1
|
Das J, Mishra HN. A comprehensive review of the spoilage of shrimp and advances in various indicators/sensors for shrimp spoilage monitoring. Food Res Int 2023; 173:113270. [PMID: 37803582 DOI: 10.1016/j.foodres.2023.113270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Shrimp is a popular internationally traded shellfish due to its unique taste, texture, and nutritional value. Shrimp is highly perishable because it has enough free amino acids, high moisture levels, non-nitrogenous compounds used for microbial growth, and melanosis. Shrimp spoilage after death is caused by various reasons, like autolysis (endogenous proteinases actions during shrimp storage), growth of spoilage microorganisms, ATP degradation, melanin formation, and lipid peroxidation. A microbial byproduct, total volatile basic nitrogen, is one of the major reasons for the generation of foul odors from shrimp spoilage. Shrimp freshness monitoring is crucial for market sellers and exporters. Traditional methods for estimating shrimp freshness are expensive and inaccessible to the general public. Sensors are rapid, sensitive, selective, and portable food toxins' detection tools, devoid of expensive instruments, skilled people, sample pretreatment, and a long detection time. This review addresses shrimp spoilage causes. The mechanisms of different stages of shrimp spoilage after death, like rigor mortis, dissolution of rigor mortis, autolysis, and microbial spoilage mechanisms, are discussed. This review highlights the last five years' advances in shrimp freshness detection sensors and indicators like colorimetric pH indicators, fluorescence sensors, electronic noses, and biosensors, their working principles, and their sensitivities. Commercially available indicators and sensors for shrimp spoilage monitoring are also discussed. A review highlighting the applications of the different sensors and indicators for monitoring shrimp freshness is unavailable to date. Challenges and future perspectives in this field are explained at the end.
Collapse
Affiliation(s)
- Joyati Das
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Putri LA, Rahman I, Puspita M, Hidayat SN, Dharmawan AB, Rianjanu A, Wibirama S, Roto R, Triyana K, Wasisto HS. Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication. NPJ Sci Food 2023; 7:31. [PMID: 37328497 DOI: 10.1038/s41538-023-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Authentication of meat floss origin has been highly critical for its consumers due to existing potential risks of having allergic diseases or religion perspective related to pork-containing foods. Herein, we developed and assessed a compact portable electronic nose (e-nose) comprising gas sensor array and supervised machine learning with a window time slicing method to sniff and to classify different meat floss products. We evaluated four different supervised learning methods for data classification (i.e., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors (k-NN), and random forest (RF)). Among them, an LDA model equipped with five-window-extracted feature yielded the highest accuracy values of >99% for both validation and testing data in discriminating beef, chicken, and pork flosses. The obtained e-nose results were correlated and confirmed with the spectral data from Fourier-transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) measurements. We found that beef and chicken had similar compound groups (i.e., hydrocarbons and alcohol). Meanwhile, aldehyde compounds (e.g., dodecanal and 9-octadecanal) were found to be dominant in pork products. Based on its performance evaluation, the developed e-nose system shows promising results in food authenticity testing, which paves the way for ubiquitously detecting deception and food fraud attempts.
Collapse
Affiliation(s)
- Linda Ardita Putri
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
| | - Iman Rahman
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
| | - Mayumi Puspita
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
- Indonesian Oil Palm Research Institute, Jalan Taman Kencana No 1, Bogor, 16128, Indonesia
| | | | - Agus Budi Dharmawan
- PT Nanosense Instrument Indonesia, Yogyakarta, 55167, Indonesia
- Faculty of Information Technology, Universitas Tarumanagara, Jl. Letjen S. Parman No. 1, Jakarta, 11440, Indonesia
| | - Aditya Rianjanu
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung, 35365, Indonesia
| | - Sunu Wibirama
- Department of Electrical and Information Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta, 55281, Indonesia
| | - Roto Roto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia
| | - Kuwat Triyana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta, 55281, Indonesia.
