1
|
Castillo-Paz AM, Correa-Piña BL, Pineda-Gómez P, Barrón-García OY, Londoño-Restrepo SM, Rodriguez-Garcia ME. Structural, morphological, compositional, thermal, pasting, and functional properties of isolated Achira (Canna indica L.) starch: Review. Int J Biol Macromol 2024; 282:136710. [PMID: 39447808 DOI: 10.1016/j.ijbiomac.2024.136710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to analyze the physicochemical properties of native Colombian Achira starch (Canna indica L.). Achira starch, with an amylose content of 49.07 % is classified as high amylose starch. Scanning electron microscopy (SEM) revealed grains with an average size of 54.34 μm in length and 34.93 μm in width, with spherical, ellipsoidal, and ovoid shapes. Mineral analysis identified phosphorus (P) and potassium (K) as the most important elements. For the first time, transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed the presence of nanocrystals with a length of 23.95 nm, a width of 6.44 nm, and a hexagonal crystal structure (B-type starch). Thermogravimetric analysis (TGA) showed mass losses associated with water, lipids, and protein carbohydrates. Differential scanning calorimetry (DSC) showed gelatinization at 61.17 °C. The pasting profile indicated hydrogel behavior with a high peak viscosity of 13,690 cP due to the amylose content. The water absorption index (WAI) was 2.07 g/g, the water solubility index (WSI) was 3.04 g/g, and swelling power (SP) was 2.19 g/g. The presence of nanocrystals and the high amylose content indicate potential in the food industry.
Collapse
Affiliation(s)
- Angelica M Castillo-Paz
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Querétaro, Qro., C.P. 76230. Mexico.
| | - Brenda L Correa-Piña
- Departamento de Nanotecnología, Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., C.P. 76230, Mexico
| | - Posidia Pineda-Gómez
- Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales, Caldas, Colombia; Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Oscar Y Barrón-García
- Departamento de Nanotecnología, Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., C.P. 76230, Mexico; División Industrial, Universidad Tecnológica de Querétaro, Av. Pie de la Cuesta 2501, Nacional, 76148 Santiago de Querétaro, Qro., Mexico
| | - Sandra M Londoño-Restrepo
- Departamento de Nanotecnología, Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., C.P. 76230, Mexico
| | - Mario E Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., C.P. 76230, Mexico.
| |
Collapse
|
2
|
Calliari CM, Shirai MA, Casazza AA, Pettinato M, Perego P. Inulin as prebiotic encapsulating agent for the production of spray-dried Hibiscus sabdariffa L. tea microcapsules. Nat Prod Res 2024; 38:3311-3320. [PMID: 37585694 DOI: 10.1080/14786419.2023.2244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Due to the high content of phenolics and anthocyanins of Hibiscus sabdariffa L. tea and the sensibility of these bioactive compounds, this work aimed to optimize the obtention of microcapsules by spray-drying, using inulin as a carrier agent. Using a Box-Behnken Design, the effects of inlet temperature (130, 150, and 170 °C), feed flow rate (5, 10, and 15 mL min-1), and inulin concentration (5, 10, and 15 g L-1) were evaluated. It was possible to obtain pale-rose, slightly sweet instant powders with good total polyphenol content (1.12 mgGAE g-1) and anthocyanins encapsulation efficiency (32.3-60.6%), besides moisture (4.61-17.79%) and water activity (0.221-0.501), indicating physico-chemical and microbiological stability of the microcapsules. A simultaneous optimization with the desirability function was performed to maximize all the response variables analyzed, and the optimum conditions of 5 g L-1 of inulin, inlet temperature of 170 °C, and feed flow rate of 83 mL min-1 were found.
