1
|
Park J, Park JD, Sung JM. Effects of fermentation with Lactobacillus plantarum on rice flour: The role of granular characteristics. Food Chem 2025; 464:141615. [PMID: 39418953 DOI: 10.1016/j.foodchem.2024.141615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
This study examined the effects of lactic acid bacteria fermentation on the physicochemical and functional properties of the flours from two rice varieties, Shindongjin (SF) and Hitomebore (HF), both with similar amylose content. Fermentation with Lactobacillus plantarum over 48 h resulted in significant changes. Protein content decreased substantially in both varieties, especially in SF, and amylose content increased. Swelling power and solubility also increased more in SF. The gel hardness of fermented SF increased by approximately 22 %, whereas HF showed minimal change. These differences are due to variations in granule rigidity and starch molecule leaching. SF granules maintained rigidity and a robust external network due to higher amylose leaching. In contrast, the lower initial rigidity and higher amylopectin leaching in HF hindered strong gel network formation. These findings offer insights into the structural and molecular mechanisms of rice fermentation with lactic acid bacteria.
Collapse
Affiliation(s)
- Jiwoon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong-Dae Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung Min Sung
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
2
|
Mudau M, Chinma CE, Ledbetter M, Wilkin J, Adebo OA. Gas chromatography-mass spectrometry analysis of metabolites in finger millet and Bambara groundnut as affected by traditional and novel food processing. J Food Sci 2024; 89:6394-6412. [PMID: 39219001 DOI: 10.1111/1750-3841.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Metabolite profiling is an analytical technique used to assess metabolites in complex biological samples. This technique allows for the identification of both targeted and untargeted metabolites. In this study, the effect of traditional (fermentation and malting) and novel processing (ultrasonication) on the metabolites of finger millet (FM) and Bambara groundnut (BGN) flour was investigated using gas chromatography-mass spectrometry. Various metabolite classes, including amino acids, alcohol, aldehyde, organic acid, ester, fatty acids, glycoside, and sugar, were identified in FM and BGN flours. The adopted processing techniques impacted metabolite composition, as evidenced by substantial variations in volatile compound levels and metabolite composition among the FM and BGN samples before and after traditional and novel processing. Important health-promoting compounds, such as oleic acid, linoelaidic acid, and linoleic acid, were identified at their highest levels in fermented FM and BGN flours. The results obtained from this study offer an important context for monitoring and regulating the metabolite composition of FM and BGN flours under traditional and novel processing. PRACTICAL APPLICATION: Fermentation, malting, and ultrasonication induced desirable changes in some health-promoting compounds of finger millet and Bambara groundnut flours. The food and pharmaceutical industries could benefit from these traditional- and novel-modified flours as they could be used as improved food sources with health benefits.
Collapse
Affiliation(s)
- Masala Mudau
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Chiemela Enyinnaya Chinma
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| |
Collapse
|
3
|
He Y, Lai H, Liang J, Cheng L, He L, Wang H, Teng Q, Cai W, Wang R, Zhu L, Pang Z, Zhang D, Dong X, Gao C. Optimization Co-Culture of Monascus purpureus and Saccharomyces cerevisiae on Selenium-Enriched Lentinus edodes for Increased Monacolin K Production. J Fungi (Basel) 2024; 10:503. [PMID: 39057388 PMCID: PMC11277982 DOI: 10.3390/jof10070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium-enriched Lentinus edodes (SL) is a kind of edible fungi rich in organic selenium and nutrients. Monascus purpureus with high monacolin K (MK) production and Saccharomyces cerevisiae were selected as the fermentation strains. A single-factor experiment and response surface methodology were conducted to optimize the production conditions for MK with higher contents from selenium-enriched Lentinus edodes fermentation (SLF). Furthermore, we investigated the nutritional components, antioxidant capacities, and volatile organic compounds (VOCs) of SLF. The MK content in the fermentation was 2.42 mg/g under optimal fermentation conditions. The organic selenium content of SLF was 7.22 mg/kg, accounting for 98% of the total selenium content. Moreover, the contents of total sugars, proteins, amino acids, reducing sugars, crude fiber, fat, and ash in SLF were increased by 9%, 23%, 23%, 94%, 38%, 44%, and 25%, respectively. The antioxidant test results demonstrated that 1.0 mg/mL of SLF exhibited scavenging capacities of 40%, 70%, and 79% for DPPH, ABTS, and hydroxyl radicals, respectively. Using gas chromatography-ion mobility spectrometry technology, 34 unique VOCs were identified in SLF, with esters, alcohols, and ketones being the main components of its aroma. This study showed that fungal fermentation provides a theoretical reference for enhancing the nutritional value of SL.
