1
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
2
|
Neffe-Skocińska K, Długosz E, Szulc-Dąbrowska L, Zielińska D. Novel Gluconobacter oxydans strains selected from Kombucha with potential postbiotic activity. Appl Microbiol Biotechnol 2024; 108:27. [PMID: 38157006 PMCID: PMC10756867 DOI: 10.1007/s00253-023-12915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
Gastric and colorectal cancer are among the most frequently diagnosed malignancies of the gastrointestinal tract. Searching for methods of therapy that complements treatment or has a preventive effect is desirable. Bacterial metabolites safe for human health, which have postbiotic effect, are of interest recently. The study aimed to preliminary assessment of the safety, antimicrobial, and anti-cancer activity of cell-free metabolites of Gluconobacter oxydans strains isolated from Kombucha beverages as an example of the potential postbiotic activity of acetic acid bacteria (AAB). The study material consisted of five AAB strains of Kombucha origin and three human cell lines (gastric adenoma-AGS, colorectal adenoma-HT-29, and healthy cells derived from the endothelium of the human umbilical vein-HUVEC). Results of the study confirms the health safety and functional properties of selected AAB strains, including their potential postbiotic properties. The best potential anticancer activity of the AAB cell-free supernatants was demonstrated against AGS gastric adenoma cells. The conducted research proves the postbiotic potential of selected acetic acid bacteria, especially the KNS30 strain. KEY POINTS: •The beneficial and application properties of acetic acid bacteria are poorly studied. •Gluconobacter oxydans from Kombucha show a postbiotic activity. •The best anticancer activity of the G. oxydans showed against gastric adenoma.
Collapse
Affiliation(s)
- Katarzyna Neffe-Skocińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159, 02-776, Warsaw, Poland.
| | - Ewa Długosz
- Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159, 02-776, Warsaw, Poland
| | - Lidia Szulc-Dąbrowska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159, 02-776, Warsaw, Poland
| | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159, 02-776, Warsaw, Poland
| |
Collapse
|
3
|
Yin X, Li J, Zhu L, Zhang H. Advances in the formation mechanism of set-type plant-based yogurt gel: a review. Crit Rev Food Sci Nutr 2024; 64:9412-9431. [PMID: 37203992 DOI: 10.1080/10408398.2023.2212764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-based yogurt has several advantages over traditional yogurt, such as being lactose and cholesterol-free, making it more suitable for individuals with cardiovascular and gastrointestinal diseases. The formation mechanism of the gel in plant-based yogurt needs more attention because it is associated with the gel properties of yogurt. Most plant proteins, except for soybean protein, have poor functional abilities, such as solubility and gelling properties, which limits their application in most food items. This often results in undesirable mechanical quality of plant-based products, particularly plant-based yogurt gels, including grainy texture, high syneresis, and poor consistency. In this review, we summarize the common formation mechanism of plant-based yogurt gel. The main ingredients, including protein and non-protein components, as well as their interactions involved in the gel are discussed to understand their effects on gel formation and properties. The main interventions and their effects on gel properties are highlighted, which have been shown to improve the properties of plant-based yogurt gels effectively. Each type of intervention method may exhibit desirable advantages in different processes. This review provides new opportunities and theoretical guidance for efficiently improving the gel properties of plant-based yogurt for future consumption.
