1
|
Shao X, Wang H, Huang M, Song X, Xu N, Cai L, Xu X. Effect of bacterial fermentation on the ability of myofibrillar proteins to bind esters and its potential mechanism: Based on protein metabolism and structural changes. Int J Biol Macromol 2024; 281:136425. [PMID: 39427800 DOI: 10.1016/j.ijbiomac.2024.136425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
The effect of fermentation strains (Lactiplantibacillus plantarum CQ01107 and Staphylococcus simulans CD207) on the binding properties of porcine myofibrillar proteins (MPs) to esters was investigated from two perspectives: metabolism degree and structural alterations. Results demonstrated that S. simulans could reduce the particle size and α-helix content of MPs, while simultaneously increasing the absolute zeta potential and active sulfhydryl content. This process decreased protein aggregation and facilitated the unfolding of MPs, thereby enhancing their binding to esters. Conversely, L. plantarum showed limited promotion, which might be related to its robust acid production and protein hydrolysis capacities. In addition, ethyl octanoate, with a longer carbon chain length, was found to have the highest binding capacity to MPs (28.38 %-41.59 %). Molecular docking results further revealed that the binding of the four esters to MPs was spontaneous, with ethyl octanoate exhibiting the lowest binding energy to MPs (-5.635 kcal/mol). The primary forces involved in the binding of the four selected esters to MPs were hydrophobic interactions, hydrogen bonding, and van der Waals forces. These findings can provide new insights into the mechanisms by which fermentation strains influence flavor formation in fermented foods.
Collapse
Affiliation(s)
- Xuefei Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, PR China
| | - Xiangyu Song
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Na Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
2
|
Yao W, Hao X, Hu Z, Lian Z, Cao Y, Liu R, Niu X, Xu J, Zhu Q. Mitigation of malondialdehyde-induced protein lipoxidation by epicatechin in whey protein isolate. Food Chem 2024; 456:139954. [PMID: 38852459 DOI: 10.1016/j.foodchem.2024.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Malondialdehyde (MDA) can induce lipoxidation in whey protein isolate (WPI). The physicochemical changes in this reaction with or without the presence of a phenolic compound epicatechin (EC) were characterized in this study. Results suggested the content of MDA was significantly reduced during co-incubation of MDA and EC. The addition of EC dose-dependently alleviated MDA-induced protein carbonylation, Schiff base formation and loss of tryptophan fluorescence. The interruption of MDA-binding to WPI was directly visualized by immunoblotting analysis. Observation of the surface microstructure of WPI showed that MDA-induced protein aggregation was partially restored by EC. Meanwhile, EC was found to promote loss of both protein sulfhydryls and surface hydrophobicity due to possible phenol-protein interactions. These observations suggested the potential of EC in the relief of MDA-mediated protein lipoxidation.
Collapse
Affiliation(s)
- Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xingya Hao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhangjie Hu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rong Liu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory for Research and Application of Green and Low-carbon Advanced Materials, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China.
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
3
|
Li Y, Xu J, Sun F, Guo Y, Wang D, Cheng T, Xu M, Wang Z, Guo Z. Spectroscopy combined with spatiotemporal multiscale strategy to study the adsorption mechanism of soybean protein isolate with meat flavor compounds (furan): Differences in position and quantity of the methyl. Food Chem 2024; 451:139415. [PMID: 38670020 DOI: 10.1016/j.foodchem.2024.139415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The interaction mechanism between soybean protein isolate (SPI) and furan flavor compounds with different structures is studied using spectroscopy, molecular docking, and MD simulation methods. The order of binding ability between SPI and furan flavor compounds is 2-acetylfuran>furfural>5-methylfurfural. The structural differences (position and quantity of methyl groups) of three furan flavor compounds are key factors leading to the different adsorption abilities of SPI for furan flavor compounds. The findings from spectroscopy analyses suggest that the interaction between SPI and furan flavor compounds involves both static and dynamic quenching mechanisms, with static quenching being the main factor. Molecular docking and MD simulations reveal the atomic-level mechanisms underlying the stable binding for SPI and furan flavor compounds at spatiotemporal multiscale. This study provides a theoretical framework for the production and adjustment of meat essence formula in the production of soybean protein-based meat products.
Collapse
Affiliation(s)
- Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Hainan Academy of Agricultural Sciences Agricultural Product Processing Design and Research Institute, Hainan 571100, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Chen G, Xu C, Wang Z, Han Z, Xia Q, Wei S, Sun Q, Liu S. Effect of MDA-mediated oxidation on the protein structure and digestive properties of golden pomfret. Food Chem 2024; 443:138563. [PMID: 38290301 DOI: 10.1016/j.foodchem.2024.138563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
In this study, golden pomfret myofibrillar protein (MP) was used as the research object, and the oxidation system of malondialdehyde (MDA) as an inducer and the static digestion model in vitro was established for the analysis of the changes in protein structure and molecular morphology during oxidation and digestion. Subsequently, the effects of MDA-mediated oxidation on the structure and digestive properties of golden pomfret myofibrillar fibrillar protein were determined. The results showed that the hydrolysis degree and digestion rate of MP were inhibited with the increase in MDA concentration (0, 0.5, 1, 2, 5, 10 mmol/L), and the carbonyl group, surface hydrophobicity, irregular curling, and MDA content increased significantly (P < 0.05), whereas the total sulfhydryl groups, α-helices, free amino groups, hydrolysis degree, and MDA incorporation decreased significantly (P < 0.05), The molecular particle size was significantly reduced (P < 0.05), and the molecular morphology and molecular structure were analyzed (P >0.05). Finally, the molecular size and cross-linking degree gradually increased. In conclusion, MDA can alter the structure and morphology of proteins, resulting in a decrease in hydrolysis and digestion rate. This study can provide theoretical support and reference for the regulation of protein digestion.
Collapse
Affiliation(s)
- Guanyi Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Chencai Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Zhang F, Wang Y, Liu B, Gong P, Shi C, Zhu L, Zhao J, Yao W, Liu Q, Luo J. Widely Targeted Metabolomic Analysis Revealed the Diversity in Milk from Goats, Sheep, Cows, and Buffaloes and Its Association with Flavor Profiles. Foods 2024; 13:1365. [PMID: 38731736 PMCID: PMC11083174 DOI: 10.3390/foods13091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The milk flavor can be attributed to the presence of numerous flavor molecules and precursors. In this study, we employed widely targeted metabolomic analysis techniques to analyze the metabolic profiles of various milk samples obtained from goats, sheep, dairy cows, and buffaloes. A total of 631 metabolites were identified in the milk samples, which were further categorized into 16 distinct classes. Principal component analysis (PCA) suggested that the metabolite profiles of samples from the same species exhibit clustering, while separated patterns of metabolite profiles are observed across goat, sheep, cow, and buffalo species. The differential metabolites between the groups of each species were screened based on fold change and variable importance in projection (VIP) values. Five core differential metabolites were subsequently identified, including 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid, inosine 5'-triphosphate, methylcysteine, N-cinnamylglycine, and small peptide (L-tyrosine-L-aspartate). Through multiple comparisons, we also screened biomarkers of each type of milk. Our metabolomic data showed significant inter-species differences in the composition and concentration of some compounds, such as organic acids, amino acids, sugars, nucleotides, and their derivatives, which may affect the overall flavor properties of the milk sample. These findings provided insights into the molecular basis underlying inter-species variations in milk flavor.