- Institute of Halal Industry and System (IHIS), Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia.
| | | |
Collapse
|
3
|
Davis D, Narayanan SK, Ajeev A, Nair J, Jeeji J, Vijayan A, Viyyur Kuttyadi M, Nelliparambil Sathian A, Arulraj AK. Flexible Paper-Based Room-Temperature Acetone Sensors with Ultrafast Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37075219 DOI: 10.1021/acsami.2c21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Paper-based lightweight, degradable, low-cost, and eco-friendly substrates are extensively used in wearable biosensor applications, albeit to a lesser extent in sensing acetone and other gas-phase analytes. Generally, rigid substrates with heaters have been employed to develop acetone sensors due to the high operating/recovery temperature (typically above 200 °C), limiting the use of papers as substrates in such sensing applications. In this work, we proposed fabricating the paper-based, room-temperature-operatable acetone sensor using ZnO-polyaniline-based acetone-sensing inks by a facile fabrication method. The fabricated paper-based electrodes showed good electrical conductivity (80 S/m) and mechanical stability (∼1000 bending cycles). The acetone sensors showed a sensitivity of 0.02/100 ppm and 0.6/10 μL with an ultrafast response (4 s) and recovery time (15 s) at room temperature. The sensors delivered a broad sensitivity over a physiological range of 260 to >1000 ppm with R2 > 0.98 under atmospheric conditions. Further, the role of the surface, interfacial, microstructure, electrical, and electromechanical properties of the paper-based sensor devices has been correlated with the sensitivity and room-temperature recovery observed in our system. These versatile, green, flexible electronic devices would be ideal for low-cost, highly regenerative, room-/low-temperature-operable wearable sensor applications.
Collapse
Affiliation(s)
- Disiya Davis
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Swathi Krishna Narayanan
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arya Ajeev
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Jayashree Nair
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Jithin Jeeji
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Ananthu Vijayan
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Midhun Viyyur Kuttyadi
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arun Nelliparambil Sathian
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arul Kashmir Arulraj
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| |
Collapse
|
4
|
Wang Q, Chen X, Zhang C, Li X, Yue N, Shao H, Wang J, Jin F. Discrimination and Characterization of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application Using Electronic Nose (E-Nose) and Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS). Foods 2023; 12:foods12061272. [PMID: 36981198 PMCID: PMC10048207 DOI: 10.3390/foods12061272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Aroma is a crucial factor determining the market value and consumer satisfaction of fresh oriental melon. However, few studies focus on the volatile flavor of fresh oriental melon, and the effect of forchlorfenuron application on the aroma profile is unclear. This study characterized the volatile profile of fresh oriental melon fruit after forchlorfenuron application by E-nose and HS-GC-IMS. The holistic variation of volatile compounds exhibited evident distinction based on linear discriminant analysis (LDA) with E-nose. Forty-eight volatile compounds were identified from fresh oriental melon via GC-IMS, mainly esters, alcohols, aldehydes, and ketones, along with smaller quantities of sulfides and terpenes. Compared to pollination melon fruits, 13 critical different volatile flavor compounds were screened out in forchlorfenuron application groups by the PLS-DA model, imparting sweet fruity flavor. The results of the current study provide a valuable basis for evaluating the flavor quality of oriental melon after forchlorfenuron treatment.
