6 and 0.9 log cycles after a 15-min treatment. On the other hand, the strains from the rest of pathogenic microorganisms studied were extremely resistant on tofu, where barely 0.2–0.5 log units of inactivation were achieved after 15 min of plasma exposure. S. Enteritidis cells treated for 10 min exhibited noticeable morphological and structural changes, as observed by transmission electron microscopy, which were accompanied by a loss in membrane integrity, with an increased leakage of intracellular components and uptake of propidium iodide and marked changes in regions of their FTIR spectra indicating major alterations of the cell wall components. Overall, this indicates that loss of viability was likely caused for this microorganism by a significant damage in the cellular envelopes. However, the plasma-treated cells of L. monocytogenes did not show such obvious changes in morphology, and exhibited less marked effects on the integrity of their cytoplasmic membrane, what suggests that the death of this pathogenic microorganism upon NTAP exposure is more likely to occur as a consequence of damages in other cellular targets.
Collapse
|
7
|
Liao X, Cullen PJ, Muhammad AI, Jiang Z, Ye X, Liu D, Ding T. Cold Plasma–Based Hurdle Interventions: New Strategies for Improving Food Safety. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09222-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Evaluation of adaptive response in E. coli O157:H7 to UV light and gallic acid based antimicrobial treatments. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, Alvarez-Ordóñez A. A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Front Microbiol 2019; 10:622. [PMID: 31001215 PMCID: PMC6454144 DOI: 10.3389/fmicb.2019.00622] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Non-thermal Atmospheric Plasma (NTAP) is a cutting-edge technology which has gained much attention during the last decade in the food-processing sector as a promising technology for food preservation and maintenance of food safety, with minimal impact on the quality attributes of foods, thanks to its effectiveness in microbial inactivation, including of pathogens, spoilage fungi and bacterial spores, simple design, ease of use, cost-effective operation, short treatment times, lack of toxic effects, and significant reduction of water consumption. This review article provides a general overview of the principles of operation and applications of NTAP in the agri-food sector. In particular, the numerous studies carried out in the last decade aimed at deciphering the influence of different environmental factors and processing parameters on the microbial inactivation attained are discussed. In addition, this review also considers some important studies aimed at elucidating the complex mechanism of microbial inactivation by NTAP. Finally, other potential applications of NTAP in the agri-food sector, apart from food decontamination, are briefly described, and some limitations for the immediate industrial implementation of NTAP are discussed (e.g., impact on the nutritional and sensory quality of treated foods; knowledge on the plasma components and reactive species responsible for the antimicrobial activity; possible toxicity of some of the chemical species generated; scale-up by designing fit-for-purpose equipment).
Collapse
Affiliation(s)
- Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Tamara Calvo
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | | | | | - Fernando Alba-Elías
- Department of Mechanical Engineering, Universidad de La Rioja, Logroño, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
10
|
Patange A, Boehm D, Ziuzina D, Cullen PJ, Gilmore B, Bourke P. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int J Food Microbiol 2019; 293:137-145. [PMID: 30711711 DOI: 10.1016/j.ijfoodmicro.2019.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/24/2022]
Abstract
Atmospheric cold plasma (ACP) offers great potential for decontamination of food borne pathogens. This study examined the antimicrobial efficacy of ACP against a range of pathogens of concern to fresh produce comparing planktonic cultures, monoculture biofilms (Escherichia coli, Salmonella enterica, Listeria monocytogenes, Pseudomonas fluorescens) and mixed culture biofilms (Listeria monocytogenes and Pseudomonas fluorescens). Biotic and abiotic surfaces commonly occurring in the fresh food industry were investigated. Microorganisms showed varying susceptibility to ACP treatment depending on target and process factors. Bacterial biofilm populations treated with high voltage (80 kV) ACP were reduced significantly (p < 0.05) in both mono- and mixed species biofilms after 60 s of treatment and yielded non-detectable levels after extending treatment time to 120 s. However, an extended time was required to reduce the challenge mixed culture biofilm of L. monocytogenes and P. fluorescens inoculated on lettuce, which was dependent on biofilm formation conditions and substrate. Contained treatment for 120 s reduced L. monocytogenes and P. fluorescens inoculated as mixed cultures on lettuce (p < 0.05) by 2.2 and 4.2 Log10 CFU/ml respectively. When biofilms were grown at 4 °C on lettuce, there was an increased resistance to ACP treatment by comparison with biofilm grown at temperature abuse conditions of 15 °C. Similarly, L. monocytogenes and P. fluorescens exposed to cold stress (4 °C) for 1 h demonstrated increased tolerance to ACP treatment compared to non-stressed cells. These finding demonstrates that bacterial form, mono versus mixed challenges as well as environmental stress conditions play an important role in ACP inactivation efficacy.