Collapse
Affiliation(s)
- Caroline Maria Calliari
- Academic Department of Food (DAALM), Technological Federal University of Parana, Londrina, Brazil
| | - Marianne Ayumi Shirai
- Academic Department of Food (DAALM), Technological Federal University of Parana, Londrina, Brazil
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Xiao Y, Liu Z, Gu H, Yang L, Liu T, Tian H. Preparation and characterization of a modified Canna starch as a wall material for the encapsulation of methyleugenol improves its antifungal activity against Fusarium trichothecioides. Food Chem 2024; 433:137324. [PMID: 37683464 DOI: 10.1016/j.foodchem.2023.137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
In this study, α-amylase (α-A) and 2-octenylsuccinic anhydride (OSA)-modified Canna starch (Cs) were prepared and characterized as wall materials and encapsulated with methyleugenol (α-A-OSA-Cs-methyleugenol); their in vitro antifungal activity against Fusarium trichothecioides (F. trichothecioides) was also investigated. The encapsulation efficiency under optimal encapsulation conditions was 83.98%. The results of particle size, polydispersity index (PDI), zeta potential, electron scanning microscopy and Fourier transform infrared spectroscopy showed that the modified Cs had superior physicochemical properties; it was also demonstrated that methyleugenol successfully entered the pores of Cs. The in vitro release study showed that α-A-OSA-Cs could effectively reduce their volatility under different temperature environments. α-A-OSA-Cs have excellent performance as slow-release wall materials, and after encapsulation with methyleugenol, the inhibition ability of F. trichothecioides mycelium growth was dose-dependent and improved, extending the shelf life of potatoes, which has good commercial value in the field of slow-release preservatives.
Collapse
Affiliation(s)
- Yao Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Hao Tian
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
4
|
M’be CU, Scher J, Gaiani C, Amani NG, Burgain J. Impact of Processing and Physicochemical Parameter on Hibiscus sabdariffa Calyxes Biomolecules and Antioxidant Activity: From Powder Production to Reconstitution. Foods 2023; 12:2984. [PMID: 37627982 PMCID: PMC10453219 DOI: 10.3390/foods12162984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint. Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods comprising drying and powdering. However, its properties can often be altered during these stabilization processes. Treatments such as dehumidified-air-drying, infrared drying, and oven-drying, and their combination showed better quality preservation. Moreover, powder production enables superior biomolecule extractability which can be linked to a higher bioaccessibility. However, the required temperatures for powder production increase the bioactive molecules degradation leading to their antioxidant activity loss. To overcome this issue, ambient or cryogenic grinding could be an excellent method to improve the biomolecule bioavailability and accessibility if the processing steps are well mastered. To be sure to benefit from the final nutritional quality of the powder, such as the antioxidant activity of biomolecules, powders have to offer excellent reconstitutability which is linked to powder physicochemical properties and the reconstitution media. Typically, the finest powder granulometry and using an agitated low-temperature reconstitution media allow for improving anthocyanin extractability and stability. In this review, the relevant physicochemical and processing parameters influencing plant powder features from processing transformation to reconstitution will be presented with a focus on bioactive molecules and antioxidant activity preservation.
Collapse
Affiliation(s)
| | - Joël Scher
- LIBio, Université de Lorraine, 54000 Nancy, France (C.G.)
| | - Claire Gaiani
- LIBio, Université de Lorraine, 54000 Nancy, France (C.G.)