Collapse
Affiliation(s)
- Xinya Yin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Wa Y, Zhao X, Peng K, Qu H, Chen D, Zhang C, Chen X, Gu R. Effects of Nutrients on the Growth of and Free Exopolysaccharide Biosynthesis by Streptococcus thermophilus 937 in a Chemically Defined Medium. Curr Microbiol 2023; 80:331. [PMID: 37634211 DOI: 10.1007/s00284-023-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
The free exopolysaccharide (f-EPS) produced by Streptococcus thermophilus is a natural texture modifier with health-promoting properties and has thus become one of the most interesting metabolites for researchers. The present work aimed to further understand the nutritional requirements for the growth of and the f-EPS production by S. thermophilus. The types and concentrations of compounds in the complete chemically defined medium were changed in turn to evaluate the effects of single nutrients on the growth of and f-EPS production by S. thermophilus 937. The results showed that cysteine, glutamine, histidine, methionine, tryptophan, tyrosine, leucine, isoleucine, and valine played an important role in maintaining the rapid and stable growth of S. thermophilus 937. S. thermophilus 937 also required calcium pantothenate, niacin, pyridoxine, riboflavin, and thiamine hydrochloride as essential nutrients for growth. Increases in the concentrations of lactose, glutamate, histidine, or isoleucine significantly increased the production of free exopolysaccharide by S. thermophilus 937, and when the lactose concentration increased to 20 g·L-1 and the concentration of the three-amino-acid combination increased to 15 mM, the f-EPS yield increased to a maximum of 35.34 μg·mL-1. This finding indicated that lactose and the 3 amino acids exert synergistic effects on the promotion of f-EPS production. In addition, lactose and the three amino acids have strain specific promoting effects on f-EPS production by S. thermophilus. This study provides a further understanding of the effects of nutrients on the biosynthesis of f-EPS by S. thermophilus.
Collapse
Affiliation(s)
- Yunchao Wa
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Xia Zhao
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Kuiyao Peng
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Hengxian Qu
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Xia Chen
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China.
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China.
| |
Collapse
|
5
|
Ziarno M, Zaręba D, Ścibisz I, Kozłowska M. Comprehensive studies on the stability of yogurt-type fermented soy beverages during refrigerated storage using dairy starter cultures. Front Microbiol 2023; 14:1230025. [PMID: 37692397 PMCID: PMC10485619 DOI: 10.3389/fmicb.2023.1230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction This study aimed to assess the feasibility of utilizing commercially available dairy starter cultures to produce yogurt-type fermented soy beverages and evaluate the fundamental properties of the resulting products. Methods Sixteen different starter cultures commonly used in the dairy industry for producing fermented milks, such as yogurt, were employed in the study. The study investigated the acidification curves, acidification kinetics, live cell population of starter microflora during refrigerated storage, pH changes, water-holding capacity, texture analysis, carbohydrates content, and fatty acid profile of the yogurt-type fermented soy beverage. Results and Discussion The results demonstrated that the starter cultures exhibited distinct pH changes during the fermentation process, and these changes were statistically significant among the cultures. The acidification kinetics of different cultures of lactic acid bacteria showed characteristic patterns, which can be used to select the most suitable cultures for specific product production. The study also revealed that the choice of starter culture significantly influenced the starter microorganisms population in the yogurt-type fermented soy beverage. Additionally, the pH values and water-holding capacity of the beverages were affected by both the starter cultures and the duration of refrigerated storage. Texture analysis indicated that storage time had a significant impact on hardness and adhesiveness, with stabilization of these parameters observed after 7-21 days of storage. Furthermore, the fermentation process resulted in changes in the carbohydrate content of the soy beverages, which varied depending on the starter culture used.
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| | - Dorota Zaręba
- Professor E. Pijanowski Catering School Complex in Warsaw, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
6
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Shuai J, Zhang L, Hu Z, Jia C, Niu M, Zhao S, Xu Y. Role of the in-situ-produced dextran by lactic acid bacteria in the texture modification of pea flour pastes. Food Res Int 2023; 165:112570. [PMID: 36869552 DOI: 10.1016/j.foodres.2023.112570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The application of pea flour (PF) was restricted by the resulting non-satisfying texture of food with a high addition level of PF. Four lactic acid bacteria (LAB) strains with the ability to synthesize dextran (DX) were used to ferment PF in order to modify the texture of PF pastes, screen out promising DX producers, and evaluate the role of the in-situ-produced DX in texture modification. The microbial growth, acidity, and DX contents of PF pastes were first analyzed. Then, the rheological and textural properties of PF pastes after fermentation were assessed. After this, the in-situ-produced DXs in PF pastes were further hydrolyzed, and the corresponding changes were studied. Finally, the protein and starch in PF pastes were hydrolyzed separately to evaluate the role of macromolecular interactions between DX and protein/starch in the texture modification of PF pastes. The four LAB strains were all dominant in PF pastes, and the in-situ-produced DXs by these four strains played a critical role in the texture modification of PF pastes. Among the four DX-positive strains, Ln. pseudomesenteroides DSM 20193 and W. cibaria DSM 15878 were promising DX producers in PF-based media due to their high capacity in synthesizing DX and texture modification. The in-situ-produced DX promoted the formation of a porous network structure that was important for water-holding and texture-retaining. The DX-protein interaction contributed more to the texture modification of PF pastes than did the DX-starch interaction. This study clearly showed the role of the in-situ-produced DX and the DX-protein/starch interactions in the texture modification of PF pastes, which could further guide the utilization of in-situ-produced DXs in legume-based food and promote the exploitation of plant proteins.