Collapse
Affiliation(s)
- Fuhong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Yaling Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Baolong Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumchi 830000, China;
| | - Chenbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Lu Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Jianqing Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Weiwei Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (F.Z.); (Y.W.); (B.L.); (C.S.); (L.Z.); (J.Z.); (W.Y.); (Q.L.)
| |
Collapse
|
7
|
Zhang W, Liu L, Zhao Y, Liu T, Bai F, Wang J, Xu H, Gao R, Jiang X, Xu X. Interactions between phosvitin and aldehydes affect the release of flavor from Russian sturgeon caviar. Food Chem 2024; 437:137904. [PMID: 37926030 DOI: 10.1016/j.foodchem.2023.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The release mechanism of flavor during caviar storage was studied by the interaction between phosvitin and four aldehydes. Gas chromatography-mass spectrometry showed that the binding rate of phosvitin with 3-methylbutanal, nonanal, (E,Z)-2,6-nonadienal, and (E)-2-octenal decreased with an increase in the aldehyde concentrations. Among them, (E,Z)-2,6-Nonadienal (0.5 mM) had the highest binding rate (84.47%). The main quenching mechanism of (E,Z)-2,6-nonadienal with phosvitin was static quenching and the binding force comprised spontaneous hydrophobic interactions. An increase in the aldehyde concentrations reduced the α-helix content of phosvitin and led to aggregation of the microstructure of phosvitin. The results of molecular docking showed that tyr residue contributed the most to the binding of phosvitin to aldehydes. This study has elucidated the mechanism of the effect of caviar protein on changes in the caviar flavor during storage and provides effective strategies for regulation of caviar flavor during storage.
Collapse
Affiliation(s)
- Weijia Zhang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Li Liu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China.
| | - Tianhong Liu
- Marine Science Research Institute of Shandong Province, Qingdao, Shandong Province 266100, China
| | - Fan Bai
- Quzhon Sturgeon Aquatic Food Science and Technology Development Co, Ltd, Quzhou 324002, China.
| | - Jinlin Wang
- Quzhon Sturgeon Aquatic Food Science and Technology Development Co, Ltd, Quzhou 324002, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co, Ltd, Lianyungang 222000, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
8
|
Liu H, Li J, Wang F, Sun X, Liu D, Wang Z, Gong H. Comprehensive binding analysis of glycated myosin with furan derivatives via glucose by means of multi-spectroscopy techniques and molecular docking simulation. Food Res Int 2023; 173:113275. [PMID: 37803587 DOI: 10.1016/j.foodres.2023.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Myosin is an ideal binding receptor for aroma compounds and its functional properties are easily affected by glucose. The study comprehensively clarified the effects of glucose glycation-induced structural modifications of myosin on its binding ability with furan derivatives, including 2-methylfuran, 2-furfural, and 2-furfurylthiol. The results demonstrated that the binding levels of furan derivatives were obviously affected by the glycation levels of myosin due to the changes of myosin structure and surface. The increased glycation levels caused the unfolding of myosin structure and accelerated the aggregation, as were exhibited by the data of zeta potential, particle size, microstructure, and secondary structure. The glycated myosin with wrinkled surfaces favored the significant increase of hydrophobic interactions (31.59-69.50 μg), the more exposure of amino acid residues (3459-6048), the formation of free sulfhydryl groups (16.37-20.58 mmol/104g) and hydrogen bonds. These key (non)covalent linkages accounted for the generation of glycated myosin-odorants complex, including 2-furfurylthiol (29.17-47.87 %), thus enhancing the resultant binding ability as evidenced by the free furan derivatives concentrations, fluorescence quenching and molecular docking simulation analysis. The glycated myosin for 8 h bound highest concentrations of furan derivatives. The results will provide comprehensive data on the retention of aroma compounds in meat products.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| | - Junke Li
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Fang Wang
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Xuemei Sun
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | | | - Hansheng Gong
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Bionanotechnology Institute, Ludong University, Yantai 264025, China.
| |
Collapse
|
9
|
Chen X, Zhang W, Quek SY, Zhao L. Flavor-food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Compr Rev Food Sci Food Saf 2023; 22:4004-4029. [PMID: 37350045 DOI: 10.1111/1541-4337.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
With consumers gaining prominent awareness of health and well-being, a diverse range of fortified or reformulated novel food is developed to achieve personalized or tailored nutrition using protein, carbohydrates, or fat as building blocks. Flavor property is a critical factor in the acceptability and marketability of fortified or reformulated food. Major food ingredients are able to interact with flavor compounds, leading to a significant change in flavor release from the food matrix and, ultimately, altering flavor perception. Although many efforts have been made to elucidate how food matrix components change flavor binding capacities, the influences on flavor perception and their implications for the innovation of fortified or reformulated novel food have not been systematically summarized up to now. Thus, this review provides detailed knowledge about the binding behaviors of flavors to major food ingredients, as well as their influences on flavor retention, release, and perception. Practical approaches for manipulating these interactions and the resulting flavor quality are also reviewed, from the scope of their intrinsic and extrinsic influencing factors with technologies available, which is helpful for future food innovation. Evaluation of food-ingredient interactions using real food matrices while considering multisensory flavor perception is also prospected, to well motivate food industries to investigate new strategies for tasteful and healthy food design in response to consumers' unwillingness to compromise on flavor for health.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North, New Zealand
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
10
|
Liu Y, Mubango E, Dou P, Bao Y, Tan Y, Luo Y, Li X, Hong H. Insight into the protein oxidation impact on the surface properties of myofibrillar proteins from bighead carp. Food Chem 2023; 411:135515. [PMID: 36693300 DOI: 10.1016/j.foodchem.2023.135515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The objective of this study was to elucidate the influence of oxidative modifications of myofibrillar proteins (MPs) on their surface properties. Oxidative modifications (deamination, formation of disulfide bonds and Schiff bases), particle size, net surface charge, and binding ability of volatiles (2-enthylfuran, 1-octen-3-ol, hexanal, and octanal) of oxidized MPs was measured. Molecular docking of volatiles with actomyosin was performed using Qvina-W program and the specific oxidative modifications (monoxidation and deamination) of MPs were determined using LC-MS/MS. Results showed that oxidation of Cys (forming sulfinic, sulfonic, sulfenic acid, and disulfide bonds), monoxidation of Ala, Lys, Glu, and Asn, and deamination of Lys changed the surface properties of oxidized MPs including enhanced surface hydrophobicity and decreased affinity to volatile compounds and water. Overall, this study gives evidence of how protein oxidation affects the properties of MPs and therefore deteriorates fish meat quality.
