1
|
Al-Thaibani A, Mostafa H, Alshamsi O, Moin A, Bansal N, Mudgil P, Maqsood S. Spray drying and ultrasonication processing of camel whey protein concentrate: Characterization and impact on bioactive properties. J Dairy Sci 2024:S0022-0302(24)00951-2. [PMID: 38908705 DOI: 10.3168/jds.2024-24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
The production of whey protein concentrates (WPCs) from camel milk whey represents an effective approach to valorize this processing by-product. These concentrates harbor active ingredients with significant bioactive properties. Camel WPCs were spray-dried (SD) at inlet temperature of 170, 185 and 200°C, or Ultrasonicated (US) for 5, 10 and 15 min, then freeze-dried to obtain fine powder. The impact of both treatments on protein degradation was studied by sodium dodecyl sulfate-PAGE and reverse-phase ultraperformance liquid chromatography (RP-UPLC) techniques. Significantly enhanced protein degradation was observed after US treatment when compared with SD. Both SD and US treatments slightly enhanced the WPCs samples' antioxidant activities. The US exposure for 15 min exhibited highest 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (12.12 mmol TE/g). Moreover, US treatment for 10 min exhibited the highest in vitro anti-diabetic properties (α-amylase and α-glucosidase inhibition), and dipeptidyl-peptidase-IV inhibitory activity among all samples. In addition, the ultrasonication for 10 min and SD at 170°C showed the lowest IC50 values for in vitro anti-hypercholesterolemic activities in terms of pancreatic lipase and cholesteryl esterase inhibition. Conclusively, these green techniques can be adapted in the preservation and processing of camel milk whey into active ingredients with high bioactive properties.
Collapse
Affiliation(s)
- Alanoud Al-Thaibani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Ohood Alshamsi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Abeera Moin
- Department of Food Science and Technology, University of Karachi, 75270, Pakistan
| | - Nidhi Bansal
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Center for Health, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
2
|
Pu Y, Long Y, Xu D, Niu Y, Wu Q, Chen S, Wang R, Ge R. Influence of thermal denaturation on whey protein isolates in combination with chitosan for fabricating Pickering emulsions: a comparison study. Front Nutr 2024; 11:1418120. [PMID: 38887503 PMCID: PMC11180793 DOI: 10.3389/fnut.2024.1418120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Composite natural emulsifiers such as whey protein isolate (WPI) and chitosan (CS) are commonly used in Pickering emulsions to address the effect of thermal deformation of proteins before complexation with CS and heating after complexation. In this study, the properties of WPI and CS composites were investigated by complexing CS with either unmodified WPI or thermally denatured WPI (DWPI). Three types of composite particles were prepared, WPI-CS, DWPI-CS, and D(WPI-CS). Atomic force microscopy revealed that the composite particles formed larger aggregates with increased contour size and surface roughness compared to CS and WPI, whereas the interfacial tension decreased, indicating improved emulsifying abilities. Fourier-transform infrared analysis revealed differences in the hydrogen bonds between CS and WPI/DWPI. All three composite particles formed stable emulsions with droplet sizes of 20.00 ± 0.15, 27.80 ± 0.35, and 16.77 ± 0.51 μm, respectively. Thermal stability experiments revealed that the curcumin emulsion stabilized with WPI-CS and DWPI-CS exhibited relatively better thermal stability than that stabilized with D(WPI-CS). In vitro experiments results indicated that the bioaccessibility of the curcumin emulsion stabilized with WPI-CS was 61.18 ± 0.16%, significantly higher than that of the emulsions prepared with the other two composite particles (p < 0.05). This study will enable the customized design of WPI composite-based Pickering emulsions for application in the food and nutrition industries.
Collapse
Affiliation(s)
- Yilin Pu
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxiang Long
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Die Xu
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongkang Niu
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinglong Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Chen
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruozhen Wang
- College of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Antoine-Michard A, Charbonnel C, Jaouen I, Sanchez C, Nigen M. Maturation of demineralized arabinogalactan-proteins from Acacia seyal gum in dry state: Aggregation kinetics and structural properties of aggregates. Int J Biol Macromol 2023; 233:123509. [PMID: 36739053 DOI: 10.1016/j.ijbiomac.2023.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/16/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The aggregation in dry state of mineral-loaded arabinogalactan-proteins (AGPs) from Acacia seyal gum (GA) generally occurs above 70 °C. This study focuses on the aggregation sensitivity of AGPs after their demineralization. The dry incubation in mild temperature (25 °C to 70 °C) of demineralized AGPs induced the formation of aggregates, not observed with GA. AGPs aggregated following a self-assembly mechanism for which temperature only modulated the aggregation rate. The activation energy was around 90-100 kJ·mol-1 that could correspond to chemical condensation reactions induced by the AGPs surface dehydration. The aggregation kinetics were characterized by the formation of soluble aggregates during the first times of incubation, whose molar mass increased from 1 · 106 g·mol-1 to 6.7 · 106 g·mol-1 (SEC MALS) or 12 · 106 g·mol-1 (AF4 MALS) after 1.66 days of dry heating at 40 °C. These soluble aggregates revealed they adopted a similar conformation to that of not aggregated AGPs with a νh value around 0.45. Above 1.66 days at 40 °C, the soluble aggregates grew up to form microparticles with sizes ranging from 10 to around 200 μm. This study highlighted the protective role of cations from AGPs whose demineralization increased their sensibility to dry heating and their chemical reactivity for aggregation.