Collapse
Affiliation(s)
- Jike Shuai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Lingyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Zhimin Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
8
|
Poulsen VK, Moghadam EG, Kračun SK, Svendsen BA, Nielsen WM, Oregaard G, Krarup A. Versatile Lactococcus lactis strains improve texture in both fermented milk and soybean matrices. FEMS Microbiol Lett 2022; 369:6862093. [PMID: 36455587 PMCID: PMC9772817 DOI: 10.1093/femsle/fnac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Lactic acid bacteria (LAB) have long been used to extend the shelf life and improve the taste and texture of fermented milk. In this study, we investigated the texturing potential of LAB in plant-based fermentation by high-throughput screening of 1232 Lactococcus lactis strains for texture in milk and liquid soybean matrices. We found that most strains with texturing abilities in fermented milk were also capable of enhancing the texture in fermented soybean, despite the large differences in composition of the two matrices. Exocellular polysaccharide production is believed to contribute positively to fermented milk and plant-base texture. It appeared as if it was the properties of the polysaccharides rather than their protein interaction partners that were responsible for the enhanced texture in both matrices. We mined whole genome sequences of texturing strains for polysaccharide biosynthesis (eps) gene clusters. The comparative genomics approach revealed 10 texturing strains with novel eps gene clusters. Currently, the relationship between the novel genes and their functionality in milk and plant matrices is unknown.
Collapse
Affiliation(s)
- Vera Kuzina Poulsen
- Corresponding author: Discovery R&D, Chr. Hansen A/S, 10–12 Bøge Allé, DK-2970 Hørsholm, Denmark. Phone: +45 45747474; Fax: +45 45748888; E-mail:
| | | | | | | | | | - Gunnar Oregaard
- Discovery R&D, Chr. Hansen A/S, 10–12 Bøge Allé, DK-2970 Hørsholm, Denmark
| | - Anders Krarup
- Discovery R&D, Chr. Hansen A/S, 10–12 Bøge Allé, DK-2970 Hørsholm, Denmark
| |
Collapse
|
9
|
Dong H, Li Y, Jia C, Zhang B, Niu M, Zhao S, Xu Y. Mechanism behind the rheological property improvement of fava bean protein by the presence of dextran. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
de Souza EL, de Oliveira KÁR, de Oliveira MEG. Influence of lactic acid bacteria metabolites on physical and chemical food properties. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Wang Y, Rosa-Sibakov N, Edelmann M, Sozer N, Katina K, Coda R. Enhancing the utilization of rapeseed protein ingredients in bread making by tailored lactic acid fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Technological role and metabolic profile of two probiotic EPS-producing strains with potential application in yoghurt: impact on rheology and release of bioactive peptides. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Boukid F, Castellari M. How can processing technologies boost the application of faba bean (
Vicia faba
L.) proteins in food production? EFOOD 2022. [DOI: 10.1002/efd2.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA) Food Safety and Functionality Programme, Food Industry Area Catalonia Spain
| |
Collapse
|
14
|
Abstract
Legume proteins have a promising future in the food industry due to their nutritional, environmental, and economic benefits. However, their application is still limited due to the presence of antinutritional and allergenic compounds, their poor technological properties, and their unpleasant sensory characteristics. Fermentation has been traditionally applied to counteract these inconveniences. At present, lactic acid fermentation of legumes is attracting the attention of researchers and industry in relation to the development of healthier, tasty, and technologically adapted products. Hence, we aimed to review the literature to shed light on the effect of lactic acid fermentation on legume protein composition and on their nutritional, functional, technological, and sensorial properties. The antimicrobial activity of lactic acid bacteria during legume fermentation was also considered. The heterogenicity of raw material composition (flour, concentrate, and isolate), the diversity of lactic acid bacteria (nutriment requirements, metabolic pathways, and enzyme production), and the numerous possible fermenting conditions (temperature, time, oxygen, and additional nutrients) offer an impressive range of possibilities with regard to fermented legume products. Systematic studies are required in order to determine the specific roles of the different factors. The optimal selection of these criteria will allow one to obtain high-quality fermented legume products. Fermentation is an attractive technology for the development of legume-based products that are able to satisfy consumers’ expectations from a nutritional, functional, technological, and sensory point of view.