Collapse
Affiliation(s)
- Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Elliot Mubango
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Wang X, Feng T, Fan C, Wang X, Xia S, Yu J, John Swing C. Effect of tannic acid-OSA starch complexation on the binding capacity and release of aldehydes off-flavor in aqueous matrix. Food Chem 2023; 426:136560. [PMID: 37321118 DOI: 10.1016/j.foodchem.2023.136560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
In order to further clarify the regulation of tannic acid on the off-flavor in starch-based algal oil emulsions, the effect of different starch matrix (OSA starch and OSA starch-tannic acid complex) on the release capacities of aldehydes (pentanal, hexanal, heptanal, nonanal) were investigated. The adsorption and retention ability, thermodynamic parameters, and hydrophobicity of aldehydes in the starch matrix were analyzed. Nonanal exhibited the strongest adsorption ability (65.01%-85.69%) with the starch matrix, followed by heptanal, hexanal, and pentanal, which accounted for the structures of aldehydes. Furthermore, aldehydes had a higher affinity with complex (16.33%-83.67%) than OSA starch (9.70%-66.71%) because the tannic acid altered the structure of OSA starch. Isothermal titration calorimetry suggested that the interaction between the starch matrix and aldehydes was an entropy-driven spontaneous endothermic reaction, and hydrophobic interactions were the predominant driving forces. Altogether, these results lay a theoretical foundation for facilitating the regulation of flavor in starch foods.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Tingting Feng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Chunli Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xingwei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Caleb John Swing
- Department of Animal Sciences, Colorado State University, 350 W. Pitkin St., Fort Collins, CO 80523-1171, the United States of America
| |
Collapse
|
12
|
Chen X, He Z, Wang Z, Li H. Insight into the Interaction of Malondialdehyde with Rabbit Meat Myofibrillar Protein: Fluorescence Quenching and Protein Oxidation. Foods 2023; 12:foods12102044. [PMID: 37238862 DOI: 10.3390/foods12102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
This research explored the effects of oxidative modification caused by different malondialdehyde (MDA) concentrations on rabbit meat myofibrillar protein (MP) structural characteristics and the interactions between MDA and MP. The fluorescence intensity of MDA-MP adducts, and surface hydrophobicity increased, whereas the intrinsic fluorescence intensity and free-amine content of MPs decreased as MDA concentration and incubation time increased. The carbonyl content was 2.06 nmol/mg for native MPs, while the carbonyl contents increased to 5.17, 5.57, 7.01, 11.37, 13.78, and 23.24 nmol/mg for MP treated with 0.25 to 8 mM MDA, respectively. When the MP was treated with 0.25 mM MDA, the sulfhydryl content and the α-helix content decreased to 43.78 nmol/mg and 38.46%, while when MDA concentration increased to 8 mM, the contents for sulfhydryl and α-helix decreased to 25.70 nmol/mg and 15.32%. Furthermore, the denaturation temperature and ΔH decreased with the increase in MDA concentration, and the peaks disappeared when the MDA concentration reached 8 mM. Those results indicate MDA modification resulted in structural destruction, thermal stability reduction, and protein aggregation. Besides, the first-order kinetics and Stern-Volmer equation fitting results imply that the quenching mechanism of MP by MDA may be mainly driven by dynamic quenching.
Collapse
Affiliation(s)
- Xiaosi Chen
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
13
|
Hu Z, Wang Y, Ma Z, Cheng T, Guo Z, Zhou L, Wang Z. Impacts of Industrial Modification on the Structure and Gel Features of Soy Protein Isolate and its Composite Gel with Myofibrillar Protein. Foods 2023; 12:foods12101982. [PMID: 37238801 DOI: 10.3390/foods12101982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Native soy protein isolate (N-SPI) has a low denaturation point and low solubility, limiting its industrial application. The influence of different industrial modification methods (heat (H), alkaline (A), glycosylation (G), and oxidation (O)) on the structure of SPI, the properties of the gel, and the gel properties of soy protein isolate (SPI) in myofibril protein (MP) was evaluated. The study found that four industrial modifications did not influence the subunit composition of SPI. However, the four industrial modifications altered SPI's secondary structure and disulfide bond conformation content. A-SPI exhibits the highest surface hydrophobicity and I850/830 ratio but the lowest thermal stability. G-SPI exhibits the highest disulfide bond content and the best gel properties. Compared with MP gel, the addition of H-SPI, A-SPI, G-SPI, and O-SPI components significantly improved the properties of the gel. Additionally, MP-ASPI gel exhibits the best properties and microstructure. Overall, the four industrial modification effects may impact SPI's structure and gel properties in different ways. A-SPI could be a potential functionality-enhanced soy protein ingredient in comminuted meat products. The present study results will provide a theoretical basis for the industrialized production of SPI.
Collapse
Affiliation(s)
- Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Yang L, Zhang T, Li H, Chen T, Liu X. Control of Beany Flavor from Soybean Protein Raw Material in Plant-Based Meat Analog Processing. Foods 2023; 12:foods12050923. [PMID: 36900440 PMCID: PMC10001211 DOI: 10.3390/foods12050923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The development of plant-based meat analogs is currently hindered by the beany flavor generated by raw soybean protein and extrusion processing. Wide concern has led to extensive research on the generation and control of this unwanted flavor, as an understanding of its formation in raw protein and extrusion processing and methods through which to control its retention and release are of great significance for obtaining ideal flavor and maximizing food quality. This study examines the formation of beany flavor during extrusion processing as well as the influence of interaction between soybean protein and beany flavor compounds on the retention and release of the undesirable flavor. This paper discusses ways to maximize control over the formation of beany flavor during the drying and storage of raw materials and methods to reduce beany flavor in products by adjusting extrusion parameters. The degree of interaction between soybean protein and beany compounds was found to be dependent on conditions such as heat treatment and ultrasonic treatment. Finally, future research directions are proposed and prospected. This paper thus provides a reference for the control of beany flavor during the processing, storage, and extrusion of soybean raw materials used in the fast-growing plant-based meat analog industry.