Collapse
Affiliation(s)
- Yi He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huafa Lai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinxiao Liang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| | - Lu Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lixia He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| | - Haolin Wang
- Suixian Public Inspection and Testing Center, Suizhou 441300, China;
| | - Qingqing Teng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjing Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Wang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lisha Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhengbin Pang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| | - Dafu Zhang
- Hubei Hongyang Ecological Technology Co., Ltd., Suizhou 441300, China;
- Hubei Hetai Food Co., Ltd., Suizhou 441300, China
| | - Xingxing Dong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Hubei Zhongxing Food Co., Ltd., Suizhou 441300, China
| | - Chao Gao
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| |
Collapse
|
4
|
Zhang Z, Xu Y, Li X, Chi L, Li Y, Xu C, Mu G, Zhu X. Modulating Whey Proteins Antigenicity with Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 Metabolites: Insights from Spectroscopic and Molecular Docking Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15198-15212. [PMID: 38941263 DOI: 10.1021/acs.jafc.3c08874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and β-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and β-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and β-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and β-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - YunPeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinling Li
- Xinjiang Tianrun Biol Technol Co., Ltd., Urumqi 830011, China
| | - Lei Chi
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Yue Li
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Chao Xu
- Dalian Municipal Women and Children's Medical Center Group, Dalian 116012, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Wang H, Zhang Y, Dai L, Bo X, Liu X, Zhao X, Yu J, Kwok LY, Bao Q. Metabolomic Differences between Viable but Nonculturable and Recovered Lacticaseibacillus paracasei Zhang. Foods 2023; 12:3472. [PMID: 37761181 PMCID: PMC10527867 DOI: 10.3390/foods12183472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The fermentation process can be affected when the starter culture enters the viable but nonculturable (VBNC) state. Therefore, it is of interest to investigate how VBNC cells change physiologically. Lacticaseibacillus (L.) paracasei Zhang is both a probiotic and a starter strain. This study aimed to investigate the metabolomic differences between VBNC and recovered L. paracasei Zhang cells. First, L. paracasei Zhang was induced to enter the VBNC state by keeping the cells in a liquid de Man-Rogosa-Sharpe (MRS) medium at 4 °C for 220 days. Flow cytometry was used to sort the induced VBNC cells, and three different types of culture media (MRS medium, skim milk with 1% yeast extract, and skim milk) were used for cell resuscitation. Cell growth responses in the three types of recovery media suggested that the liquid MRS medium was the most effective in reversing the VBNC state in L. paracasei Zhang. Metabolomics analysis revealed 25 differential metabolites from five main metabolite classes (amino acid, carbohydrate, lipid, vitamin, and purine and pyrimidine). The levels of L-cysteine, L-alanine, L-lysine, and L-arginine notably increased in the revived cells, while cellulose, alginose, and guanine significantly decreased. This study confirmed that VBNC cells had an altered physiology.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuhong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lixia Dai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyu Bo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiangyun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Cai WQ, Jiang CY, Shang S, Wang SC, Zhu KY, Dong XP, Zhou DY, Jiang PF. Insight into the relationship between metabolite dynamic changes and microorganisms of sea urchin ( S. intermedius) gonads during storage. Food Chem X 2023; 18:100727. [PMID: 37397197 PMCID: PMC10314180 DOI: 10.1016/j.fochx.2023.100727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Sea urchin gonads have high nutritional value and degenerate rapidly during storage. Previous assessment of the freshness of sea urchin gonads was based on experience without valid biochemical indicators. Thus, the current study is to find biochemical indicators representing the freshness of sea urchin gonads. Results showed that the dominant genera of sea urchin gonads were changed from Psychromonas, Ralstonia, and Roseimarinus to Aliivibrio, Psychrilyobacter, and Photobacterium. The differential metabolites of sea urchin gonads were mainly produced through amino acids metabolism. Among them, GC-TOF-MS based differential metabolites had the greatest enrichment in the valine, leucine and isoleucine biosynthesis pathway, while LC-MS based differential metabolites had the greatest enrichment in the alanine, aspartate and glutamate metabolism pathway. The growth of dominant genus (Aliivibrio) had a great influence on the production of differential metabolites. These results will provide valuable information for accurately judging the freshness and shelf life of sea urchin gonads.