Collapse
|
5
|
Paramithiotis S. Molecular Targets for Foodborne Pathogenic Bacteria Detection. Pathogens 2023; 12:pathogens12010104. [PMID: 36678453 PMCID: PMC9865778 DOI: 10.3390/pathogens12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
6
|
Rasekh M, Karami H, Fuentes S, Kaveh M, Rusinek R, Gancarz M. Preliminary study non-destructive sorting techniques for pepper (Capsicum annuum L.) using odor parameter. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Obeidat Y, Rawashdeh AM, Hammoudeh A, Al-Assi R, Dagamseh A, Qananwah Q. Acetone sensing in liquid and gas phases using cyclic voltammetry. Sci Rep 2022; 12:11010. [PMID: 35773395 PMCID: PMC9247076 DOI: 10.1038/s41598-022-15135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 02/02/2023] Open
Abstract
This paper presents the use of cyclic voltammetry to measure acetone concentration in liquid and vapor forms at disposable screen-printed electrodes of platinum working electrode, platinum counter electrode, and silver/silver chloride reference electrode. The main characteristics of the acetone sensor including its linearity, sensitivity, reproducibility, and limit of detection (LOD) were studied by doing different experiments to test both liquid and vapor samples in the physiological range of 1 µM to 10 mM. The change in acetone concentration was monitored by comparing the lineshape of butterfly region before and after injecting the acetone sample in the baseline solution that contains 0.5 M H2SO4. The sensor was shown to have a good sensitivity, reproducibility, and a linear response with respect to the acetone concentration in both liquid and gas phases over a range of 1 µM to 10 mM with R2 > 0.97 and LOD of 0.1 µM. The system stability was improved by building a closed glass system to reduce the exchange of acetone with the surrounding air in an open environment. The closed system was tested using vapor samples and the error bars in the calibration curve were reduced to more than half of their values before using the closed system. The new system will be used extensively in future for an enzyme-based acetone sensor that will be used for diabetes monitoring.
Collapse
Affiliation(s)
- Yusra Obeidat
- grid.14440.350000 0004 0622 5497Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| | - Abdel Monem Rawashdeh
- grid.14440.350000 0004 0622 5497Department of Chemistry, Faculty of Sciences, Yarmouk University, P.O. Box 566, Irbid, Jordan
| | - Ayman Hammoudeh
- grid.14440.350000 0004 0622 5497Department of Chemistry, Faculty of Sciences, Yarmouk University, P.O. Box 566, Irbid, Jordan
| | - Rawan Al-Assi
- grid.14440.350000 0004 0622 5497Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| | - Ahmad Dagamseh
- grid.14440.350000 0004 0622 5497Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| | - Qasem Qananwah
- grid.14440.350000 0004 0622 5497Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163 Jordan
| |
Collapse
|
8
|
E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, food quality is of utmost importance, not only to comply with commercial regulations, but also to meet the expectations of consumers; this aspect includes sensory features capable of triggering emotions through the citizen’s perception. To date, key parameters for food quality assessment have been sought through analytical methods alone or in combination with a panel test, but the evaluation of panelists’ reactions via psychophysiological markers is now becoming increasingly popular. As such, the present review investigates recent applications of traditional and novel methods to the specific field. These include electronic senses (e-nose, e-tongue, and e-eye), sensory analysis, and wearables for emotion recognition. Given the advantages and limitations highlighted throughout the review for each approach (both traditional and innovative ones), it was possible to conclude that a synergy between traditional and innovative approaches could be the best way to optimally manage the trade-off between the accuracy of the information and feasibility of the investigation. This evidence could help in better planning future investigations in the field of food sciences, providing more reliable, objective, and unbiased results, but it also has important implications in the field of neuromarketing related to edible compounds.
Collapse
|
9
|
Das J, Mishra HN. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: a review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03951-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Mohd Ali M, Hashim N. Non-destructive methods for detection of food quality. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Guo Z, Guo C, Sun L, Zuo M, Chen Q, El‐Seedi HR, Zou X. Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Chuang Guo
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Li Sun
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Min Zuo
- National Engineering Laboratory for Agri‐product Quality Traceability Beijing Technology and Business University Beijing China
| | - Quansheng Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Hesham R. El‐Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC Uppsala University Uppsala Sweden
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Xiaobo Zou
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| |
Collapse
|
12
|
E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electronic nose (E-nose) devices represent one of the most trailblazing innovations in current technological research, since mimicking the functioning of the biological sense of smell has always represented a fascinating challenge for technological development applied to life sciences and beyond. Sensor array tools are right now used in a plethora of applications, including, but not limited to, (bio-)medical, environmental, and food industry related. In particular, the food industry has seen a significant rise in the application of technological tools for determining the quality of edibles, progressively replacing human panelists, therefore changing the whole quality control chain in the field. To this end, the present review, conducted on PubMed, Science Direct and Web of Science, screening papers published between January 2010 and May 2021, sought to investigate the current trends in the usage of human panels and sensorized tools (E-nose and similar) in the food industry, comparing the performances between the two different approaches. In particular, the focus was mainly addressed towards the stability and shelf life assessment of olive oil, the main constituent of the renowned “Mediterranean diet”, and nowadays appreciated in cuisines from all around the world. The obtained results demonstrate that, despite the satisfying performances of both approaches, the best strategy merges the potentialities of human sensory panels and technological sensor arrays, (i.e., E-nose somewhat supported by E-tongue and/or E-eye). The current investigation can be used as a reference for future guidance towards the choice between human panelists and sensorized tools, to the benefit of food manufacturers.