Collapse
Affiliation(s)
- Lingyu Yang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Tianyu Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan 056000, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence:
| | - Tianpeng Chen
- Shandong Gulin Food Technology Limited Company, Yantai 264010, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
15
|
He W, Han M, Bu Y, Zhu W, Li J, Li X. Flavor mechanism of micro-nanoparticles and correlation analysis between flavor substances in thermoultrasonic treated fishbone soup. ULTRASONICS SONOCHEMISTRY 2023; 93:106299. [PMID: 36652814 PMCID: PMC9853349 DOI: 10.1016/j.ultsonch.2023.106299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
To study the physicochemical properties of micro-nanoparticles (MNPs) in thermoultrasonic treated fishbone soup, it was subjected to ultra-filtration with a 100 kDa ultrafiltration membrane to obtain large MNPs (LMNPs) and small MNPs (SMNPs). LMNPs and SMNPs were treated with force-breakers, and the interactions of the MNPs with five characteristic volatile compounds were investigated. LMNPs covered most proteins (222.66 mg/mL) and fatty acids (363.76 mg/g), while SMNPs was mostly soluble small molecules with taste substances like total free amino acids (85.26 mg/g), organic acids (2.55 mg/mL), and 5'-nucleotides (169.17 mg/100 mL). The stability of LMNPs is significantly higher than raw bone soup, and SMNPs can exist stably in the solution. Correlation analysis between flavor substance content and flavor suggested that the overall flavor profile of halibut bone soup was closely related to the content changes of 72 significant influence variables. The binding of LMNPs to characteristic flavor compounds was largely affected by hydrophobic interactions, hydrogen bonds, and ionic effects. While the binding of SMNPs to characteristic flavor compounds was largely determined by hydrophobic interaction and hydrogen bonding. This study explores the characteristics of MNPs and provides the possibility to clarify the interaction mechanism between MNPs and flavor.
Collapse
Affiliation(s)
- Wei He
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Menglin Han
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
16
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
17
|
Basic Electrolyzed Water Coupled with Ultrasonic Treatment Improves the Functional Properties and Digestibility of Antarctic Krill Proteins. Food Res Int 2022; 162:112201. [DOI: 10.1016/j.foodres.2022.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
18
|
Shen SK, Bu QY, Yu WT, Chen YW, Liu FJ, Ding ZW, Mao JL. Interaction and binding mechanism of lipid oxidation products to sturgeon myofibrillar protein in low temperature vacuum heating conditions: Multispectroscopic and molecular docking approaches. Food Chem X 2022; 15:100389. [PMID: 36211750 PMCID: PMC9532714 DOI: 10.1016/j.fochx.2022.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
A comparative study of the effects of malondialdehyde and 4-hydroxy-2-nonenal on protein oxidation. Interaction mechanism between lipid oxidation production and protein at temperatures were firstly studied. Hydrogen bonding was the main driving force for bonding. Malondialdehyde had a strong ability to bind MP and accelerated protein oxidation.
In this work, the binding mechanism of myofibrillar protein (MP) with malondialdehyde and 4-hydroxy-2-nonenal under low temperature vacuum heating was investigated via multispectroscopic and molecular docking. The results showed that binding interaction and increasing temperature caused significant changes in the conformations as well as a decrease in the value of protein intrinsic fluorescence, surface hydrophobicity, and fluorescence excitation-emission matrix spectra. Furthermore, the decrease in α-helix and β-turn, increase in β-sheet and a random coil of MP, imply the MP molecules to be more unfolded. Isothermal titration calorimetry and molecular docking results showed that main driving force for binding with MP was hydrogen bond, and the binding ability of malondialdehyde was superior to that of 4-hydroxy-2-nonenal. Moreover, increasing the heating temperature was beneficial to the binding reaction and intensified the conformational transition of MP. These results will provide a reference for further studies on the lipid and protein interaction of sturgeon.
Collapse
|
19
|
Formation and release of cooked rice aroma. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Yang BW, Xu T, Liu Y, Zhao T, Xiao F, Lu BY. Impact of photosensitizers and light wavelength on photooxidation of phytosterols in soymilk emulsions. Food Res Int 2022; 158:111508. [DOI: 10.1016/j.foodres.2022.111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
|
21
|
Zhang Y, Hou R, Zhu B, Yin G, Zhang J, Zhao W, Zhang J, Li T, Zhang Z, Wang H, Li Z. Changes on the conformational and functional properties of soybean protein isolate induced by quercetin. Front Nutr 2022; 9:966750. [PMID: 35938098 PMCID: PMC9354261 DOI: 10.3389/fnut.2022.966750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The conformational changes and functional properties of SPI induced by quercetin was investigated via fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking. A decrease in the fluorescence intensity and a blue shift in the maximum wavelength were observed due to the binding process with fluorescent residues. The analysis of Stern-Volmer equation showed that the fluorescence quenching induced by quercetin took the form of static quenching, and the binding stoichiometry between SPI and quercetin was 1:1. The values of ΔH and ΔS were both positive illustrating that hydrophobic interaction was the primary binding force between quercetin and SPI. Results of FTIR and CD indicated that the binding with quercetin changed the secondary structure of SPI, resulting in a partially unfolded and more flexible structure. SDS-PAGE confirmed there was no covalent interaction between the two constituents. Molecular docking demonstrated that there were stable configurations and high matching degrees in both 11S and 7S proteins with quercetin via hydrogen bonds and hydrophobic interactions. Meanwhile, modification by quercetin enhanced the foaming and emulsifying capacities of SPI. These findings might provide theory reference for elucidation the mechanism of polyphenols-proteins interaction and development of related food additive products in future.
Collapse
Affiliation(s)
- Yating Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyang Hou
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangwei Yin
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqi Zhao
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junxi Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Taoran Li
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zifan Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Effect of Malondialdehyde on the Digestibility of Beef Myofibrillar Protein: Potential Mechanisms from Structure to Modification Site. Foods 2022; 11:foods11152176. [PMID: 35892761 PMCID: PMC9330876 DOI: 10.3390/foods11152176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid oxidation and protein oxidation occur side by side in meat. Here, the effect of malondialdehyde (MDA), the major product of lipid oxidation, on the digestibility of beef myofibrillar proteins (MP) was studied. MP samples were incubated with 0, 0.1, 0.3, 0.5, and 0.7 mM MDA at 4 °C for 12 h and then subjected to in vitro gastrointestinal digestion. The result showed that MDA remarkably reduced the digestibility of MP (p < 0.05). MDA treatments significantly increased carbonyl and Schiff base contents in MP (p < 0.05). The microstructure observed by atomic force microscopy showed that MDA treatments resulted in the aggregation of MP. Non-reducing and reducing electrophoresis suggested the aggregation was mainly caused by covalent bonds including disulfide bond and carbonyl−amine bond. Proteomics analysis proved that the myosin tail was the main target of MDA attack, meanwhile, lysine residues were the major modification sites. Taken together, the above results imply that MDA induces protein oxidation, aggregation, and blockage of hydrolysis sites, consequently leading to the decrease in both gastric and gastrointestinal digestibility of MP.
