1
|
Chaudhary K, Khalid S, Altemimi AB, Abrar S, Ansar S, Aslam N, Hussain M, Aadil RM. Advances in non-thermal technologies: A revolutionary approach to controlling microbial deterioration, enzymatic activity, and maintaining other quality parameters of fresh stone fruits and their processed products. Food Chem 2024; 464:141825. [PMID: 39504893 DOI: 10.1016/j.foodchem.2024.141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Stone fruits and their processed products are highly valued in the whole world for their flavor, aroma, rich nutritional contents, and various health benefits. While large quantities of stone fruits are produced globally, significant losses occur due to improper handling and storage, from production to consumption. This review focuses on the application of advanced non-thermal treatment techniques for whole fresh stone fruits and their processed products. It provides a comprehensive assessment of the factors contributing to spoilage, along with the mechanisms, applications, and limitations of non-thermal techniques in reducing spoilage. Compared to traditional preservation methods, such as the use of artificial food additives, chemicals, thermal treatments, and low-temperature storage, these novel techniques demonstrate better results in minimizing spoilage. Moreover, non-thermal techniques are most sustainable and eco-friendly, as they reduce energy consumption, minimize chemical use, and generate less waste than traditional methods.
Collapse
Affiliation(s)
- Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Saqib Abrar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| |
Collapse
|
2
|
Liu Y, Liu B, Luo K, Yu B, Li X, Zeng J, Chen J, Xia R, Xu J, Liu Y. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo. BMC PLANT BIOLOGY 2024; 24:396. [PMID: 38745125 PMCID: PMC11092110 DOI: 10.1186/s12870-024-05102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.
Collapse
Affiliation(s)
- Yujia Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Boting Liu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Kefa Luo
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Baiyin Yu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Xiang Li
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jian Zeng
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanlong Liu
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region, Shaoguan University, Shaoguan, Guangdong, 512005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Liu X, Ma Y, Liu L, Zeng M. Effects of high hydrostatic pressure on conformation and IgG binding capacity of tropomyosin in Pacific oyster (Crassostrea gigas). Food Chem 2023; 404:134595. [DOI: 10.1016/j.foodchem.2022.134595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
4
|
Yuan L, Xu F, Xu Y, Wu J, Lao F. Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure. Molecules 2022; 27:molecules27196506. [PMID: 36235043 PMCID: PMC9571789 DOI: 10.3390/molecules27196506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Marinated vegetables are traditional cold dishes with a long history and special flavor in the Chinese deli market. However, the traditional thermal-and-soaking (TS) procedure often results in unreproducible flavor quality properties of marinated vegetables and waste of brine and time in production. A novel green and sustainable technique, high-pressure processing (HPP), has caught the attention of the food industry. In this study, the effects of HPP and TS treatment on the visual, flavor, textural, and microbiological qualities of Chinese marinated lotus root slices were investigated. Compared to the TS products, lighter color, more varieties of volatile compounds, and crunchier texture were detected in the HPP products. Throughout the 4 °C, 25 °C, and 45 °C shelf life challenges, the HPP products retained their original color and crunchiness better than the TS ones, whereas no significant differences were found in total viable counts (TVCs) in the first half of the shelf lives. The Arrhenius model under the first-order reaction of TVC deterioration showed a good fit to the shelf life of the HPP marinated lotus root slices. This study demonstrates that HPP may assist in making the best use of brine in a more time-efficient manner to improve the visual, flavor, and textural quality of traditional Chinese marinated lotus root slices.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
| | - Feifei Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Yingying Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-010-62737464
| |
Collapse
|
5
|
Wu YJ, Lu YC, Wu YH, Lin YH, Hsu CL, Wang CY. Effects of high-pressure processing on the physicochemical properties and glycemic index of fruit puree in a hyperglycemia mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6138-6145. [PMID: 35478405 DOI: 10.1002/jsfa.11967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, the duration of high-pressure processing (HPP) required to achieve a 5 log reduction of Escherichia coli O157:H7 in fruit purees was evaluated. Banana, cantaloupe, and dragon fruit purees were subjected to HPP at 600 MPa for 300, 270, and 270 s, respectively, and their physicochemical properties and enzyme activities were then analysed. Diabetic mice were fed fresh and HPP-treated purees to observe their effects on the glycemic index (GI) and postprandial blood glucose response. RESULTS Compared with their fresh counterparts, the HPP-treated banana and dragon fruit purees exhibited significantly higher viscosities, lower glucose concentrations, and higher glucose dialysis retardation indices and showed disrupted sucrose invertase and polygalacturonase activities. The GI and postprandial blood glucose response were not significantly different between the fresh and HPP-treated cantaloupe purees. By contrast, the peak time of glucose response (Tmax ) was delayed from 30 min to 60 min, and the area under the receiver operating characteristic curve was reduced by 40% in the mice fed HPP-treated banana and dragon fruit purees. The GIs of the HPP-treated banana and dragon fruit purees (were 50.3 and 44.8, respectively) were significantly lower than those of their fresh counterparts (85.1 and 75.2, respectively). CONCLUSION HPP can change the physicochemical properties of fruit purees, resulting in stabilized blood glucose levels and lower GIs after consumption. Therefore, purees processed in this manner would benefit consumers and patients with diabetes/pre-diabetes who need to maintain stable blood glucose levels (Fig. S1). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Jing Wu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yi-Ching Lu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Wu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yan-Han Lin
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| |
Collapse
|