1
|
Hassan L, Reynoso M, Xu C, Al Zahabi K, Maldonado R, Nicholson RA, Boehm MW, Baier SK, Sharma V. The bubbly life and death of animal and plant milk foams. SOFT MATTER 2024; 20:8215-8229. [PMID: 39370983 DOI: 10.1039/d4sm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice. We used three set-ups: an electric frother with cold (10 °C) and hot (65 °C) settings to emulate the real-life application of creating foam for cappuccinos, a commercial device called a dynamic foam analyzer or DFA and fizzics-scope, a bespoke device we built. Fizzics-scope visualizes foam creation, evolution, and destruction using an extended prism-based imaging system facilitating the capture of spatiotemporal variation in foam microstructure over a broader range of heights and liquid fractions. Among the chosen eight milks, oat produces the longest-lasting foams, and rice has the lowest amount and stability of foam. Using the hot settings, animal milks produce more foam volume using an electric frother than the top three plant milks in terms of foamability (oat, pea, and soy). Using the cold settings, oat, soy, and almond outperform cow milk in terms of foam volume and lifetime for foams made with the frother and sparging. Most plant milks have higher viscosity due to added polysaccharide thickeners, and in some, lecithin and saponin can supplement globular proteins as emulsifiers. Our studies combining foam creation by frothing or sparging with imaging protocols to track global foam volume and local bubble size changes present opportunities for contrasting the physicochemical properties and functional attributes of animal and plant-based milk and ingredients for engineering better alternatives.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Monse Reynoso
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Karim Al Zahabi
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Ramiro Maldonado
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | | | | | - Stefan K Baier
- Motif FoodWorks Inc., Boston, MA 02210, USA
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| |
Collapse
|
2
|
Li W, Zhu L, Zhang W, Han C, Li P, Jiang J. Foam and fluid properties of purified saponins and non-purified water extracts from Camellia oleifera cake (by-product). Food Chem 2024; 440:138313. [PMID: 38159317 DOI: 10.1016/j.foodchem.2023.138313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The physicochemical and foam properties of non-purified water extracts (WE) and purified tea saponins (TS) from Camellia oleifera cake (byproduct) were compared. WE showed different fluid properties at equal saponin concentrations (1.0 wt%) compared to TS. Particularly, it exhibited limited micelle size (average 434.1 nm), effective viscosity (0.15 Pa·s), and surface tension (43.9 mN/m) independently of pH. Moreover, the foam properties of WE were comparable to TS and better than sodium caseinate, especially foam stability. WE foam was more stable than TS foam under pH (3-7) and heating (40-80 °C). In the presence of NaCl, sucrose, and ethanol (5-20 wt%), WE and TS were effective and had similar foam behavior. Low concentrations of sucrose (<10 wt%)/ethanol (<20 wt%) significantly increased the foam capacity, while ethanol over 30 wt% was unfavorable. WE/TS foam contributes significantly to the desired physicochemical and sensory attributes (taste, texture, and appearance) of foods.