Collapse
|
15
|
Harper AR, Dobson RCJ, Morris VK, Moggré GJ. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb Biotechnol 2022; 15:1404-1421. [PMID: 35393728 PMCID: PMC9049613 DOI: 10.1111/1751-7915.14008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical, environmental and health concerns around dairy products are driving a fast‐growing industry for plant‐based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant‐based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant‐based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant‐based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant‐based cheeses and yoghurts is also discussed.
Collapse
Affiliation(s)
- Aimee R Harper
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Vanessa K Morris
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gert-Jan Moggré
- The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand
| |
Collapse
|
16
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
17
|
Nabot M, Guérin M, Sivakumar D, Remize F, Garcia C. Variability of Bacterial Homopolysaccharide Production and Properties during Food Processing. BIOLOGY 2022; 11:171. [PMID: 35205038 PMCID: PMC8869377 DOI: 10.3390/biology11020171] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Various homopolysaccharides (HoPSs) can be produced by bacteria: α- and β-glucans, β-fructans and α-galactans, which are polymers of glucose, fructose and galactose, respectively. The synthesis of these compounds is catalyzed by glycosyltransferases (glycansucrases), which are able to transfer the monosaccharides in a specific substrate to the medium, which results in the growth of polysaccharide chains. The range of HoPS sizes is very large, from 104 to 109 Da, and mostly depends on the carbon source in the medium and the catalyzing enzyme. However, factors such as nitrogen nutrients, pH, water activity, temperature and duration of bacterial culture also impact the size and yield of production. The sequence of the enzyme influences the structure of the HoPS, by modulating the type of linkage between monomers, both for the linear chain and for the ramifications. HoPSs' size and structure have an effect on rheological properties of some foods by their influence on viscosity index. As a consequence, the control of structural and environmental factors opens ways to guide the production of specific HoPS in foods by bacteria, either by in situ or ex situ production, but requires a better knowledge of HoPS production conditions.
Collapse
Affiliation(s)
- Marion Nabot
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| | - Marie Guérin
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| | - Dharini Sivakumar
- Department of Horticulture, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Fabienne Remize
- SPO, Université de Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France;
| | - Cyrielle Garcia
- QualiSud, University of Montpellier, UMR QualiSud, 34398 Montpellier, France; (M.N.); (M.G.)
- UMR QualiSud, Université de La Réunion, 7 Chemin de l’Irat, F-97410 Saint Pierre, 97410 Réunion, France
| |
Collapse
|
18
|
Structure, physicochemical characterization, and antioxidant activity of the highly arabinose-branched exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6. Int J Biol Macromol 2021; 192:716-727. [PMID: 34655584 DOI: 10.1016/j.ijbiomac.2021.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus thermophilus CS6 could produce the high exopolysaccharide (EPS) level in optimized skimmed milk medium. However, physicochemical properties and structure of these polymers have not been fully characterized. In this study, two purified fractions (EPS-M1 and EPS-M2) exhibited good rheology, thermostability and antioxidant activity. Further monosaccharide composition, molecular weight and NMR analysis indicated EPS-M2 was composed of galactose, arabinose and glucose (5:2.5:1) with an average molecular weight of 2.22 × 104 Da and its suggested repeating unit was →6)-[α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 4)-β-D-Galp-(1 → 6)-[α-L-Araf-(1 → 5)-{α-L-Araf-(1 → 3)}-α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 4)-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 5)-α-L-Araf-(1 → 5)-α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 5)-α-L-Araf-(1 → 5)-{α-L-Araf-(1 → 3)}-α-L-Araf-(1 → 3)]-β-D-Galp-(1→. High EPS production relied on the expression of eps gene cluster and key enzymes of nucleotide sugar metabolism. Overall, EPS-M2 from a potential functional starter S. thermophilus CS6 provided opportunities for natural thickener, stabilizer, and antioxidant agent exploration in the food industry.