| | | | | |
Collapse
|
5
|
Čulina P, Zorić Z, Garofulić IE, Repajić M, Dragović-Uzelac V, Pedisić S. Optimization of the Spray-Drying Encapsulation of Sea Buckthorn Berry Oil. Foods 2023; 12:2448. [PMID: 37444186 DOI: 10.3390/foods12132448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to evaluate the effect of spray-drying parameters on the physicochemical properties of encapsulated sea buckthorn berry oil. Different carriers (gum arabic, β-cyclodextrin, and their mixture (1:1, w/w)), inlet air temperatures (120, 150, and 180 °C), and carrier-to-oil ratios (2, 3, and 4, w/w) were evaluated. The obtained powders were characterized in terms of the product yield (36.79-64.60%), encapsulation efficiency (73.08-93.18%), moisture content (0.23-3.70%), hygroscopicity (1.5-7.06 g/100 g), solubility (19.55-74.70%), bulk density (0.25-0.44 g/L), total carotenoid content (mg/100 g dm), and antioxidant capacity (871.83-1454.39 μmol TE/100 g dm). All physicochemical properties were significantly affected by the carrier-to-oil ratio and inlet air temperature. Higher carrier-to-oil ratios increased the product yield, encapsulation efficiency, solubility, and bulk density and decreased the powder hygroscopicity. Elevating the drying temperatures during spray drying also increased the product yield, encapsulation efficiency, and solubility, while it decreased the powder moisture content, total carotenoid content, and antioxidant capacity. Based on the physicochemical properties, the use of β-cyclodextrin as a carrier, a drying temperature of 120 °C, and a carrier-to-oil ratio of 4 were selected as optimal conditions for the production of sea buckthorn berry oil powder. The obtained powder is a valuable material for a wide range of applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Patricija Čulina
- Faculty of Food Technology and Biotechnology, University of Zagreb, P. Kasandrića 3, 23000 Zadar, Croatia
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, P. Kasandrića 3, 23000 Zadar, Croatia
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, P. Kasandrića 3, 23000 Zadar, Croatia
| |
Collapse
|
6
|
Díaz-Montes E. Wall Materials for Encapsulating Bioactive Compounds via Spray-Drying: A Review. Polymers (Basel) 2023; 15:2659. [PMID: 37376305 DOI: 10.3390/polym15122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Spray-drying is a continuous encapsulation method that effectively preserves, stabilizes, and retards the degradation of bioactive compounds by encapsulating them within a wall material. The resulting capsules exhibit diverse characteristics influenced by factors such as operating conditions (e.g., air temperature and feed rate) and the interactions between the bioactive compounds and the wall material. This review aims to compile recent research (within the past 5 years) on spray-drying for bioactive compound encapsulation, emphasizing the significance of wall materials in spray-drying and their impact on encapsulation yield, efficiency, and capsule morphology.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticoman, Ciudad de Mexico 07340, Mexico
| |
Collapse
|
7
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
8
|
Prosopis alba exudate gum as new carrier agent for obtaining powdered Hibiscus sabdariffa aqueous extracts by spray drying. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Homayoonfal M, Malekjani N, Baeghbali V, Ansarifar E, Hedayati S, Jafari SM. Optimization of spray drying process parameters for the food bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:5631-5671. [PMID: 36547397 DOI: 10.1080/10408398.2022.2156976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spray drying (SD) is one of the most important thermal processes used to produce different powders and encapsulated materials. During this process, quality degradation might happen. The main objective of applying optimization methods in SD processes is maximizing the final nutritional quality of the product besides sensory attributes. Optimization regarding economic issues might be also performed. Applying optimization approaches in line with mathematical models to predict product changes during thermal processes such as SD can be a promising method to enhance the quality of final products. In this review, the application of the response surface methodology (RSM), as the most widely used approach, is introduced along with other optimization techniques such as factorial, Taguchi, and some artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS). Also, probabilistic methods such as Monte Carlo are briefly introduced. Some recent case studies regarding the implementation of these methods in SD processes are also exemplified and discussed.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Vahid Baeghbali
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ansarifar
- Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Hedayati
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Fonseca-García A, Osorio BH, Aguirre-Loredo RY, Calambas HL, Caicedo C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr Polym 2022; 293:119744. [DOI: 10.1016/j.carbpol.2022.119744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
11
|
Calambás Pulgarin HL, Caicedo C, López EF. Effect of surfactant content on rheological, thermal, morphological and surface properties of thermoplastic starch (TPS) and polylactic acid (PLA) blends. Heliyon 2022; 8:e10833. [PMID: 36247174 PMCID: PMC9557894 DOI: 10.1016/j.heliyon.2022.e10833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
Abstract