Collapse
Affiliation(s)
- Weixin Li
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chunrui Han
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Ho TM, Bhandari BR, Bansal N. Foaming properties of milk samples collected at various processing stages in a dairy processing factory across two seasons. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1470-1478. [PMID: 37804504 DOI: 10.1002/jsfa.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND A foam layer makes an essential contribution to the quality of cappuccino-style drinks. Poor foaming of milk occurs quite often, however, especially in summer. The reasons for this are still unknown. Although a substantial number of studies on the foaming process of milk have been reported, these studies have been laboratory based and have used laboratory or pilot-scale equipment to simulate the processing conditions of a dairy processing factory. This study collected about 40 different samples across different processing stages in a dairy factory over two seasons (two batches per season) and investigated their composition and physical and foaming properties by mechanical mixing and steam injection. RESULTS The results showed that milk samples collected in summer had a significantly higher content of fat, free fatty acids, and Ca2+ ions, and larger particle sizes but a markedly lower concentration of protein and solid non-fat, and surface tension than the samples collected in spring. These differences provided spring milk with a higher steam injection foamability than summer milk. However, steam injection foam stability, and mechanical mixing foamability and foam stability were not affected by seasonal factors. Milk samples collected in different batches within a season were almost identical with regard to the properties that were investigated. CONCLUSION The variations in composition and physical properties of milk collected between two seasons could be the reasons for their difference in foamability but not for foam stability. Processes such as standardization, homogenization, and pasteurization improved markedly the foaming properties of milk. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
- ARC Dairy Innovation Hub, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| | - Bhesh R Bhandari
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
- ARC Dairy Innovation Hub, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
- ARC Dairy Innovation Hub, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Ho TM, Bhandari BR, Bansal N. Effect of shearing-induced lipolysis on foaming properties of milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016733 DOI: 10.1002/jsfa.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The attraction of cappuccino-style beverages is attributed to the foam layer, as it greatly improves the texture, appearance, and taste of these products. Typical milk has a low concentration of free fatty acids (FFAs), but their concentration can increase due to lipolysis during processing and storage, which is detrimental to the foamability and foam stability of milk. There are contradictory results in reported studies concerning the effects of FFAs on the foaming properties of milk due to differences in milk sources, methods inducing lipolysis, and methods of creating foam. In this study, the foaming properties and foam structure of milk samples whose lipolysis was induced by ultra-turraxing, homogenisation, and microfluidisation (1.5-3.5 μ-equiv. mL-1 FFAs) were investigated. RESULTS Compared with others, microfluidised milk samples had the smallest particle size, lowest absolute zeta potential, and highest surface tension; thus exhibited high foamability and foam stability, and very small and homogeneous air bubbles in foam structure. For all shearing methods, increasing FFA content from 1.5 to 3.5 μ-equiv. mL-1 markedly decreased the surface tension, foamability, and foam stability of milk samples. The FFA level that led to undesirable foam structure was 1.5 μ-equiv. mL-1 for ultra-turraxed milk samples and 2.5 μ-equiv. mL-1 for homogenised and microfluidised ones. CONCLUSION Shearing-induced lipolysis greatly affected the physical properties of milk samples and subsequently their foaming properties and foam structure. At the same FFA level, lipolysis induced by microfluidisation was much less detrimental to the foaming properties of milk than lipolysis induced by ultra-turraxing and homogenisation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Bhesh R Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Xiong X, Pundalik E, Kontogiorgos V, Thao Ho M, Mo C, Bhandari B, Bansal N. Influence of minerals on the foaming properties of milk. Food Res Int 2023; 169:112796. [DOI: 10.1016/j.foodres.2023.112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
|
6
|
Effect of Surfactant Type on Foaming Properties of Milk. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
AbstractThe presence of low molecular weight surfactants is suspected as one of the causes of poorly foaming milk, as they can interfere with milk proteins in the formation and stabilization of foam. Here, we explore the effect of various surfactants on the foaming properties of reconstituted skim milk powders. Each surfactant is different in electrical charge and molecular weight, including cleaning O- and E-coded chemicals, Tween 80, sucrose stearate, sodium oleate, sodium dodecyl sulfate, cetyltrimethylammonium bromide, benzalkonium chloride, and lecithin. The results showed that surfactants had different effects on foamability, foam stability, and structure, due to their varied effects on milk properties (e.g., pH, zeta potential, and surface tension). E-coded chemicals and sucrose stearate markedly decreased milk foamability, while the impact of Tween 80 and lecithin was considered detrimental to foam stability, as they mostly induced the production of large air bubbles in the foam.