Collapse
|
19
|
Bancalari E, Gatti M, Bottari B, Mora D, Arioli S. Disclosing Lactobacillus delbrueckii subsp. bulgaricus intraspecific diversity in exopolysaccharides production. Food Microbiol 2021; 102:103924. [PMID: 34809950 DOI: 10.1016/j.fm.2021.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
Exopolysaccharides production by 3 ropy strains of Lactobacillus delbrueckii subsp. bulgaricus of dairy origin was evaluated in synthetic medium by combining different approaches: impedometric measurements, fluorescent microscopy and flow cytometry analyses. The evaluation of ΔE by impedometric measurement (E%max-E%40h) allowed the detection of EPS production in synthetic medium, but the differences in EPS production kinetic was highlighted by flow cytometry analysis and fluorescent microcopy. This approach enabled us to unravel the diversity in EPS synthesis and release into the laboratory medium during the growth of the strains. Our results showed that the maximum EPS production occurred after 8 h of incubation, when cells were in late exponential growth phase. Furthermore, flow cytometry analysis revealed that only part of the cell population could be identified as EPS producer or as EPS-bounded cell. Therefore, the combined approach used, allowed us to define at the same time the kinetics of EPS production and release by three strains belonging to the same species and, highlight that the production of EPS depends also on the number of EPS-producing cells within the same population. This approach could be useful for the selection of strains to be used as starter cultures in dairy products where EPS production is considered an important feature.
Collapse
Affiliation(s)
- Elena Bancalari
- Department of Food and Drug, University of Parma (Italy), Italy.
| | - Monica Gatti
- Department of Food and Drug, University of Parma (Italy), Italy
| | | | - Diego Mora
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milano (Italy), Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milano (Italy), Italy
| |
Collapse
|
20
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
21
|
Perri G, Rizzello CG, Ampollini M, Celano G, Coda R, Gobbetti M, De Angelis M, Calasso M. Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods 2021; 10:foods10071489. [PMID: 34199014 PMCID: PMC8306093 DOI: 10.3390/foods10071489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
A comprehensive study into the potential of bioprocessing techniques (sprouting and sourdough fermentation) for improving the technological and nutritional properties of wheat breads produced using barley and lentil grains was undertaken. Dextran biosynthesis in situ during fermentation of native or sprouted barley flour (B or SB) alone or by mixing SB flour with native or sprouted lentil flour (SB-L or SB-SL) by Weissella paramesenteroides SLA5, Weissella confusa SLA4, Leuconostoc pseudomesenteroides DSM 20193 or Weissella confusa DSM 20194 was assessed. The acidification and the viscosity increase during 24 h of fermentation with and without 16% sucrose (on flour weight), to promote the dextran synthesis, were followed. After the selection of the fermentation parameters, the bioprocessing was carried out by using Leuconostoc pseudomesenteroides DSM 20193 (the best LAB dextran producer, up to 2.7% of flour weight) and a mixture of SB-SL (30:70% w/w) grains, enabling also the decrease in the raffinose family oligosaccharides. Then, the SB-SL sourdoughs containing dextran or control were mixed with the wheat flour (30% of the final dough) and leavened with baker’s yeast before baking. The use of dextran-containing sourdough allowed the production of bread with structural improvements, compared to the control sourdough bread. Compared to a baker’s yeast bread, it also markedly reduced the predicted glycemic index, increased the soluble (1.26% of dry matter) and total fibers (3.76% of dry matter) content, giving peculiar and appreciable sensory attributes.