Miscibility in biopolymeric blends is a critical process that requires evaluation of the effect of surfactants or coupling agents under conditions similar to processing. Different mixtures in the molten state of plasticized starch and polylactic acid in the presence of a surfactant (Tween 20) at different concentrations were studied. This allowed knowing the rheological, thermal and surface behavior of the mixtures. The results of the dynamic rheological analysis showed increases in viscosity in the presence of the surfactant, in which strong interactions were produced at high shear rates that reflect possible crosslinking between the polymer chains, in addition to intermolecular interactions that were evidenced in the infrared spectrum. Likewise, the storage and loss modulus showed transitions mainly from viscous to elastic typical for thermoplastics. The thermogravimetric analysis did not show significant changes between the mixtures. However, the calorimetric analysis showed changes in the crystallinity of the mixtures, the tensoactive promotes greater freedom of movement and rearrangements in the microstructure with decrease of interface between polymers, and less compaction of the material induced by the emulsion. Analysis derived from biopolymeric films against contact with water shows significant changes. Interaction with water in short times (in the order of minutes) according to the sessile drop technique, favors hydrophilicity by increasing the concentration of Tween 20. However, interaction with water for prolonged times (in the order of hours), shows that the absorption reaches saturation in samples a stabilization in the absorption is observed. The results demonstrate that the miscibility of PLA in AS was achieved in the presence of the tween, under conventional processing conditions. The stability of the different formulations allows the production of films for packaging and biomedical applications.
Collapse
|
12
|
de Moura SCSR, Schettini GN, Gallina DA, Dutra Alvim I. Microencapsulation of Hibiscus bioactives and its application in yogurt. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Marques Mandaji C, da Silva Pena R, Campos Chisté R. Encapsulation of bioactive compounds extracted from plants of genus Hibiscus: A review of selected techniques and applications. Food Res Int 2022; 151:110820. [PMID: 34980372 DOI: 10.1016/j.foodres.2021.110820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022]
Abstract
The genus Hibiscus includes more than 250 species, and many studies showed that these plants contain bioactive compounds with technological potential to be used in the development of functional foods. However, the instability of these compounds during typical food processing conditions, such as exposure to high temperatures, pH changes and presence of light and oxygen have stimulated the use of encapsulation techniques to increase their stability and applicability. Among the existing Hibiscus species, only H. sabdariffa, H. cannabinus, and H. acetosella have been investigated in encapsulation studies, being spray drying the most common method approached. Considering the high technological potential offered by the incorporation of encapsulated bioactive compounds from plants of the genus Hibiscus in food formulations, this review discusses key information of selected encapsulation techniques, which represents promising alternatives to increase food systems' stability and stimulate the design of new functional foods. Relevant gaps in the literature were also noticed, mainly the lack of systematic studies regarding the composition of bioactive compounds after encapsulation, instead of total determinations, and biological activities in different analytical systems, such as antioxidant, antimicrobial and anti-inflammatory properties as well as bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Carolina Marques Mandaji
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil; Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil; Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
14
|
Mendez-Montealvo G, Velazquez G, Fonseca-Florido HA, Morales-Sanchez E, Soler A. Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Influence of Sechium edule starch on the physical and chemical properties of multicomponent microcapsules obtained by spray-drying. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yaruro Cáceres NC, Suarez Mahecha H, de Francisco A, Vásquez Mejia SM, Diaz Moreno C. Physicochemical, thermal, microstructural and paste properties comparison of four achira (Canna edulis sp.) starch ecotypes. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Polysaccharide Matrices for the Encapsulation of Tetrahydrocurcumin-Potential Application as Biopesticide against Fusarium graminearum. Molecules 2021; 26:molecules26133873. [PMID: 34202905 PMCID: PMC8270288 DOI: 10.3390/molecules26133873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
Cereals are subject to contamination by pathogenic fungi, which damage grains and threaten public health with their mycotoxins. Fusarium graminearum and its mycotoxins, trichothecenes B (TCTBs), are especially targeted in this study. Recently, the increased public and political awareness concerning environmental issues tends to limit the use of traditional fungicides against these pathogens in favor of eco-friendlier alternatives. This study focuses on the development of biofungicides based on the encapsulation of a curcumin derivative, tetrahydrocurcumin (THC), in polysaccharide matrices. Starch octenylsuccinate (OSA-starch) and chitosan have been chosen since they are generally recognized as safe. THC has been successfully trapped into particles obtained through a spray-drying or freeze-drying processes. The particles present different properties, as revealed by visual observations and scanning electron microscopy. They are also different in terms of the amount and the release of encapsulated THC. Although freeze-dried OSA-starch has better trapped THC, it seems less able to protect the phenolic compound than spray-dried particles. Chitosan particles, both spray-dried and lyophilized, have shown promising antifungal properties. The IC50 of THC-loaded spray-dried chitosan particles is as low as 0.6 ± 0.3 g/L. These particles have also significantly decreased the accumulation of TCTBs by 39%.