Collapse
|
7
|
Sutariya SG, Salunke P. Effect of Hyaluronic Acid and Kappa-Carrageenan on Milk Properties: Rheology, Protein Stability, Foaming, Water-Holding, and Emulsification Properties. Foods 2023; 12:foods12050913. [PMID: 36900430 PMCID: PMC10000474 DOI: 10.3390/foods12050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Hyaluronic acid (HA) is now widely known for its ability to bind water and impart texture. The combined effects of HA and kappa-carrageenan (KC) have not yet been investigated, though. In this study, we looked at the synergistic effects of HA and KC (concentrations of 0.1 and 0.25%, and ratios of 85:15, 70:30, and 50:50 for each concentration) on the rheological properties, heat stability, protein phase separation, water-holding capacity, emulsification properties, and foaming properties of skim milk. When HA and KC were combined in various ratios with a skim milk sample, this resulted in lesser protein phase separation and a higher water-holding capacity than when HA and KC were utilized separately. Similarly, for the sample with a 0.1% concentration, the combination of HA + KC blends demonstrated a synergistic impact with greater emulsifying activity and stability. The samples with a concentration of 0.25% did not exhibit this synergistic effect, and the emulsifying activity and stability were mostly due to the HA's higher emulsifying activity and stability at 0.25% concentration. Similarly, for rheological (apparent viscosity, consistency coefficient K, and flow behavior index n) and foaming properties, the synergistic effect of the HA + KC blend was not readily apparent; rather, these values were mostly due to an increase in the amount of KC in the HA + KC blend ratios. When HC-control and KC-control samples were compared to various HA + KC mix ratios, there was no discernible difference in the heat stability. With the added benefits of protein stability (reduced phase separation), increased water-holding capacity, improved emulsification capabilities, and foaming abilities, the combination of HA + KC would be highly helpful in many texture-modifying applications.
Collapse
|
8
|
Rüegg R, Schmid T, Hollenstein L, Müller N. Effect of particle characteristics and foaming parameters on resulting foam quality and stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Basso F, Maifreni M, Innocente N, Manzocco L, Nicoli MC. Raw milk preservation by hyperbaric storage: Effect on microbial counts, protein structure and technological functionality. Food Res Int 2022; 156:111090. [DOI: 10.1016/j.foodres.2022.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
|
10
|
Hummel D, Atamer Z, Hinrichs J. New methodology for controlled testing of foaming properties of protein suspensions. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Krentz A, García-Cano I, Jiménez-Flores R. Functional, textural, and rheological properties of mixed casein micelle and pea protein isolate co-dispersions. JDS COMMUNICATIONS 2022; 3:85-90. [PMID: 36339743 PMCID: PMC9623808 DOI: 10.3168/jdsc.2021-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/26/2021] [Indexed: 05/19/2023]
Abstract
In the midst of rising consumer health and environmental concerns, pea protein has increased in popularity as an alternative to animal-origin proteins. However, the use of pea protein in food systems is largely hindered by its poor functionality, including low solubility. The objective of this study was to measure the textural, functional, and rheological properties of a mixed plant- and animal-based protein system. Caseins, the major protein in bovine milk, are a known animal-based protein with optimal functional properties and high sensory acceptability. Through cold-temperature homogenization, insoluble pea proteins were incorporated with casein micelles in a stable, mixed, colloidal dispersion. Three blends with various casein-to-pea ratios (90:10, 80:20, 50:50) were prepared and analyzed. We hypothesized that incorporation with casein micelles would improve the poor functional properties of pea protein, and thus increase its potential uses in the food industry as a functional ingredient. The protein blend successfully underwent chymosin coagulation, a key ability of caseins, and formed protein gels with textures similar to commercial queso fresco and hard tofu. The 50% casein micelle:50% pea protein blend had better emulsification properties than pea protein alone. In contrast, this blend had the same foaming properties as pea protein alone. The mixed protein blends had similar rheological properties to skim milk, thus increasing their potential applications in the food industry. These results serve as a starting point to begin fully understanding the interactions between pea protein isolate and casein micelles combined via low-temperature homogenization and the effect on their techno-functional properties.