Collapse
Affiliation(s)
- Wen-qiang Cai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Cai-yan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shan Shang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shu-chen Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Kai-yue Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xiu-ping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Da-yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Peng-fei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| |
Collapse
|
7
|
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, Lorenzo JM. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol Res 2023; 268:127289. [PMID: 36571922 DOI: 10.1016/j.micres.2022.127289] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) strains are one of the lactic acid bacteria (LAB) commonly used in fermentation and their probiotic and functional properties along with their health-promoting roles come to the fore. Food-derived L. plantarum strains have shown good resistance and adhesion in the gastrointestinal tract (GI) and excellent antioxidant and antimicrobial properties. Furthermore, many strains of L. plantarum can produce bacteriocins with interesting antimicrobial activity. This probiotic properties of L. plantarum and existing in different niches give a great potential to have beneficial effects on health. It is also has been shown that L. plantarum can regulate the intestinal microbiota composition in a good way. Recently, omics approaches such as metabolomics, secretomics, proteomics, transcriptomics and genomics try to understand the roles and mechanisms of L. plantarum that are related to its functional characteristics. This review provides an overview of the probiotic properties, including the specific interactions between microbiota and host, and omics insights of L. plantarum.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey
| | - Heena Sharma
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnāl, Haryana, 132001, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
8
|
Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sensory characteristics and flavour profiles of lactic-acid-fermented foods are influenced by lactic acid bacteria (LAB) metabolic activities. The flavour compounds released/produced are directly linked to the sensory characteristics of fermented cereals. African fermented cereals constitute a staple, frequently consumed food group and provide high energy and essential nutrients to many communities on the continent. The flavour and aroma characteristics of fermented cereal products could be correlated with the metabolic pathways of fermenting microorganisms. This report looks at the comprehensive link between LAB-produced flavour metabolites and sensory attributes of African fermented cereals by reviewing previous studies. The evaluation of such data may point to future prospects in the application of flavour compounds derived from African fermented cereals in various food systems and contribute toward the improvement of flavour attributes in existing African fermented cereal products.