Collapse
|
18
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
19
|
|
20
|
Jiang G, Ameer K, Eun JB. Encapsulation of hot air-dried asian pear powders using rice bran dietary fiber. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Quintero‐Castaño VD, Vasco‐Leal JF, Cuellar‐Nuñez L, Luzardo‐Ocampo I, Castellanos‐Galeano F, Álvarez‐Barreto C, Bello‐Pérez LA, Cortés‐Rodriguez M. Novel OSA‐Modified Starch from Gros Michel Banana for Encapsulation of Andean Blackberry Concentrate: Production and Storage Stability. STARCH-STARKE 2020. [DOI: 10.1002/star.202000180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Victor Dumar Quintero‐Castaño
- Programa de Doctorado en Ingeniería Facultad de Ingeniería Universidad de Caldas Calle 65 No. 26‐10 Manizales Caldas 275 Colombia
- Programa de Ingeniería de Alimentos Facultad de Ciencias Agroindustriales Universidad del Quindío Carrera 15 #12N, Edificio F. Armenia 630004 Colombia
| | - José Fernando Vasco‐Leal
- Posgrado de Gestión Tecnológica e Innovación Universidad Autónoma de Querétaro Cerro de las campanas s/n Santiago de Querétaro Qro 76010 México
| | - Liceth Cuellar‐Nuñez
- Facultad de Medicina Universidad Autonoma de Querétaro Clavel 200, Prados de la Capilla Santiago de Queretaro 76176 Mexico
| | - Ivan Luzardo‐Ocampo
- PROPAC Research and Graduate Program in Food Science School of Chemistry Universidad Autónoma de Querétaro Santiago de Querétaro Qro 76010 Mexico
| | - Francisco Castellanos‐Galeano
- Programa de Doctorado en Ingeniería Facultad de Ingeniería Universidad de Caldas Calle 65 No. 26‐10 Manizales Caldas 275 Colombia
- Departamento de Ingeniería Facultad de Ingenierías Universidad de Caldas Calle 65 No. 26‐10 Manizales Caldas 275 Colombia
| | - Cristina Álvarez‐Barreto
- Programa de Doctorado en Ingeniería Facultad de Ingeniería Universidad de Caldas Calle 65 No. 26‐10 Manizales Caldas 275 Colombia
- Departamento de Ingeniería Facultad de Ingenierías Universidad de Caldas Calle 65 No. 26‐10 Manizales Caldas 275 Colombia
| | - Luis Arturo Bello‐Pérez
- Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional Km 8.5, Carretera Yautepec‐Jojutla, Colonia San Isidro Morelos 62731 Mexico
| | - Misael Cortés‐Rodriguez
- Departamento de Ingeniería Agrícola y Alimentos Facultad de Ciencias Agrarias Universidad Nacional de Colombia Medellin Antioquia 050034 Colombia
| |
Collapse
|
22
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
23
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|
24
|
Boyano-Orozco L, Gallardo-Velázquez T, Meza-Márquez OG, Osorio-Revilla G. Microencapsulation of Rambutan Peel Extract by Spray Drying. Foods 2020; 9:foods9070899. [PMID: 32650520 PMCID: PMC7404713 DOI: 10.3390/foods9070899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
Microencapsulation of bioactive compounds (BC) from rambutan peel by spray drying using DE10 maltodextrin as encapsulating agent was performed. The optimal conditions for the ethanolic extraction of BC were 60 °C, with a time of 1 h, 55% aqueous ethanol and three extraction cycles. The best spray drying encapsulating conditions for BC and antioxidant capacity (AC) were: inlet temperature 160 °C, outlet temperature 80 °C, and 10% encapsulating agent concentration in the feeding solution (core:encapsulating agent ratio of 1:4). With these conditions, retention and encapsulation efficiencies obtained were higher than 85%, the water activity value, moisture content and Hausner Index were of 0.25 ± 0.01, 3.95 ± 0.10%, and 1.42 ± 0.00, respectively. The optimized powder presented good solubility and morphological properties, showing microcapsules without ruptures. Based on these results, microencapsulation by spray drying is a viable technique which protects BC of rambutan peel, facilitating its application in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Luis Boyano-Orozco
