1
|
Ullah I, Uddin S, Zhao L, Wang X, Li H. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson's disease. Exp Brain Res 2024:10.1007/s00221-023-06765-9. [PMID: 38430248 DOI: 10.1007/s00221-023-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/11/2023] [Indexed: 03/03/2024]
Abstract
The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Yu D, Guo M, Tan M, Su W. Lipid-Lowering and Antioxidant Effects of Self-Assembled Astaxanthin-Anthocyanin Nanoparticles on High-Fat Caenorhabditis elegans. Foods 2024; 13:514. [PMID: 38397491 PMCID: PMC10887880 DOI: 10.3390/foods13040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity has become a serious global public health risk threatening millions of people. In this study, the astaxanthin-anthocyanin nanoparticles (AXT-ACN NPs) were used to investigate their effects on the lipid accumulation and antioxidative capacity of the high-sugar-diet-induced high-fat Caenorhabditis elegans (C. elegans). It can be found that the lifespan, motility, and reproductive capacity of the high-fat C. elegans were significantly decreased compared to the normal nematodes in the control group. However, treatment of high-fat C. elegans with AXT-ACN NPs resulted in a prolonged lifespan of 35 days, improved motility, and a 22.06% increase in total spawn production of the nematodes. Furthermore, AXT-ACN NPs were found to effectively extend the lifespan of high-fat C. elegans under heat and oxidative stress conditions. Oil-red O staining results also demonstrated that AXT-ACN NPs have a remarkable effect on reducing the fat accumulation in nematodes, compared with pure astaxanthin and anthocyanin nanoparticles. Additionally, AXT-ACN NPs can significantly decrease the accumulation of lipofuscin and the level of reactive oxygen species (ROS). The activities of antioxidant-related enzymes in nematodes were further measured, which revealed that the AXT-ACN NPs could increase the activities of catalase (CAT), superoxidase dismutase (SOD), and glutathione peroxidase (GSH-Px), and decrease the malondialdehyde (MDA) content. The astaxanthin and anthocyanin in AXT-ACN NPs showed sound synergistic antioxidation and lipid-lowering effects, making them potential components in functional foods.
Collapse
Affiliation(s)
- Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Guo
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Sun S, Zhang X, Li J, Li Y, Zhou C, Xiang S, Tan M. Preparation and evaluation of ovalbumin-fucoidan nanoparticles for nicotinamide mononucleotide encapsulation with enhanced stability and anti-aging activity. Food Chem 2023; 418:135982. [PMID: 36996645 DOI: 10.1016/j.foodchem.2023.135982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Nicotinamide mononucleotide (NMN) has been recognized as a promising bio-active compound in relieving aging-related mitochondrial dysfunction. Self-assembled nanoparticles were prepared based on interaction between ovalbumin (OVA) and fucoidan to improve the stability and bio-accessibility of NMN. The OVA-fucoidan nanoparticles (OFNPs) displayed outstanding thermal stability and entrapment ability of NMN. The reactive oxygen species (ROS) analysis and senescence-associated β-galactosidase (SA-β-gal) staining characterization indicated that NMN encapsulated by OFNPs could effectively alleviate the cellular senescence of d-galactose-induced senescent cells. In vivo Caenorhabitis elegans experiment demonstrated that NMN-loaded OFNPs caused less accumulation of lipofuscin and protected NMN from thermal damage. Compared with free NMN, the NMN-loaded OFNPs prolonged lifespan from 28 to 31 days, increased 26% reproductive ability, and improved 12% body length of Caenorhabitis elegans. The results indicated that the use of nanocarriers could be a good strategy to improve anti-oxidative stress and anti-aging ability of NMN.