Collapse
|
13
|
Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. Adv Healthc Mater 2021; 10:e2100734. [PMID: 34165240 DOI: 10.1002/adhm.202100734] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/06/2021] [Indexed: 12/12/2022]
Abstract
The emergence and development of noninvasive biosensors largely facilitate the collection of physiological signals and the processing of health-related data. The utilization of appropriate machine learning algorithms improves the accuracy and efficiency of biosensors. Machine learning-reinforced biosensors are started to use in clinical practice, health monitoring, and food safety, bringing a digital revolution in healthcare. Herein, the recent advances in machine learning-reinforced noninvasive biosensors applied in healthcare are summarized. First, different types of noninvasive biosensors and physiological signals collected are categorized and summarized. Then machine learning algorithms adopted in subsequent data processing are introduced and their practical applications in biosensors are reviewed. Finally, the challenges faced by machine learning-reinforced biosensors are raised, including data privacy and adaptive learning capability, and their prospects in real-time monitoring, out-of-clinic diagnosis, and onsite food safety detection are proposed.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jianwu Wang
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Tianyi Liu
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX) Max Planck – NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
14
|
Kang W, Lin H, Jiang H, Yao-Say Solomon Adade S, Xue Z, Chen Q. Advanced applications of chemo-responsive dyes based odor imaging technology for fast sensing food quality and safety: A review. Compr Rev Food Sci Food Saf 2021; 20:5145-5172. [PMID: 34409725 DOI: 10.1111/1541-4337.12823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Public attention to foodquality and safety has been increased significantly. Therefore, appropriate analytical tools are needed to analyze and sense the food quality and safety. Volatile organic compounds (VOCs) are important indicators for the quality and safety of food products. Odor imaging technology based on chemo-responsive dyes is one of the most promising methods for analysis of food products. This article reviews the sensing and imaging fundamentals of odor imaging technology based on chemo-responsive dyes. The aim is to give detailed outlines about the theory and principles of using odor imaging technology for VOCs detection, and to focus primarily on its applications in the field of quality and safety evaluation of food products, as well as its future applicability in modern food industries and research. The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods , poultry meat, aquatic products, fruits and vegetables, and tea. It has the potential for the rapid, reliable, and inline assessment of food safety and quality by providing odor-image-basedmonitoring tool. Practical Application: The literatures presented in this review clearly demonstrated that imaging technology based on chemo-responsive dyes has the exciting effect to inspect such as quality assessment of cereal , wine and vinegar flavored foods, poultry meat, aquatic products, fruits and vegetables, and tea.