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Ciudad de México CP. 07738, Mexico; (L.B.-O.); (O.G.M.-M.)
| | - Tzayhrí Gallardo-Velázquez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N. Col. Santo Tomás, Ciudad de México CP. 11340, Mexico;
| | - Ofelia Gabriela Meza-Márquez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Ciudad de México CP. 07738, Mexico; (L.B.-O.); (O.G.M.-M.)
| | - Guillermo Osorio-Revilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Ciudad de México CP. 07738, Mexico; (L.B.-O.); (O.G.M.-M.)
- Correspondence: or ; Tel.: +52-(55)-5729-6000 (ext. 57817)
| |
Collapse
|
25
|
Coimbra PPS, Cardoso FDSN, Gonçalves ÉCBDA. Spray-drying wall materials: relationship with bioactive compounds. Crit Rev Food Sci Nutr 2020; 61:2809-2826. [DOI: 10.1080/10408398.2020.1786354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pedro Paulo Saldanha Coimbra
- Laboratory of Bioactives, Food and Nutrition Post-Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
26
|
Martins DRDS, Sanjinez‐Argandoña EJ, Ortega NDF, Garcia VADS, Oliveira VS, Cardoso CAL. Production and characterization of
Hibiscus sabdariffa
by spray dryer using different sprinkler nozzles and carrier agents. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Denise Rubinho dos Santos Martins
- Faculty of Biological and Environmental Sciences, General Biology/Bioprospecting FCBA / Federal University of Great Dourados (UFGD) Dourados Brazil
| | - Eliana Janet Sanjinez‐Argandoña
- Faculty of Biological and Environmental Sciences, General Biology/Bioprospecting FCBA / Federal University of Great Dourados (UFGD) Dourados Brazil
| | - Nailene de Freitas Ortega
- Faculty of Biological and Environmental Sciences, General Biology/Bioprospecting FCBA / Federal University of Great Dourados (UFGD) Dourados Brazil
| | - Vitor Augusto dos Santos Garcia
- Faculty of Biological and Environmental Sciences, General Biology/Bioprospecting FCBA / Federal University of Great Dourados (UFGD) Dourados Brazil
| | | | | |
Collapse
|
27
|
Use of a Taguchi Design in Hibiscus sabdariffa Extracts Encapsulated by Spray-Drying. Foods 2020; 9:foods9020128. [PMID: 31991688 PMCID: PMC7073635 DOI: 10.3390/foods9020128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/26/2023] Open
Abstract
Aqueous and ethanolic extracts of Hibiscus sabdariffa were spray-dried using maltodextrin (MD) and gum arabic (GA) as carrier agents. A Taguchi L8 experimental design with seven variables was implemented. Physicochemical properties in the encapsulates were evaluated by Ultraviolet-Visible (UV-Vis,) X-ray Diffraction (XRD), spectroscopy and gravimetric techniques. Treatments with aqueous extracts showed the highest concentration of total soluble polyphenols (TSP) 32.12-21.23 mg equivalent gallic acid (EAG)/g dry weight (DW), and antioxidant capacity (AOX) in the 2,2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) assay. The best treatment for TSP and AOX was T4: 2.5% Hibiscus w/w, aqueous extract, decoction, extract-to-carrier ratio 1:1 (w/w), proportion to carriers (MD:GA) 80:20 (w/w), 10,000 rpm, 150 °C. The Taguchi L8 design is a tool that allows the use of multiple variables with a low number of treatments that indicate the drying conditions that give the best parameters, focusing mainly on TSP and AOX, also, it is a good alternative for the preservation and stability of the phenolic compoudns in Hibiscus.