Collapse
|
23
|
Guo J, Zeng M, Chen J. Binding of Dual‐flavor Compounds by Soy Protein Isolate in Aqueous Model Systems. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Guo
- College of Biology and Food science Suzhou University Suzhou 234000 PR China
- State Key Laboratory of Food Science and Technology JiangNan University Wuxi 214122 Jiangsu PR China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 PR China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology JiangNan University Wuxi 214122 Jiangsu PR China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 PR China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology JiangNan University Wuxi 214122 Jiangsu PR China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 PR China
| |
Collapse
|
24
|
Wang N, Hu L, Guo X, Zhao Y, Deng X, Lei Y, Zhang L, Zhang J. Effects of malondialdehyde on the protein oxidation and protein degradation of Coregonus Peled myofibrillar protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Du C, Qi J, Yang C, Zhang Q, Liu D. Enrichment of taste and aroma perceptions in chicken meat stewed in braised soup used repeatedly. J Food Sci 2022; 87:2563-2577. [PMID: 35584965 DOI: 10.1111/1750-3841.16180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Flavor enrichment of sauce-braised chicken creates a popular umami taste and aroma. In order to preliminarily reveal the enrichment of taste and aroma compounds of sauce-braised meat products processed with braised soup used repeatedly, the system containing only chicken and chicken soup was designed to simulate the process of repeated stewing. Free amino acids, 5-nucleotides, fatty acids, and volatile compounds in stewed chicken were determined, and taste and aroma profiles were evaluated using an electronic tongue (E-tongue) and an electronic nose (E-nose), respectively. As repeated stewing times increased, the total free amino acid content increased from 514.37 mg/100 g to 721.33 mg/100 g, and the contents of 5'-inosine monophosphate, 5'-guanosine monophosphate, and 5'-adenosine monophosphate increased by approximately 20%. Meanwhile, the relative content of saturated fatty acids increased, and the relative content of monounsaturated fatty acids decreased significantly. Oleic acid, linoleic acid, and palmitoleic acid accounted for more than 80% of the total fatty acid content. A total of 15 aroma-active compounds were identified during repeated stewing, and their concentrations increased by more than 40%, especially for monounsaturated alkenals. Within 10 times of repeated stewing, the taste and aroma compounds were enriched because of a decrease in the concentration difference of taste substances and an increase in the flavor-adsorption capacity of fat, which was also consistent with the results from the E-nose and E-tongue. The taste and aroma of stewed chicken tended to remain constant after 10 times of repeated stewing of braised soup. The obtained information can provide guidelines for regulating the aroma and taste of sauce-braised chicken. PRACTICAL APPLICATION: The fat level of stewed chicken and the difference in concentration between stewed meat and braised soup were important potential factors that could be employed to enhance the flavor of stewed meat.
Collapse
Affiliation(s)
- Chao Du
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Qi
- College of Food Science and Technology, Bohai University, Jinzhou, China.,Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cong Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Qingyong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Chen Y, Liang Y, Tian X, Wang X, Liu H, Jia F, Zhang X, Wang J. Effect of oil oxidation on aggregation of wheat gluten–peanut oil complexes during extrusion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Chen
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Ying Liang
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Xiaoling Tian
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Xiaohua Wang
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Hao Liu
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Feng Jia
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Xia Zhang
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Jinshui Wang
- College of Biological Engineering Henan University of Technology Zhengzhou China
| |
Collapse
|
27
|
Molecular docking simulation combining with multi-spectroscopy techniques clarify how small molecule ligands bind to biomacromolecule: Myosin and aldehydes as a case study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Liu C, Li W, Lin B, Yi S, Ye B, Mi H, Li J, Wang J, Li X. Effects of ozone water rinsing on protein oxidation, color, and aroma characteristics of grass carp (
Ctenopharyngodon idellus
) surimi. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cikun Liu
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi, Jiangsu China
| | - Wenxie Li
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Boyan Lin
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Shumin Yi
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Beibei Ye
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Hongbo Mi
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Jianrong Li
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Jinxiang Wang
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| | - Xuepeng Li
- National R & D Branch Centre for Surimi and Surimi Products Processing College of Food Science and Technology Bohai University Jinzhou China
| |
Collapse
|
29
|
Li F, Wu X, Wu W. Effects of protein oxidation induced by rice bran rancidity on the structure and functionality of rice bran glutelin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
The effect of linalool, limonene and sabinene on the thermal stability and structure of rabbit meat myofibrillar protein under malondialdehyde-induced oxidative stress. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Effect of deacetylated konjac glucomannan on heat-induced structural changes and flavor binding ability of fish myosin. Food Chem 2021; 365:130540. [PMID: 34256229 DOI: 10.1016/j.foodchem.2021.130540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022]
Abstract
This work investigated the effects of deacetylated konjac glucomannan (DKGM) on heat-induced structural changes and flavor binding in bighead carp myosin. DKGM could cross-link with fish myosin to form a thermostable complex and improve the gel strength of myosin. The incorporation of DKGM increased the surface hydrophobicity and total sulfhydryl content of heat-induced myosin. Increasing DKGM concentrations resulted in a decrease in the absolute zeta potential and a continuous increase in particle size. DKGM addition significantly reduced the α-helical content of myosin with a concomitant increase in β-sheet, β-turn, and random coil content. The binding abilities of myosin to flavors were significantly enhanced by increasing amounts of DKGM, attributing to the accelerative unfolding of myosin secondary structures and the exposure of additional hydrophobic and thiol binding sites. Increased numbers of available hydroxyl groups after DKGM treatment could also cause an increase of flavor adsorption by hydrogen bonding.
Collapse
|
32
|
Wang B, Zhang Q, Zhang N, Bak KH, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Wang C, Yin H, Zhao Y, Zheng Y, Xu X, Yue J. Optimization of High Hydrostatic Pressure Treatments on Soybean Protein Isolate to Improve Its Functionality and Evaluation of Its Application in Yogurt. Foods 2021; 10:foods10030667. [PMID: 33804726 PMCID: PMC8003865 DOI: 10.3390/foods10030667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
This work aimed to improve the functional properties of soybean protein isolate (SPI) by high hydrostatic pressure (HHP) and develop SPI incorporated yogurt. Response surface methodology (RSM) was used to optimize the HHP treatment parameters, including pressure, holding time, and the ratio of SPI/water. Water holding capacity, emulsifying activity index, solubility, and hardness of SPI gels were evaluated as response variables. The optimized HPP treatment conditions were 281 MPa of pressure, 18.92 min of holding time, and 1:8.33 of SPI/water ratio. Water and oil holding capacity, emulsifying activity, and stability of SPI at different pH were improved. Additionally, relative lipoxygenase (LOX) activity of HHP treated SPI (HHP-SPI) was decreased 67.55 ± 5.73%, but sulphydryl group content of HHP-SPI was increased 12.77%, respectively. When incorporating 8% of SPI and HHP-SPI into yogurt, the water holding capacity and rheological properties of yogurt were improved in comparison with yogurt made of milk powders. Moreover, HHP-SPI incorporated yogurt appeared better color and flavor.