Collapse
Affiliation(s)
- Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | | | | | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00100 Helsinki, Finland;
- Helsinki Institute of Sustainability Science, Department of Food and Nutrition, University of Helsinki, 00100 Helsinki, Finland
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bozen, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
- Correspondence: ; Tel.: +39-080-544-2948
| |
Collapse
|
22
|
Arbab Sakandar H, Chen Y, Peng C, Chen X, Imran M, Zhang H. Impact of Fermentation on Antinutritional Factors and Protein Degradation of Legume Seeds: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1931300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hafiz Arbab Sakandar
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Chuantao Peng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Muhammad Imran
- Microbiology Department, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad 45320, Pakistan
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
23
|
Perri G, Coda R, Rizzello CG, Celano G, Ampollini M, Gobbetti M, De Angelis M, Calasso M. Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem 2021; 355:129638. [PMID: 33799242 DOI: 10.1016/j.foodchem.2021.129638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Exopolysaccharides produced in situ by lactic acid bacteria during sourdough fermentation are recognized as bread texture improvers. In this study, the suitability of whole and sprouted lentil flours, added with 25% on flour weight sucrose for dextran formation by selected strains during sourdough fermentation, was evaluated. The dextran synthesized in situ by Weissella confusa SLA4 was 9.2 and 9.7% w/w flour weight in lentil and sprouted lentil sourdoughs, respectively. Wheat bread supplemented with 30% w/w sourdough showed increased specific volume and decreased crumb hardness and staling rate, compared to the control wheat bread. Incorporation of sourdoughs improved the nutritional value of wheat bread, leading to increased total and soluble fibers content, and the aroma profile. The integrated biotechnological approach, based on sourdough fermentation and germination, is a potential clean-label strategy to obtain high-fibers content foods with tailored texture, and it can further enhance the use of legumes in novel foods.
Collapse
Affiliation(s)
- Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66 (Agnes Sjobergin katu 2), FI-00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, Department of Food and Nutrition, University of Helsinki, Finland.
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Marco Ampollini
- Puratos Italia S.r.l., Via Fratelli Lumìere, 37/A, Quartiere S.P.I.P., 43122 Parma, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Piazza Università 1, 39100 Bozen, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
24
|
Emkani M, Oliete B, Saurel R. Pea Protein Extraction Assisted by Lactic Fermentation: Impact on Protein Profile and Thermal Properties. Foods 2021; 10:549. [PMID: 33800873 PMCID: PMC8001262 DOI: 10.3390/foods10030549] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although pea protein has been widely explored, its consumption is still limited by undesirable sensory characteristics and low solubility. All these properties can be modified during protein extraction process. Besides, previous studies showed that lactic acid bacteria (LAB) have a positive effect on legume protein ingredients in terms of flavor and functional properties. Hence, the objective of this work was to explore an alternative extraction method based on alkaline extraction/isoelectric precipitation (AEIEP) resulting in globulin-rich and residual albumin-rich fractions. Here, the decrease in pH was achieved by lactic fermentation instead of mineral acid addition. Different bacteria strains (Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacterium lactis) have been used alone or in co-culture, and the results were compared with the usual acidification. The extraction assisted by fermentation led to the increase by 20-30% in protein content/yield of the albumin fraction, meaning that the solubility of the extracted pea protein was increased. This result could be explained by the proteolytic activity of bacteria during lactic fermentation. Therefore, the thermal denaturation properties of the isolated protein fractions measured by differential scanning calorimetry could be mainly ascribed to differences in their polypeptide compositions. In particular, higher denaturation enthalpy in globulin fractions after fermentation compared to AEIEP (~15 J/g protein vs. ~13 J/g protein) revealed the relative enrichment of this fraction in pea legumins; a higher part of 7S globulins seemed to be consumed by lactic acid bacteria.
Collapse
Affiliation(s)
| | | | - Rémi Saurel
- Physico-Chimie des Aliments et du Vin, PAM UMR A 02.102, AgroSup Dijon, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (M.E.); (B.O.)