Collapse
|
28
|
García-Gurrola A, Rincón S, Escobar-Puentes AA, Zepeda A, Martínez-Bustos F. Microencapsulation of Red Sorghum Phenolic Compounds with Esterified Sorghum Starch as Encapsulant Materials by Spray Drying. Food Technol Biotechnol 2019; 57:341-349. [PMID: 31866747 PMCID: PMC6902300 DOI: 10.17113/ftb.57.03.19.6146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phenolic compounds with antioxidant properties are highly sensitive molecules, which limits their application. In response, extruded esterified starch has been proposed as efficient encapsulating material. In this work, we aim to describe the encapsulation of red sorghum phenolic compounds by spray drying using extruded phosphorylated, acetylated and double esterified sorghum starch as wall material. Their respective encapsulation yields were 77.4, 67.4 and 56.8%, and encapsulation efficiency 91.4, 89.7 and 84.6%. Degree of substitution confirmed esterification of the sorghum starch and Fourier transform infrared spectroscopy showed the significant chemical and structural changes in the extruded esterified starch loaded with phenolic compounds. Microcapsules from phosphorylated sorghum starch showed the highest endothermic transition (173.89 °C) and provided a greater protection of the phenolic compounds during storage at 60 °C for 35 days than the other wall materials. Extruded esterified sorghum starch proved to be effective material for the protection of phenolic compounds due to its high encapsulation efficiency and stability during storage.
Collapse
Affiliation(s)
- Adriana García-Gurrola
- National Technological Institute of Mexico/I.T. Mérida, Av. Tecnológico km 4.5 S/N, C.P. 97118 Merida, Yucatan, Mexico
| | - Susana Rincón
- National Technological Institute of Mexico/I.T. Mérida, Av. Tecnológico km 4.5 S/N, C.P. 97118 Merida, Yucatan, Mexico
| | - Alberto A Escobar-Puentes
- National Technological Institute of Mexico/I.T. Mérida, Av. Tecnológico km 4.5 S/N, C.P. 97118 Merida, Yucatan, Mexico
| | - Alejandro Zepeda
- Autonomous University of Yucatan, Periferico Norte kilómetro 33.5, Chuburna de Hidalgo Inn, C.P. 97203 Mérida, Yucatan, Mexico
| | - Fernando Martínez-Bustos
- Center for Research and Advanced Studies of the IPN, campus Queretaro Libramiento Norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Queretaro, Mexico
| |
Collapse
|
29
|
Vargas-León EA, Falfan-Cortes RN, Navarro-Cortez RO, Hernández-Ávila J, Castro-Rosas J, Gómez-Aldapa CA. Double chemical modification in rice starch: acid hydrolysis optimization process and phosphating. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1624623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Enaim Aída Vargas-León
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Reyna Nallely Falfan-Cortes
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
- Cátedra CONAyT, México, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Ricardo Omar Navarro-Cortez
- Área Académica de Ingeniería Agroindustrial e Ingeniería en Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Juan Hernández-Ávila
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Javier Castro-Rosas
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Carlos Alberto Gómez-Aldapa
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|