Collapse
Affiliation(s)
- Chenxiao Wang
- Bor S. Luh Food Safety Research Center, SJTU-OSU Innovation Center for Environmental Sustainability, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China; (C.W.); (H.Y.); (Y.Z.)
| | - Hao Yin
- Bor S. Luh Food Safety Research Center, SJTU-OSU Innovation Center for Environmental Sustainability, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China; (C.W.); (H.Y.); (Y.Z.)
| | - Yanyun Zhao
- Bor S. Luh Food Safety Research Center, SJTU-OSU Innovation Center for Environmental Sustainability, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China; (C.W.); (H.Y.); (Y.Z.)
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, USA
| | - Yan Zheng
- Wilmar Global Research and Development Centre, No. 118 Gaodong Rd., Shanghai 200137, China; (Y.Z.); (X.X.)
| | - Xuebing Xu
- Wilmar Global Research and Development Centre, No. 118 Gaodong Rd., Shanghai 200137, China; (Y.Z.); (X.X.)
| | - Jin Yue
- Bor S. Luh Food Safety Research Center, SJTU-OSU Innovation Center for Environmental Sustainability, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China; (C.W.); (H.Y.); (Y.Z.)
- Correspondence: ; Tel.: +86-021-3420-5868
| |
Collapse
|
35
|
Chen J, Zhao J, Kong B, Chen Q, Liu Q, Liu C. Comparative Study of Oxidative Structural Modifications of Unadsorbed and Adsorbed Proteins in Whey Protein Isolate-Stabilized Oil-in-Water Emulsions under the Stress of Primary and Secondary Lipid Oxidation Products. Foods 2021; 10:593. [PMID: 33799885 PMCID: PMC7999650 DOI: 10.3390/foods10030593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023] Open
Abstract
The impact of typical primary or secondary lipid oxidation (LPO) products, selected as linoleic acid 13-hydroperoxide (13-HPODE) and malondialdehyde (MDA), on the structural modification of unadsorbed or adsorbed proteins in whey protein isolate (WPI)-stabilized oil-in-water (O/W) emulsions during storage up to 48 h at 37 °C in the dark was investigated. The results showed that either 13-HPODE and MDA could lead to structural modifications of unadsorbed or adsorbed proteins with a concentration-dependent manner and time relationship, respectively. Moreover, higher levels of MDA rendered a higher degree of oxidative modifications of WPI than 13-HPODE, indicated by the higher protein carbonyl contents and N'-formyl-L-kynurenine (NFK) and lower fluorescence intensity. Additionally, adsorbed proteins were more easily oxidized by LPO products than unadsorbed proteins. Overall, our results indicated that the formation of secondary LPO products and the protein position were crucial factors to increase the degree of oxidative modifications of WPI in O/W emulsion systems.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.C.); (B.K.); (Q.C.)
| | - Jinhai Zhao
- Institute for Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China;
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.C.); (B.K.); (Q.C.)
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.C.); (B.K.); (Q.C.)
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.C.); (B.K.); (Q.C.)
- National Dairy Engineering & Technology Research Center, Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| | - Chengguo Liu
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
36
|
Xu L, Xia Q, Cao J, He J, Zhou C, Guo Y, Pan D. Ultrasonic effects on the headspace volatilome and protein isolate microstructure of duck liver, as well as their potential correlation mechanism. ULTRASONICS SONOCHEMISTRY 2021; 71:105358. [PMID: 33068842 PMCID: PMC7786588 DOI: 10.1016/j.ultsonch.2020.105358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
In spite of the high added value and tremendous output from duck processing industries, duck liver (DLv) is underutilized and a major factor is related to its prominent off-flavor perception which hampers the consumption and processing attributes. This work was designed to investigate the impact of low-frequency ultrasound (US) pretreatments on the headspace volatilome evolution of DLv and its isolated protein (DLvP) microstructure, aiming at exploring the potential of US technology to inhibit off-flavor perception and possible mechanisms behind. Results suggested that US pretreatment resulted in decreased lipid oxidation and off-flavor perception, simultaneously without significantly causing physicochemical influence including texture, pH and color. US induced obvious tertiary structural changes of DLvP, as revealed by the intrinsic fluorescence and surface hydrophobicity (H0), whereas the SH, S-S, secondary structure and molecular weight of DLvP remained unaffected, suggesting the presence of molten globule state (MG-state) under ultrasonic conditions. Besides, the headspace contents of flavor compounds, mainly aldehydes and alcohols, were significantly decreased whereas acids were increased. Multivariate analysis suggested an obvious US-induced effect on the volatilome evolution of DLv samples. Discriminant analysis recognized the aroma compounds including aldehydes and alkenals as the major contributors leading to the change of olfactory characteristics of DLv after ultrasonic treatment. Correlation analysis demonstrated the positive relationship between the volatile markers variation and the increased H0 values, a characteristic attribute of MG-state protein. The results obtained in this work suggested that US technology matched with suitable parameters could be a very promising approach to modulate the off-flavor perception of liver products by altering DLvP conformation.
Collapse
Affiliation(s)
- Le Xu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Jun He
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
37
|
Li Y, Zeng QH, Liu G, Peng Z, Wang Y, Zhu Y, Liu H, Zhao Y, Jing Wang J. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins. ULTRASONICS SONOCHEMISTRY 2021; 71:105364. [PMID: 33125962 PMCID: PMC7786555 DOI: 10.1016/j.ultsonch.2020.105364] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/05/2020] [Accepted: 10/02/2020] [Indexed: 05/24/2023]
Abstract
A novel protein extraction method of ultrasound-assisted basic electrolyzed water (BEW) was proposed, and its effects on the structural and functional properties of Antarctic krill proteins were investigated. Results showed that BEW reduced 30.9% (w/w) NaOH consumption for the extraction of krill proteins, and its negative redox potential (-800 ~ -900 mV) protected the active groups (carbonyl, free sulfhydryl, etc.) of the proteins from oxidation compared to deionized water (DW). Moreover, the ultrasound-assisted BEW increased the extraction yield (9.4%), improved the solubility (8.5%), reduced the particle size (57 nm), favored the transition of α-helix and β-turn to β-sheet, promoted the surface hydrophobicity and disulfide bonds formation of krill proteins when compared to BEW without ultrasound. These changes contributed to the enhanced foam capacity, foam stability and emulsifying capacity of the krill proteins. Notably, all the physicochemical, structural and functional properties of the krill proteins were comparable to those extracted by the traditional ultrasound-assisted DW. This study suggests that the ultrasound-assisted BEW can be a potential candidate to extract proteins, especially offering an alternative way to produce marine proteins with high nutritional quality.