Collapse
Affiliation(s)
- Apurva Patange
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - D Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - P J Cullen
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - Brendan Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT97BL, UK
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland.
| |
Collapse
|
11
|
Wang L, Yang X, Yang C, Gao J, Zhao Y, Cheng C, Zhao G, Liu S. The inhibition effect of cold atmospheric plasma-activated media in cutaneous squamous carcinoma cells. Future Oncol 2019; 15:495-505. [PMID: 30648877 DOI: 10.2217/fon-2018-0419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study investigated the effect and mechanism of cold atmospheric plasma (CAP)-activated media on A431 and HaCaT cells. MATERIALS & METHODS Phosphate-buffered saline (PBS) and Dulbecco's Modified Eagle's Medium (DMEM) were treated by CAP to get CAP-activated media. A431 and HaCaT were incubated by CAP-activated media for 2 h. MTT, Annexin-V and propidium iodide (PI), Western blot and reactive oxygen species (ROS) detection assay were utilized to demonstrate the effect. RESULTS The CAP-activated media decreased the proliferation of A431 cells in a dose/time-dependent manner. And the CAP-activated media could induce apoptosis in A431 cells. CAP-activated phosphate-buffered saline could increase intracellular ROS level but not CAP-activated DMEM. CONCLUSION CAP-activated media could induce apoptosis in A431 cells by production of ROS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| | - Ye Zhao
- Teaching & Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui, PR China
| | - Cheng Cheng
- The Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui, PR China
| | - Guoping Zhao
- Anhui Province Key Laboratory of Environmental Toxicology & Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
12
|
Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Freitas MQ, Silva MC, Raices RS, Ranadheera CS, Borges FO, Mathias SP, Fernandes FA, Rodrigues S, Cruz A. Cold plasma processing of milk and dairy products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res Int 2017; 105:178-183. [PMID: 29433205 DOI: 10.1016/j.foodres.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022]
Abstract
As the development of hurdle technology, cross-protection of various stresses for pathogens posed the potential risk to food safety and public health. This study tried to explore various preliminary stresses including acidity, osmosis, oxidation, heat and cold on the resistance of microbial cells toward the non-thermal plasma (NTP) exposure. The results indicated that short-term (4h) exposure of Staphylococcus aureus and Escherichia coli to acidity, osmosis, oxidation, heat and cold stresses did not lead to the resistance to the subsequent NTP treatment. On the contrary, acidity, osmosis and heat preadaptation increased the vulnerability of E. coli cells to NTP treatment. After exposing S. aureus to osmosis, oxidation, heat and cold stress for longer period (24h), the reduction level showed significantly (P<0.05) higher. Interestingly, long-term (24h) preliminary exposure of acidic stress exhibited protective effect for S. aureus against the following NTP exposure with less damage in cell membrane integrity, membrane potential and intracellular enzyme activity. It might be due to the protein production for oxidative stress response during preliminary acidic adaptation. In general, the obtained result helped to grasp better understanding of the microbial stress response to NTP treatment and provided insight for the future research in order to accelerate the development of NTP technology in food industry.
Collapse
|