Collapse
Affiliation(s)
- Amandine Antoine-Michard
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France; ALLAND & ROBERT, 75003 Paris, France
| | - Céline Charbonnel
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | - Christian Sanchez
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Michaël Nigen
- UMR IATE, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France.
| |
Collapse
|
4
|
Effects of pH during dry-heat preparation on the physicochemical and emulsifying properties of rice starch and whey protein isolate mixtures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Self-assembling soy protein fibril aggregates: Characterization and impact on in vitro digestibility of potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
|
7
|
Contribution of Hydrolysis and Drying Conditions to Whey Protein Hydrolysate Characteristics and In Vitro Antioxidative Properties. Antioxidants (Basel) 2022; 11:antiox11020399. [PMID: 35204281 PMCID: PMC8869527 DOI: 10.3390/antiox11020399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
During the generation of functional food ingredients by enzymatic hydrolysis, parameters such as choice of enzyme, reaction pH and the drying process employed may contribute to the physicochemical and bio-functional properties of the resultant protein hydrolysate ingredients. This study characterised the properties of spray- (SD) and freeze-dried (FD) whey protein hydrolysates (WPHs) generated using Alcalase® and Prolyve® under pH-stat and free-fall pH conditions. The enzyme preparation used affected the physicochemical and antioxidative properties but had no impact on powder composition, morphology or colour. SD resulted in spherical particles with higher moisture content (~6%) compared to the FD powders (~1%), which had a glass shard-like structure. The SD-WPHs exhibited higher antioxidative properties compared to the FD-WPHs, which may be linked to a higher proportion of peptides <1 kDa in the SD-WPHs. Furthermore, the SD- and FD-WPHs had similar peptide profiles, and no evidence of Maillard reaction product formation during the SD processing was evident. The most potent in vitro antioxidative WPH was generated using Alcalase® under free-fall pH conditions, followed by SD, which had oxygen radical absorbance capacity and Trolox equivalent (TE) antioxidant capacity values of 1132 and 686 µmol TE/g, respectively. These results demonstrate that both the hydrolysis and the drying process impact the biofunctional (antioxidant) activity of WPHs.
Collapse
|
8
|
Famelart MH, Croguennec T, Sevrin T. Optimisation of microparticle formation by dry heating of whey proteins. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Ma Y, Shan A, Wang R, Zhao Y, Chi Y. Characterization of egg white powder gel structure and its relationship with gel properties influenced by pretreatment with dry heat. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Zhu P, Wang M, Du X, Chen Z, Liu C, Zhao H. Morphological and physicochemical properties of rice starch dry heated with whey protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Comparison of dry- and wet-heat induced changes in physicochemical properties of whey protein in absence or presence of inulin. Food Sci Biotechnol 2019; 28:1367-1374. [PMID: 31695935 DOI: 10.1007/s10068-019-00577-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022] Open
Abstract
Changes in whey protein (10%, w/v) induced by dry-heating (60 °C for 5 days at a relative humidity of 63%), wet-heating (85 °C for 30 min) or the two-combined heating in absence or presence of inulin (8%, w/v) were studied. Mixture of whey protein and inulin showed significantly higher absorbance at 290 nm than whey protein alone in all heating conditions while only dry-heated samples showed significantly increased absorbance value at 420 nm (p < 0.05). Whey protein after heating showed significantly lower zeta potential and inulin decreased the value of all heated samples further (p < 0.05) except for samples after dry-heating. Heating decreased the free sulfhydryl group content of whey protein samples while presence of inulin decreased further (p < 0.05). Dry-heating decreased while wet-heating increased the surface hydrophobicity of whey protein. Inulin had no effect on the surface hydrophobicity of heated whey protein under dry-heating but decreased under wet-heating.
Collapse
|
12
|
Schong E, Famelart MH. Influence of casein on the formation of whey protein microparticles obtained by dry heating at an alkaline pH. Food Res Int 2019; 122:96-104. [PMID: 31229134 DOI: 10.1016/j.foodres.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Dry heating (DH) at 100 °C for 36 h of a whey protein isolate powder conditioned at pH 9.5 leads to the formation of stable, large and porous whey protein microparticles (PMs), resulting from the crosslinking of proteins inside the powder. These PMs could be used as high-viscosity food ingredients. Casein, present as a contaminant in whey protein powders, has been shown to become incorporated into the PMs. In this study, we investigated the effect of adding increasing amounts of sodium caseinate to whey protein powders on the formation of PMs during DH at 100 °C for 36 h. In addition, we studied PM formation during DH of a micellar casein-enriched milk protein powder (Casmic). The browning index of the dry-heated powders, and the size and water content of the microparticles were also characterized. We confirmed that sodium caseinate was incorporated into the PMs. The highest PM D[4,3] values (270 μm) were observed for powders with around 40% caseinate. Powders without added caseinate displayed D[4,3] values of 150 μm. The yield of conversion of proteins into PMs increased from 0.6 to 0.8 g/g with caseinate addition, whereas the amount of water entrapped in the PMs decreased from around 30 to 20 g/g. PMs were also formed by DH of the Casmic powder, but these particles were smaller, with sizes of around 80 μm. In conclusion, our study shows that the process of DH at pH 9.5 could be applied to all milk proteins to obtain PMs with functional properties that could be used in the food industry.
Collapse
Affiliation(s)
- Elise Schong
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, cedex, France
| | | |
Collapse
|
13
|
Influence of lactose on the formation of whey protein microparticles obtained by dry heating at alkaline pH. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|