Collapse
Affiliation(s)
- Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue H9X 3 V9, Canada
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China.
| |
Collapse
|
38
|
Zhu Z, Mao X, Wu Q, Zhang J, Deng X. Effects of oxidative modification of peroxyl radicals on the structure and foamability of chickpea protein isolates. J Food Sci 2021; 86:824-833. [PMID: 33586780 DOI: 10.1111/1750-3841.15643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 01/20/2023]
Abstract
A chickpea protein isolate (CPI) was oxidized using peroxyl radicals derived from 2,2'-azobis (2-amidopropane) dihydrochloride (AAPH), and the structural and foaming properties of the oxidized CPI were evaluated. The oxidation degree of protein was determined by measuring carbonyl content, dimer tyrosine content, free thiol content, and total thiol content. The structural changes of oxidized protein were evaluated by surface hydrophobicity, endogenous fluorescence intensity, Fourier transform infrared spectroscopy, SDS-PAGE, and amino acid content changes. Compared with the control group (0 mmol/L AAPH), moderate oxidation (0.04 mmol/L AAPH) led to the formation of a soluble protein with flexibility, which could improve the foaming properties of the protein (foaming capacity and stability increased by 25.50% and 6.38%, respectively). Over-oxidized (25 mmol/L AAPH) protein exhibited improved foaming capability, but its foam stability was reduced owing to the formation of insoluble aggregates. The results indicate that oxidation can change protein conformation, and the protein structure can affect the foamability of the CPI. PRACTICAL APPLICATION: CPI is a protein supplement food. Protein oxidation can occur during processing and storage, thereby affecting protein function. In this study, we evaluated how peroxy free radicals affect the structure, solubility and foaming properties of CPI, and clarified the mechanism between them. It has been found that peroxy free radicals can accelerate the oxidation of proteins and have a significant effect on foaming. Therefore, the degree of oxidation should be controlled to improve the quality of CPI.
Collapse
Affiliation(s)
- Zengfang Zhu
- Food College, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Xiaoying Mao
- Food College, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Qingzhi Wu
- Food College, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Jian Zhang
- Food College, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Xiaorong Deng
- Food College, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| |
Collapse
|
39
|
Gelatin enhances the flavor of chicken broth: A perspective on the ability of emulsions to bind volatile compounds. Food Chem 2020; 333:127463. [DOI: 10.1016/j.foodchem.2020.127463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/19/2022]
|
40
|
Zhao J, Su G, Chen C, Sun X, Sun W, Zhao M. Physicochemical and Structural Characteristics of Soybean Protein Isolates Induced by Lipoxygenase-Catalyzed Linoleic Acid Oxidation during In Vitro Gastric Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12384-12392. [PMID: 33079529 DOI: 10.1021/acs.jafc.0c02098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of oxidation on the gastric digestion properties of soybean protein isolates (SPIs) in a model of lipoxygenase (LOX)-catalyzed linoleic acid (LA) oxidation system and the multiscale structural characterization of SPI hydrolysate were investigated. Results indicated that the feature of SPI hydrolysate is dependent upon the degree of oxidation. Pepsin hydrolysis caused a red shift in fluorescence intensity and a reduction in surface hydrophobicity and diminished the particle size of SPI hydrolysate during gastric digestion. Compared with the control, mild oxidation was beneficial to protein unfolding and gastric digestibility, as manifested by minimal molecular weight (MW) distribution >50 kDa (32.34%) and smaller peptide fragments under scanning electron microscopy. However, severe oxidation brought about 39.47% loss of free amino acids. It was interesting to find that glycinin was more vulnerable to pepsin hydrolysis after oxidation as compared to the native SPI. Overall, the moderately oxidized SPI appeared to be digested to a greater extent.
Collapse
Affiliation(s)
- Jie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Chong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xixun Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|
41
|
Vandemoortele A, Simon M, Claes A, De Meulenaer B. Behavior of Hexanal, ( E)-Hex-2-enal, 4-Hydroxyhex-2-enal, and 4-Hydroxynon-2-enal in Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11568-11577. [PMID: 32924473 DOI: 10.1021/acs.jafc.0c04060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reactivity of hexanal, (E)-hex-2-enal, 4-hydroxyhex-2-enal, and 4-hydroxynon-2-enal in oil-in-water emulsions and their respective compartments, in the presence and absence of protein, was studied at 40 °C. In aqueous buffer, hexanal oxidized to hexanoic acid. In the presence of protein, an additional loss occurred, presumably as a result of adduct formation with cysteine. Similarly, (E)-hex-2-enal oxidized to (E)-hex-2-enoic acid in aqueous buffer, and the results suggested that this acid is also able to form adducts with proteins. 4-Hydroxyalk-2-enals showed the highest reactivity in all models evaluated. Especially in protein-containing systems, they were not detectable anymore or their initial concentration was seriously reduced. 4-Hydroxynon-2-enal was the most reactive of the substances studied. The reactivity of the aldehydes was influenced by their partition within emulsions, which was remarkably not correlated with their hydrophobicity. These findings need to be considered when using these aldehydes as lipid oxidation markers in foods.
Collapse
Affiliation(s)
- Angelique Vandemoortele
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Marie Simon
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Arnaud Claes
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
42
|
Xu Y, Wang R, Zhao H, Yin Y, Li X, Yi S, Li J. Effect of heat treatment duration on the interaction between fish myosin and selected flavor compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4457-4463. [PMID: 32399966 DOI: 10.1002/jsfa.10486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Interactions between flavor compounds and proteins during food processing are critical to flavor perception of the final product. Here, we investigated the effect of the duration of heat treatment on the interaction between bighead carp myosin and selected flavor compounds including hexanal, heptanal, octanal, nonanal, (E)-2-heptenal, and 1-octen-3-ol. RESULTS The binding of flavor compounds to native myosin was strong and decreased in the order nonanal > octanal > (E)-2-heptenal > heptanal > hexanal >1-octen-3-ol. The aldehydes, especially trans-2-undecenal, were more conducive to hydrophobic binding to myosin than alcohols. Within the initial 5 min of heating, the surface hydrophobicity and total sulfhydryl exposure increased, while α-helix turned into β-sheets, β-turns, and random coils. However, upon further heating, the hydrophobicity and sulfhydryl contents declined, β-sheets, β-turns and random coils shifted to α-helix. Throughout the heating process, the particle size increased, and the absolute zeta potential decreased continuously, indicating that thermal aggregation of myosin occurred simultaneously. Changes in binding capacities of flavor compounds to myosin were consistent with changes in hydrophobicity and sulfhydryl contents. CONCLUSION The initial enhancement of the flavor-binding capacity of myosin was attributed to the unfolding of secondary structures by exposing more hydrophobic bonding sites and hydrogen bonding sites. The rebuilding and aggregating of myosin was enhanced upon prolonged heating, thus favoring hydrophobic protein-protein interactions and weakening the resultant flavor binding capacity of myosin.