| |
Collapse
|
25
|
Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110796] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Nivala O, Nordlund E, Kruus K, Ercili-Cura D. The effect of heat and transglutaminase treatment on emulsifying and gelling properties of faba bean protein isolate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Velasco L, Weiss J, Loeffler M. Influence of microbial in-situ heteropolysaccharide production on textural properties of raw fermented sausages (salami). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:562-570. [PMID: 33568849 DOI: 10.1007/s13197-020-04568-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
The purpose of the study was to investigate the influence of a heteropolysacchride (HePS)-forming lactic acid bacteria (LAB) on the quality attributes of raw fermented sausages. Therefore, salamis with the HePS-producing strain Lactobacillus plantarum TMW 1.1478 or the non-EPS-producing strain Lactobacillus sakei TMW 1.2037 (control) were manufactured using two different inoculation concentrations: more precisely, 107 CFU/g (typical starter culture concentration) or 109 CFU/g. Growth behavior, aw and pH development were recorded until a weight loss of 31% was reached and in-situ-formed EPS detected using confocal laser scanning microscopy. Moreover, the influence of the HePS formed on texture (texture profile analysis; TPA) and sensory attributes (26 panelists, ranking test) was investigated. The final products containing L. plantarum TMW 1.1478 were found to be significantly softer (p < 0.05) than the respective control samples, an effect that was even more pronounced at the higher inoculation level of 109 CFU/g. The semi-quantitative data interpretation of the CLSM pictures revealed that the EPS were predominantly formed during the first 72 h of fermentation at 24 °C until the final pH of 4.95 ± 0.05 was reached (stationary phase). The sensory evaluation (consistency) was in accordance with the TPA results and taste was not negatively influenced by the HePS-forming strain. Results clearly indicate that EPS-producing LAB can have a negative influence on the quality of raw fermented sausages. However, these strains (in the present case L. plantarum TMW 1.1478) might be interesting for application in the field of spreadable raw sausage manufacturing.
Collapse
Affiliation(s)
- Lina Velasco
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Myriam Loeffler
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany
| |
Collapse
|
28
|
Koirala P, Maina NH, Nihtilä H, Katina K, Coda R. Brewers' spent grain as substrate for dextran biosynthesis by Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. Microb Cell Fact 2021; 20:23. [PMID: 33482833 PMCID: PMC7821685 DOI: 10.1186/s12934-021-01515-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. Results The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. Conclusions Selected lactic acid bacteria starters produced significant amount of dextran in brewers’ spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.
Collapse
Affiliation(s)
- Prabin Koirala
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Ndegwa Henry Maina
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Nihtilä
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland. .,Helsinki Institute of Sustainability Science, Helsinki, Finland.
| |
Collapse
|
29
|
Loeffler M, Hilbig J, Velasco L, Weiss J. Usage of in situ exopolysaccharide-forming lactic acid bacteria in food production: Meat products-A new field of application? Compr Rev Food Sci Food Saf 2020; 19:2932-2954. [PMID: 33337046 DOI: 10.1111/1541-4337.12615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/01/2022]
Abstract
In the meat industry, hydrocolloids and phosphates are used to improve the quality attributes of meat products. However, latest research results revealed that the usage of exopolysaccharide (EPS)-forming lactic acid bacteria (LAB), which are able to produce EPS in situ during processing could be an interesting alternative. The current review aims to give a better understanding of bacterial EPS production in food matrices with a special focus on meat products. This includes an introduction to microbial EPS production (homopolysaccharides as well as heteropolysaccharides) and an overview of parameters affecting EPS formation and yield depending on LAB used. This is followed by a summary of methods to detect and characterize EPS to facilitate a rational selection of starter cultures and fermentation conditions based on desired structure-function relationships in different food matrices. The mechanism of action of in situ generated EPS is then highlighted with an emphasis on different meat products. In the process, this review also highlights food additives currently used in meat production that could in the future be replaced by in situ EPS-forming LAB.
Collapse
Affiliation(s)
- Myriam Loeffler
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| | - Jonas Hilbig
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| | - Lina Velasco
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| |
Collapse
|
30
|
Leuconostoc citreum TR116 as a Microbial Cell Factory to Functionalise High-Protein Faba Bean Ingredients for Bakery Applications. Foods 2020; 9:foods9111706. [PMID: 33233728 PMCID: PMC7699874 DOI: 10.3390/foods9111706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Grain legumes, such as faba beans, have been investigated as promising ingredients to enhance the nutritional value of wheat bread. However, a detrimental effect on technological bread quality was often reported. Furthermore, considerable amounts of antinutritional compounds present in faba beans are a subject of concern. Sourdough-like fermentation can positively affect baking performance and nutritional attributes of faba bean flours. The multifunctional lactic acid bacteria strain Leuconostoc citreum TR116 was employed to ferment two faba bean flours with different protein contents (dehulled flour (DF); high-protein flour (PR)). The strain’s fermentation profile (growth, acidification, carbohydrate metabolism and antifungal phenolic acids) was monitored in both substrates. The fermentates were applied in regular wheat bread by replacing 15% of wheat flour. Water absorption, gluten aggregation behaviour, bread quality characteristics and in vitro starch digestibility were compared to formulations containing unfermented DF and PR and to a control wheat bread. Similar microbial growth, carbohydrate consumption as well as production of lactic and acetic acid were observed in both faba bean ingredients. A less pronounced pH drop as well as a slightly higher amount of antifungal phenolic acids were measured in the PR fermentate. Fermentation caused a striking improvement of the ingredients’ baking performance. GlutoPeak measurements allowed for an association of this observation with an improved gluten aggregation. Given its higher potential to improve protein quality in cereal products, the PR fermentate seemed generally more promising as functional ingredient due to its positive impact on bread quality and only moderately increased starch digestibility in bread.