Collapse
Affiliation(s)
- Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Zhaoli Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
15
|
Wei H, Gu Y. A Machine Learning Method for the Detection of Brown Core in the Chinese Pear Variety Huangguan Using a MOS-Based E-Nose. SENSORS 2020; 20:s20164499. [PMID: 32806504 PMCID: PMC7472135 DOI: 10.3390/s20164499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022]
Abstract
The brown core is an internal disorder that significantly affects the palatability and economic value of Chinese pears. In this study, a framework that includes a back-propagation neural network (BPNN) and extreme learning machine (ELM) (BP-ELMNN) was proposed for the detection of brown core in the Chinese pear variety Huangguan. The odor data of pear were collected using a metal oxide semiconductor (MOS) electronic nose (E-nose). Principal component analysis was used to analyze the complexity of the odor emitted by pears with brown cores. The performances of several machine learning algorithms, i.e., radial basis function neural network (RBFNN), BPNN, and ELM, were compared with that of the BP-ELMNN. The experimental results showed that the proposed framework provided the best results for the test samples, with an accuracy of 0.9683, a macro-precision of 0.9688, a macro-recall of 0.9683, and a macro-F1 score of 0.9685. The results demonstrate that the use of machine learning algorithms for the analysis of E-nose data is a feasible and non-destructive method to detect brown core in pears.
Collapse
Affiliation(s)
- Hao Wei
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Yu Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
16
|
Ezhilan M, Nesakumar N, Babu KJ, Srinandan CS, Rayappan JBB. A Multiple Approach Combined with Portable Electronic Nose for Assessment of Post-harvest Sapota Contamination by Foodborne Pathogens. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02473-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Mohd Ali M, Hashim N, Abd Aziz S, Lasekan O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Fish meal freshness detection by GBDT based on a portable electronic nose system and HS-SPME–GC–MS. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03462-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Li J, Li Z, Deng X, Song C, Raghavan V, Xie Y. A flavor uniformity evaluation and improvement of Chinese spirit by electronic nose. Food Sci Nutr 2020; 8:1509-1521. [PMID: 32180960 PMCID: PMC7063377 DOI: 10.1002/fsn3.1436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 01/20/2023] Open
Abstract
Fenjiu spirits are famous for their multifarious flavors in China. Nevertheless, the uniformity and homogeneity of the products are always challenges for the producers. Three flavor measurement methods, that is, zNose™, GC-MS, and spirit tasters, were employed and correlated for evaluation of Fenjiu flavors' difference. An automatic blending system was designed to improve the uniformity, where base liquors of Dazongjiu, Dajiu, and Daijiu, as well as pure water, were used for blending, and BPNN was employed for regression and error minimization. Results showed that zNose™ results could be correlated with GC-MS in 95%; hence, zNose™ can replace GC-MS in Fenjiu flavor measurement. With the zNose™ assistance, an experimental scale, fully automatic blending system could be optimized with different modern mathematical algorithms to improve the Fenjiu products uniformity. We believe that this detailed work will advance the scientific knowledge in the field and help to facilitate the uniformity and homogeneity of Fenjiu products.
Collapse
Affiliation(s)
- Jing Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology School of Mechanical Engineering Jiangnan University Wuxi China
| | - Zhenfeng Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology School of Mechanical Engineering Jiangnan University Wuxi China
| | - Xia Deng
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology School of Mechanical Engineering Jiangnan University Wuxi China
| | - Chunfang Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology School of Mechanical Engineering Jiangnan University Wuxi China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing China
| | - Vijaya Raghavan
- Department of Biosource Engineering McGill University Sainte-Anne-de-Bellevue QC Canada
| | - Yufei Xie
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology School of Mechanical Engineering Jiangnan University Wuxi China
| |
Collapse
|
20
|
Aheto JH, Huang X, Tian X, Ren Y, Ernest B, Alenyorege EA, Dai C, Hongyang T, Xiaorui Z, Wang P. Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat. Anal Bioanal Chem 2020; 412:1169-1179. [PMID: 31912184 DOI: 10.1007/s00216-019-02345-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 01/20/2023]
Abstract
The study assessed the feasibility of merging data acquired from hyperspectral imaging (HSI) and electronic nose (e-nose) to develop a robust method for the rapid prediction of intramuscular fat (IMF) and peroxide value (PV) of pork meat affected by temperature and NaCl treatments. Multivariate calibration models for prediction of IMF and PV using median spectra features (MSF) and image texture features (ITF) from HSI data and mean signal values (MSV) from e-nose signals were established based on support vector machine regression (SVMR). Optimum wavelengths highly related to IMF and PV were selected from the MSF and ITF. Next, recurring optimum wavelengths from the two feature groups were manually obtained and merged to constitute "combined attribute features" (CAF) which yielded acceptable results with (Rc2 = 0.877, 0.891; RMSEC = 2.410, 1.109; Rp2 = 0.790, 0.858; RMSEP = 3.611, 2.013) respectively for IMF and PV. MSV yielded relatively low results with (Rc2 = 0.783, 0.877; RMSEC = 4.591, 0.653; Rp2 = 0.704, 0.797; RMSEP = 3.991, 0.760) respectively for IMF and PV. Finally, data fusion of CAF and MSV was performed which yielded relatively improved prediction results with (Rc2 = 0.936, 0.955; RMSEC = 1.209, 0.997; Rp2 = 0.895, 0.901; RMSEP = 2.099, 1.008) respectively for IMF and PV. The results obtained demonstrate that it is feasible to mutually integrate spectral and image features with volatile information to quantitatively monitor IMF and PV in processed pork meat. Graphical abstract.