Collapse
|
9
|
Adelusi OA, Gbashi S, Adebiyi JA, Makhuvele R, Adebo OA, Aasa AO, Targuma S, Kah G, Njobeh PB. Variability in metabolites produced by Talaromyces pinophilus SPJ22 cultured on different substrates. Fungal Biol Biotechnol 2022; 9:15. [PMID: 36307838 PMCID: PMC9617411 DOI: 10.1186/s40694-022-00145-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS. RESULTS The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA. CONCLUSION Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Adeola Oluwakemi Aasa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Sarem Targuma
- Department of Chemistry, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Glory Kah
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O.BOX 17011, Gauteng, South Africa
| |
Collapse
|
10
|
Yang X, Hu W, Xiu Z, Ji Y, Guan Y. Interactions between Leu. mesenteroides and L. plantarum in Chinese northeast sauerkraut. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Zheng S, Wu W, Zhang Y, Hu P, Li J, Jiang J. Improvement of tomato sour soup fermentation by
Lacticaseibacillus casei
H1
addition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shasha Zheng
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Wenyan Wu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Yulong Zhang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Ping Hu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Juan Li
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Jingzhu Jiang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| |
Collapse
|
12
|
Characterization of metabolite, genome and volatile organic compound changes provides insights into the spoilage and cold adaptive markers of Acinetobacter johnsonii XY27. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Zhang J, Liu H, Sun R, Zhao Y, Xing R, Yu N, Deng T, Ni X, Chen Y. Volatolomics approach for authentication of not-from-concentrate (NFC) orange juice based on characteristic volatile markers using headspace solid phase microextraction (HS-SPME) combined with GC-MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020063] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fermented food products, especially those derived from cereals and legumes are important contributors to diet diversity globally. These food items are vital to food security and significantly contribute to nutrition. Fermentation is a process that desirably modifies food constituents by increasing the palatability, organoleptic properties, bioavailability and alters nutritional constituents. This review focuses on deciphering possible mechanisms involved in the modification of nutritional constituents as well as nutrient bioavailability during the fermentation of cereals and legumes, especially those commonly consumed in developing countries. Although modifications in these constituents are dependent on inherent and available nutrients in the starting raw material, it was generally observed that fermentation increased these nutritive qualities (protein, amino acids, vitamins, fats, fatty acids, etc.) in cereals and legumes, while in a few instances, a reduction in these constituents was noted. A general reduction trend in antinutritional factors was also observed with a corresponding increase in the nutrient bioavailability and bioaccessibility. Notable mechanisms of modification include transamination or the synthesis of new compounds during the fermentation process, use of nutrients as energy sources, as well as the metabolic activity of microorganisms leading to a degradation or increase in the level of some constituents. A number of fermented products are yet to be studied and fully understood. Further research into these food products using both conventional and modern techniques are still required to provide insights into these important food groups, as well as for an overall improved food quality, enhanced nutrition and health, as well as other associated socioeconomic benefits.
Collapse
|
15
|
Pan X, Zhang S, Xu X, Lao F, Wu J. Volatile and non-volatile profiles in jujube pulp co-fermented with lactic acid bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Yang X, Li J, Lai JL, Zhang Y, Luo XG. Adsorption and enrichment of U in a cellulase-producing Trichoderma sp. and its physiological response mechanism. CHEMOSPHERE 2022; 287:132173. [PMID: 34509764 DOI: 10.1016/j.chemosphere.2021.132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The cellulase produced by Trichoderma sp. was characterized by investigating the adsorption and enrichment of U and the physiological response to U exposure. The effects of U exposure (0 and 400 μM) on the growth, morphological characteristics, cellulase production, U adsorption, and U enrichment capacity of the Trichoderma strain were assessed. The effects of U exposure on the basic metabolism of this fungus were also analyzed by non-targeted metabolomics. Exposure to U (400 μM) for 24 h resulted in OD600 turbidity of 0.278, and activities of carboxymethyl cellulase (CMC), filter paper enzyme (FPA), and β-glucosidase of 12834 U·mL-1, 9285 U·mL-1, and 12574 U·mL-1, respectively. The measurement of the background α and β radioactivity showed an α activity concentration of 3.35 × 106 Bq·kg-1 in the fungus, a β activity concentration of 6.28 × 105 Bq·kg-1, and a U enrichment rate of 70.4 ± 4.5%. GC-MS metabolomics analysis identified a total of 319 metabolites (34 up-regulated and 30 down-regulated), which mainly caused the metabolic imbalance of organic acids and derivatives. The alanine, aspartate, and glutamate metabolic pathways were the most significantly enriched. Trichoderma sp. therefore has a strong ability to tolerate/accumulate U and continues to produce cellulase under U (400 μM) exposure. However, U interferes with the basic metabolism of this fungus.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Engineering Research Center of Biomass Materials, Ministry of Education of SWUST, Mianyang, 621010, China.