Collapse
|
12
|
Sato A, Matsumiya K, Kosugi T, Kubouchi H, Matsumura Y. Effects of different gases on foaming properties of protein dispersions prepared with whipped cream dispenser. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Chen C, Mei J, Xie J. Impact of thawing methods on physico‐chemical properties and microstructural characteristics of concentrated milk. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cong Chen
- College of Food Science & Technology Shanghai Ocean University Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jun Mei
- College of Food Science & Technology Shanghai Ocean University Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing Xie
- College of Food Science & Technology Shanghai Ocean University Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
14
|
Bikos D, Samaras G, Cann P, Masen M, Hardalupas Y, Hartmann C, Vieira J, Charalambides MN. Effect of micro-aeration on the mechanical behaviour of chocolates and implications for oral processing. Food Funct 2021; 12:4864-4886. [PMID: 33969364 DOI: 10.1039/d1fo00045d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aeration in foods has been widely utilised in the food industry to develop novel foods with enhanced sensorial characteristics. Specifically, aeration at the micron-sized scale has a significant impact on the microstructure where micro-bubbles interact with the other microstructural features in chocolates. This study aims to determine the effect of micro-aeration on the mechanical properties of chocolate products, which are directly correlated with textural attributes such as hardness and crumbliness. Uniaxial compression tests were performed to determine the mechanical properties such as Poisson's ratio, Young's modulus and macroscopic yield strength together with fracture tests to estimate the fracture toughness. In vivo mastication tests were also conducted to investigate the link between the fracture properties and fragmentation during the first two chewing cycles. The uniaxial stress-strain data were used to calibrate a viscoplastic constitutive law. The results showed that micro-aeration significantly affects mechanical properties such as Young's modulus, yield and fracture stresses, as well as fracture toughness. In addition, it enhances the brittle nature of the chocolate, as evidenced by lower fracture stress but also lower fracture toughness leading to higher fragmentation, in agreement with observations in the in vivo mastication tests. As evidenced by the XRT images and the stress-strain measurements micro-aeration hinders the re-arrangement of the microscopic features inside the chocolate during the material's deformation. The work provides a new insight of the role of bubbles on the bulk behaviour of complex multiphase materials, such as chocolates, and defines the mechanical properties which are important input parameters for the development of oral processing simulations.
Collapse
Affiliation(s)
- D Bikos
- Department of Mechanical Engineering, Imperial College London, UK.
| | - G Samaras
- Department of Mechanical Engineering, Imperial College London, UK.
| | - P Cann
- Department of Mechanical Engineering, Imperial College London, UK.
| | - M Masen
- Department of Mechanical Engineering, Imperial College London, UK.
| | - Y Hardalupas
- Department of Mechanical Engineering, Imperial College London, UK.
| | | | - J Vieira
- Nestlé Product Technology Centre, York, UK
| | | |
Collapse
|
15
|
Dandigunta B, Karthick A, Chattopadhyay P, Dhoble AS. Impact of temperature and surfactant addition on milk foams. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ho TM, Bhandari BR, Bansal N. Functionality of bovine milk proteins and other factors in foaming properties of milk: a review. Crit Rev Food Sci Nutr 2021; 62:4800-4820. [PMID: 33527840 DOI: 10.1080/10408398.2021.1879002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
For many dairy products such as cappuccino-style beverages, the top foam layer determines the overall product quality (e.g. their appearance, texture, mouthfeel and coffee aroma release rate) and the consumer acceptance. Proteins in milk are excellent foaming agents, but the foaming properties of milk are greatly affected by several factors such as the protein content, ratio of caseins to whey proteins, casein micelle size, pH, minerals, proteolysis, presence of low molecular weight compounds (lipids and their hydrolyzed products) and high molecular weight compounds (polysaccharides); milk processing conditions (e.g. homogenization, heat treatment and aging); and foaming method and temperature. These factors either induce changes in the molecular structure, charge and surface activity of the milk proteins; or interfere and/or compete with milk proteins in the formation of highly viscoelastic film to stabilize the foam. Some factors affect the foamability while others determine the foam stability. In this review, functionality of milk proteins in the production and stabilization of liquid foam, under effects of these factors is comprehensively discussed. This will help to control the foaming process of milk on demand for a particular application, which still is difficult and challenging for researchers and the dairy industry.
Collapse
Affiliation(s)
- Thao M Ho
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bhesh R Bhandari
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nidhi Bansal
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Ho TM, Dhungana P, Bhandari B, Bansal N. Effect of the native fat globule size on foaming properties and foam structure of milk. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Xiong X, Ho MT, Bhandari B, Bansal N. Foaming properties of milk protein dispersions at different protein content and casein to whey protein ratios. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104758] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Foaming Characteristics of Beverages and Its Relevance to Food Processing. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09213-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|