Collapse
Affiliation(s)
- Joshua Harrington Aheto
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China.
| | - Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China.
| | - Yi Ren
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
- Suzhou Polytechnic Institute of Agriculture, School of Smart Agriculture, No.279 Xiyuan Road, Suzhou, 215008, China
| | - Bonah Ernest
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
- Food and Drugs Authority, Laboratory Services Department, P. O. Box CT 2783, Cantonments, Accra, Ghana
| | - Evans Adingba Alenyorege
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
- Faculty of Agriculture, University for Development Studies, Tamale, Ghana
| | - Chunxia Dai
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
- School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Tu Hongyang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Zhang Xiaorui
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| | - Peichang Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
21
|
Bonah E, Huang X, Aheto JH, Osae R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review. Journal of Food Science and Technology 2019; 57:1977-1990. [PMID: 32431324 DOI: 10.1007/s13197-019-04143-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Food safety issues across the global food supply chain have become paramount in promoting public health safety and commercial success of global food industries. As food regulations and consumer expectations continue to advance around the world, notwithstanding the latest technology, detection tools, regulations and consumer education on food safety and quality, there is still an upsurge of foodborne disease outbreaks across the globe. The development of the Electronic nose as a noninvasive technique suitable for detecting volatile compounds have been applied for food safety and quality analysis. Application of E-nose for pathogen detection has been successful and superior to conventional methods. E-nose offers a method that is noninvasive, fast and requires little or no sample preparation, thus making it ideal for use as an online monitoring tool. This manuscript presents an in-depth review of the application of electronic nose (E-nose) for food safety, with emphasis on classification and detection of foodborne pathogens. We summarise recent data and publications on foodborne pathogen detection (2006-2018) and by E-nose together with their methodologies and pattern recognition tools employed. E-nose instrumentation, sensing technologies and pattern recognition models are also summarised and future trends and challenges, as well as research perspectives, are discussed.