Collapse
|
31
|
Xu Y, Zhao H, Yan X, Zhao S. Preparation of a probiotic rice tablet: Sensory evaluation and antioxidant activity during gastrointestinal digestion. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Malaka R, Maruddin F, Dwyana Z, Vargas MV. Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Sci Nutr 2020; 8:1657-1664. [PMID: 32180973 PMCID: PMC7063361 DOI: 10.1002/fsn3.1452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of this research was to determine the optimal medium for Exopolysaccharides (EPS) production by a Lactobacillus delbrueckii subsp. bulgaricus ropy strain isolated from a locally produced commercial fermented milk, in reconstituted skim milk (RSM) 10% (w/v), milk whey (MW), and soy milk whey (SMW), under optimal growth conditions for this strain. Milk whey was made by coagulating fresh milk using papaya latex 3% (v/v); soy milk whey was obtained from tofu household industry. The chemical composition of the substrate media was determined by proximate analysis, and sterilization was accomplished in an autoclave at 121°C for 15 min. Culture media were inoculated with 1% (v/v) of a starter culture of L. delbrueckii subsp. bulgaricus and then incubated at 30°C for 16 hr. EPS production, lactic acid content, cell counting, and pH were determined after the media were cooled at 5°C. Findings showed that on the basis of the growth characteristics of L. delbrueckii subsp. bulgaricus, the best medium for EPS production was RSM 10% (258.60 ± 26.86 mg/L) compared to the milk whey (69.60 ± 9.48 mg/L) and soy milk whey (49.80 ± 9.04 mg/L).
Collapse
Affiliation(s)
- Ratmawati Malaka
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Fatma Maruddin
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Zaraswati Dwyana
- Laboratory of Microbiology Department of Biology Faculty of Mathematic and Natural Sciences Hasanuddin University Makassar Indonesia
| | - Maynor V Vargas
- Laboratory of Chemistry and Applied Biosciences National Technical University (UTN) Alajuela Costa Rica
| |
Collapse
|
33
|
Effect of microbial exopolysaccharide on wheat bran sourdough: Rheological, thermal and microstructural characteristics. Int J Biol Macromol 2020; 154:371-379. [PMID: 32194100 DOI: 10.1016/j.ijbiomac.2020.03.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Rheological, thermal and microstructural properties of wheat bran sourdough (WBS) containing different levels of microbial exopolysaccharide (EPS) extracted from Lactobacillus plantarum were investigated. All sourdough samples showed pseudoplastic behavior and the highest apparent viscosity was achieved at 1.5% EPS. The values of consistency coefficient of 1 and 2.5% EPS were significantly lower than for the dough without EPS. Increasing EPS in WBS produced a decrease in the storage, loss, and complex moduli of the sourdough, except that made with 1.5% EPS. This can be attributed to the microbial EPS structure and its ability to bind with water. It can be concluded, due to high hygroscopicity of EPS, WBS containing EPS had a lower access to water and other dough constituents. Thermal and microstructural results showed that EPS strongly modified starch gelatinization by prohibiting water access to amorphous parts of the granules and stabilized crystalline regions of starch causing an increase of end set temperature.
Collapse
|
34
|
Hundschell CS, Wagemans AM. Rheology of common uncharged exopolysaccharides for food applications. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|