Collapse
Affiliation(s)
- Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang M, Chen S, Dai Y, Duan T, Xu Y, Li X, Yang J, Zhu X. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans. Food Funct 2021; 12:9912-9921. [PMID: 34486601 DOI: 10.1039/d1fo01579f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aspartame (ASP) and sucralose (SUC) are non-nutritive sweeteners which are widely consumed worldwide. They are considered safe for human consumption, but their effects on certain physiological aspects, such as the lifespan or health status, of the organism have not yet been studied in depth and only limited data are available in the literature. The objectives of this study were to evaluate the effects of ASP and SUC on the lifespan and health indexes using Caenorhabditis elegans (C. elegans) as a model system. Interestingly, it was shown that at the concentrations tested, ASP (0.03-3 mg mL-1) showed an increasing trend of the mean lifespan of C. elegans, with a significant increase of 27.6% compared to the control at 3 mg mL-1. Similarly, SUC (ranging from 0.03 to 10 mg mL-1) also significantly increased the mean lifespan by 20.3% and 22.3% at 0.03 and 0.3 mg mL-1, respectively. However, 10 mg mL-1 SUC had a negative effect on the lifespan, though it did not reach a statistically significant level. In addition, ASP and SUC decreased lipofuscin accumulation and transiently improved motility, indicating improved health status. Nonetheless, they had different effects on food intake and intestinal fat deposition (IFD) at different intervals of time. Taken together, our findings revealed that ASP and SUC can prolong the lifespan and improve the health status of C. elegans.
Collapse
Affiliation(s)
- Mohan Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China.,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China
| | - Yuhua Dai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Ting Duan
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yuying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiaolin Li
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs district, Shanghai 200135, China
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China. .,Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinqiang Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China. .,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Red Cabbage Rather Than Green Cabbage Increases Stress Resistance and Extends the Lifespan of Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:antiox10060930. [PMID: 34201067 PMCID: PMC8228718 DOI: 10.3390/antiox10060930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Many studies have demonstrated that cabbages possess various biological activities, and our previous studies confirmed that cyanidin-3-diglucoside-5-glucoside (CY3D5G), the major core of red cabbage anthocyanins, exhibited in vitro antioxidant activity. This study further investigated the protective effects of CY3D5G derivative from red cabbage juice (RCJ) on oxidative stress and lifespan in cells and Caenorhabditis elegans, green cabbage juice (GCJ) was used as control. RCJ rather than GCJ significantly improved cell viability and decreased lactate dehydrogenase release in H2O2-induced caco-2 cells. RCJ significantly increased survival during oxidative and heat stress and mean lifespan in C. elegans by 171.63% and 31.64%, and 28.16%, respectively, while GCJ treatment showed no significant effects (p < 0.05). These results might be attributed to significantly (p < 0.05) higher contents of total phenolics, ascorbic acid, glucosinolates, and anthocyanins in RCJ compared to those in GCJ. Additionally, both of them decreased autofluorescence and reproductive capacity, increased body length, but did not alter the intracellular ROS level. Prolonged lifespan by RCJ might require heat-shock transcription factor pathway, sirtuin signaling, and calmodulin kinase II pathway, independent of insulin/insulin-like growth factor-1 signaling pathway. RCJ showed promising antioxidant properties in caco-2 cells and C. elegans, which provided more information on the health benefits of cabbage.
Collapse
|
8
|
Sandner G, König A, Wallner M, Weghuber J. Alternative model organisms for toxicological fingerprinting of relevant parameters in food and nutrition. Crit Rev Food Sci Nutr 2021; 62:5965-5982. [PMID: 33683153 DOI: 10.1080/10408398.2021.1895060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the field of (food) toxicology, there is a strong trend of replacing animal trials with alternative methods for the assessment of adverse health effects in humans. The replacement of animal trials is not only driven by ethical concerns but also by the number of potential testing substances (food additives, packaging material, contaminants, and toxicants), which is steadily increasing. In vitro 2D cell culture applications in combination with in silico modeling might provide an applicable first response. However, those systems lack accurate predictions of metabolic actions. Thus, alternative in vivo models could fill the gap between cell culture and animal trials. In this review, we highlight relevant studies in the field and spotlight the applicability of alternative models, including C. elegans, D. rerio, Drosophila, HET-CAM and Lab-on-a-chip.
Collapse
Affiliation(s)
- Georg Sandner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Alice König
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Melanie Wallner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| |
Collapse
|
9
|
Zhao X, Zhang X, Tie S, Hou S, Wang H, Song Y, Rai R, Tan M. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|