Collapse
Affiliation(s)
- Ernest Bonah
- 1School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 Jiangsu People's Republic of China.,Laboratory Services Department, Food and Drugs Authority, P. O. Box CT 2783, Cantonments - Accra, Ghana
| | - Xingyi Huang
- 1School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 Jiangsu People's Republic of China
| | - Joshua Harrington Aheto
- 1School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 Jiangsu People's Republic of China
| | - Richard Osae
- 1School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 Jiangsu People's Republic of China
| |
Collapse
|
22
|
Donadel JZ, Thewes FR, Anese RDO, Schultz EE, Berghetti MRP, Ludwig V, Klein B, Cichoski AJ, Barin JS, Both V, Brackmann A, Wagner R. Key volatile compounds of ‘Fuji Kiku’ apples as affected by the storage conditions and shelf life: Correlation between volatile emission by intact fruit and juice extracted from the fruit. Food Res Int 2019; 125:108625. [DOI: 10.1016/j.foodres.2019.108625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
|
23
|
A Novel Nanoscaled Chemo Dye–Based Sensor for the Identification of Volatile Organic Compounds During the Mildewing Process of Stored Wheat. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01617-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Nouri B, Mohtasebi SS, Jahanbakhshi A. Application of an olfactory system to detect and distinguish bitter chocolates with different percentages of cocoa. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Behzad Nouri
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and TechnologyUniversity of Tehran Karaj Iran
| | - Seyed Saeid Mohtasebi
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and TechnologyUniversity of Tehran Karaj Iran
| | - Ahmad Jahanbakhshi
- Department of Biosystems EngineeringUniversity of Mohaghegh Ardabili Ardabil Iran
| |
Collapse
|
25
|
Bonah E, Huang X, Yi R, Aheto JH, Osae R, Golly M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13236] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ernest Bonah
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
- Food and Drugs AuthorityLaboratory Services Department Cantonments Accra Ghana
| | - Xingyi Huang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| | - Ren Yi
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
- School of Smart AgricultureSuzhou Polytechnic Institute of Agriculture Suzhou PR China
| | - Joshua H. Aheto
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| | - Richard Osae
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| | - Moses Golly
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| |
Collapse
|
26
|
Jia W, Liang G, Jiang Z, Wang J. Advances in Electronic Nose Development for Application to Agricultural Products. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01552-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Srinivasan P, Kulandaisamy AJ, Mani GK, Babu KJ, Tsuchiya K, Rayappan JBB. Development of an acetone sensor using nanostructured Co3O4 thin films for exhaled breath analysis. RSC Adv 2019; 9:30226-30239. [PMID: 35530198 PMCID: PMC9072200 DOI: 10.1039/c9ra04230j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
In recent times, the development of breath sensors for the detection of Diabetic Keto-Acidosis (DKA) has been gaining prominent importance in the field of health care and advanced diagnostics. Acetone is one of the prominent biomarkers in the exhaled breath of persons affected by DKA. In this background, nanostructured cobalt oxide sensing elements were fabricated using a spray pyrolysis technique at different deposition temperatures (473 to 773 K in steps of 100 K) towards the fabrication of an acetone sensor. The influence of deposition temperature on the various properties of the nanostructured cobalt oxide thin films was investigated. Formation of cubic spinel phase cobalt oxide was confirmed from the structural analysis. The shifting of plane orientation from (3 1 1) to (2 2 0) at 773 K deposition temperature revealed the migration of cobalt atoms to the highly favorable energy positions. Further, the downshifted peak absorption wavelength and upshifted PL profile at higher deposition temperature confirmed the migration of cobalt ions. The sensor fabricated at higher deposition temperature (773 K) showed a sensing response of 235 at room temperature towards 50 ppm of acetone. Also, the fabricated sensor showed a lower detection limit (LOD) of 1 ppm with the response–recovery times of 6 and 4 s, respectively. The LOD reported here is lower than the minimum threshold level (1.71 ppm) signifying the presence of DKA. We report the fabrication of a breath sensor using nanostructured Co3O4 thin films for the detection of acetone in exhaled breath, which is one of the prominent bio-markers of Diabetic Ketoacidosis (DKA).![]()
Collapse
Affiliation(s)
- Parthasarathy Srinivasan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Electrical & Electronics Engineering (SEEE)
- SASTRA Deemed University
- Thanjavur 613 401
- India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Electrical & Electronics Engineering (SEEE)
- SASTRA Deemed University
- Thanjavur 613 401
- India
| | - Ganesh Kumar Mani
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Electrical & Electronics Engineering (SEEE)
- SASTRA Deemed University
- Thanjavur 613 401
- India
| | - K. Jayanth Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Electrical & Electronics Engineering (SEEE)
- SASTRA Deemed University
- Thanjavur 613 401
- India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Electrical & Electronics Engineering (SEEE)
- SASTRA Deemed University
- Thanjavur 613 401
- India
| |
Collapse
|