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Rui Wang
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yiming Yin
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| |
Collapse
|
43
|
Impact of heating treatments on physical stability and lipid-protein co-oxidation in oil-in-water emulsion prepared with soy protein isolates. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Guo J, He Z, Wu S, Zeng M, Chen J. Effects of concentration of flavor compounds on interaction between soy protein isolate and flavor compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105388] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Zhao J, Su G, Zhao M, Sun W. Physicochemical Changes and in Vitro Gastric Digestion of Modified Soybean Protein Induced by Lipoxygenase Catalyzed Linoleic Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13978-13985. [PMID: 31757126 DOI: 10.1021/acs.jafc.9b05843] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein oxidation results in structural modification which affects its digestion. The objective of this work was to investigate the influence of lipoxygenases (LOX) catalyzed linoleic acid (LA) oxidation on the structure and in vitro gastric digests of soybean protein isolate (SPI). Fluorescence recovery after photobleaching (FRAP) was used to evaluate the relationship between pepsin diffusion and gastric digestion. Results indicated that oxidation induced carbonyl formation and loss of free sulfhydryl. Increased surface hydrophobicity and zeta-potential verified the protein unfolding and thus resulted in a small particle size and low fluorescence intensity. Fourier transform infrared spectroscopy (FTIR) showed that oxidation caused the increases in β-sheets mostly at the expense of α-helix and random coils. Fluorescein isothiocyanate (FITC)-pepsin in SPI solution modified with 3 mL LA showed a faster diffusion rate with 80.51 μm2/s as well as a higher DH value of 9.11%, showing that pepsin diffusivity might play an important role in protein gastric digestion.
Collapse
Affiliation(s)
- Jie Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510641 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510641 , China
| | - Weizheng Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510641 , China
| |
Collapse
|
46
|
Cai L, Brennan CS, Yang H, Li W, Zhao H. Evolution of oxidative and structural characteristics of proteins, especially lipid transfer protein 1 (LTP1) in beer during forced‐ageing. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linfei Cai
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln7464Canterbury New Zealand
| | - Huirong Yang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wanying Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Haifeng Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
47
|
Li F, Wu X, Wu W. Effects of malondialdehyde‐induced protein oxidation on the structural characteristics of rice protein. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fang Li
- College of Food Science and Engineering Central South University of Forestry and Technology 498 South Shaoshan Road Changsha Hunan 410004 China
- National Engineering Laboratory for Rice and By‐product Deep Processing 498 South Shaoshan Road Changsha Hunan 410004 China
| | - Xiao‐Juan Wu
- College of Food Science and Engineering Central South University of Forestry and Technology 498 South Shaoshan Road Changsha Hunan 410004 China
- National Engineering Laboratory for Rice and By‐product Deep Processing 498 South Shaoshan Road Changsha Hunan 410004 China
| | - Wei Wu
- College of Food Science and Engineering Central South University of Forestry and Technology 498 South Shaoshan Road Changsha Hunan 410004 China
- National Engineering Laboratory for Rice and By‐product Deep Processing 498 South Shaoshan Road Changsha Hunan 410004 China
| |
Collapse
|
48
|
Niu X, Wang X, Han Y, Lu C, Chen X, Wang T, Xu M, Zhu Q. Influence of malondialdehyde-induced modifications on physicochemical and digestibility characteristics of whey protein isolate. J Food Biochem 2019; 43:e13041. [PMID: 31502294 DOI: 10.1111/jfbc.13041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Impacts of lipid oxidation product malondialdehyde (MDA) on the properties of whey protein isolate (WPI) were investigated in this study. The incorporation of MDA into WPI promoted the formation of protein carbonyls, with the significant loss of protein sulfhydryls, impaired intrinsic fluorescence, and increased protein surface hydrophobicity. The visualized band profiles revealed by gel electrophoresis and immunoblotting suggested that WPI's main components β-lactoglobulin and α-lactalbumin were the targets of MDA, and the derivatives of MDA were involved in protein cross-linking and aggregation at higher molecular weights. Abnormal protein aggregation was further confirmed by scanning electron microscopy analysis of the surface microstructure of MDA-modified WPI. Finally, in vitro digestibility assay indicated that the modification of MDA reduced WPI's susceptibility to digestive enzymes. The present study demonstrated that the contribution of MDA to protein modification in dairy products can be substantial in complex foodstuffs composed of lipids and proteins. PRACTICAL APPLICATIONS: The present work enhanced our knowledge on the remarkable susceptibility of dairy product WPI to lipid oxidation product MDA. With the trend of application of highly unsaturated fatty acids such as fish oil or alga oils as functional ingredients in dairy products, it is obvious that apart from monitoring lipid oxidation products, the resultant changes in dietary proteins deserve more attention. The food industry must be aware of the importance of appropriate preventive measures in minimizing the negative effects of lipid oxidation products on dairy products.
Collapse
Affiliation(s)
- Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yating Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Cairu Lu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiaoqiao Chen
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Taoyan Wang
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Maojun Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
49
|
Xu Y, Zhao J, Wang R, Li X, Mi H, Li J. Effect of heat treatment on the binding of selected flavor compounds to myofibrillar proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5028-5034. [PMID: 30989657 DOI: 10.1002/jsfa.9744] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The influence of heat-induced structural modifications of grass carp myofibrillar protein (MP) on its ability to bind to selected aldehydes (hexanal, heptanal, octanal and nonanal) was investigated. The interactions of MP and flavor compounds were investigated using HS-GC-MS, intrinsic fluorescence spectra, Raman spectra, SDS-PAGE, turbidity, total sulfhydryl content and surface hydrophobicity. RESULTS The ability to bind to aldehydes was strongly influenced by changes in the structure and surface of proteins during the heating process (0-30 min). During the first 0-10 min of heating, the flavor-binding ability increased, which is likely attributable to increased surface hydrophobicity and total sulfhydryl content, and to the unfolding of secondary structures of MP by exposure to reactive amino acids, sulfhydryl groups and hydrophobic bonding sites. Nevertheless, lengthy heating (>10 min) caused protein refolding and accelerated aggregation of protein, thus reducing hydrophobic interactions and weakening the resultant capacity of MP to bind to flavor compounds. CONCLUSION The results suggested that hydrophobic interactions were enhanced upon short-term heating, whereas long-term heating weakend them. The results provide information concerning improvement of the flavor profile of freshwater fish surimi products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science and Engineering, National R&D Branch Center of Surimi and Surimi Products Processing, Bohai University, Jinzhou, China
| | - Jiamei Zhao
- College of Food Science and Engineering, National R&D Branch Center of Surimi and Surimi Products Processing, Bohai University, Jinzhou, China
| | - Rui Wang
- College of Food Science and Engineering, National R&D Branch Center of Surimi and Surimi Products Processing, Bohai University, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Engineering, National R&D Branch Center of Surimi and Surimi Products Processing, Bohai University, Jinzhou, China
| | - Hongbo Mi
- College of Food Science and Engineering, National R&D Branch Center of Surimi and Surimi Products Processing, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science and Engineering, National R&D Branch Center of Surimi and Surimi Products Processing, Bohai University, Jinzhou, China
| |
Collapse
|
50
|
Lan Y, Xu M, Ohm JB, Chen B, Rao J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem 2019; 278:665-673. [DOI: 10.1016/j.foodchem.2018.11.074] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|