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
17
|
Abstract
Maize, together with its fermented products, is fundamental for human nutrition and animal feed globally. Non-alcoholic fermentation of maize using lactic acid bacteria (LAB) is one of the food preservation methods that has been utilised throughout the centuries and has played a vital role in the manufacturing of many fermented beverages consumed these days. However, the coincidence of LAB and yeasts during the spontaneous fermentation of maize-based products is inevitable. The involvement of other microorganisms such as moulds, Bacillus species and acetic acid bacteria in the fermentation of maize is important to the characteristics of the final product. Fermented beverages are affordable, have been produced traditionally and are known for their organoleptic properties, as well as their health-promoting compounds. The consumption of non-alcoholic beverages has the prospect of reducing the detrimental health and economic effects of a poor diet. Different fermented maize-based gruels and beverages such as ogi, mawe, banku and kenkey in West Africa, togwa in East Africa, as well as mahewu in South Africa have been documented. The physical and biochemical properties of most of these maize-based fermented products have been investigated and modified by various researchers. Attempts to enhance the nutritional properties of these products rely on supplementation with legumes to supply the insufficient amino acids. The production technology of these products has evolved from traditional to industrial production in recent years.
Collapse
|
18
|
GC-HRTOF-MS dataset of metabolites extracted from sorghum and ting (a fermented product) produced using two strains of Lactobacillus fermentum (singly and in combination). Data Brief 2021; 36:107102. [PMID: 34026987 PMCID: PMC8131565 DOI: 10.1016/j.dib.2021.107102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022] Open
Abstract
This data article reports the untargeted metabolite profile of whole grain sorghum (Sorghum bicolor L.) and fermented ting samples obtained using two strains of Lactobacillus fermentum. The sorghum grains were obtained from Agricol Johannesburg (South Africa) and fermentation was done at 34 °C for 24 h. Controlled fermentation with two Lactobacillus fermentum strains (L. fermentum FUA 3165 and L. fermentum FUA 3321), was done using the strains singly and in combination. The samples obtained thereafter were freeze-dried and acetonitrile/methanol/water (v/v/v) were used as extraction solvent, before analyses on a gas chromatography high resolution time of flight mass spectrometry (GC—HRTOF-MS) system. Data obtained showed the presence of different compounds, classified into metabolite groups such as acids, alcohols, benzenes, furan, esters, hydrocarbons, terpenes, phytosterols, etc., with their retention time, molecular formula, observed mass and average peak areas reported herein. These data can be used for finding biomarkers for sorghum and their derived fermented products.
Collapse
|
19
|
Adebiyi JA, Njobeh PB, Adebo OA, Kayitesi E. Metabolite profile of Bambara groundnut ( Vigna subterranea) and dawadawa (an African fermented condiment) investigation using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Heliyon 2021; 7:e06666. [PMID: 33889778 PMCID: PMC8050003 DOI: 10.1016/j.heliyon.2021.e06666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022] Open
Abstract
Metabolite profile provides an overview and avenue for the detection of a vast number of metabolites in food sample at a particular time. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of such techniques that can be utilized for profiling known and unknown compounds in a food sample. In this study, the metabolite profiles of Bambara groundnut and dawadawa (unhulled and dehulled) were investigated using GC-HRTOF-MS. The presence of varying groups of metabolites, including aldehydes, sterols, ketones, alcohols, nitrogen-containing compounds, furans, pyridines, acids, vitamins, fatty acids, sulphur-related compounds, esters, terpenes and terpenoids were reported. Bambara groundnut fermented into derived dawadawa products induced either an increase or decrease as well as the formation of some metabolites. The major compounds (with their peak area percentages) identified in Bambara groundnut were furfuryl ether (9.31%), bis (2-(dimethylamino)ethyl) ether (7.95%), 2-monopalmitin (7.88%), hexadecanoic acid, methyl ester (6.98%), 9,12-octadecadienoic acid (Z,Z) and 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.82%). For dehulled dawadawa, the significant compounds were palmitic acid, ethyl ester (17.7%), lauric acid, ethyl ester (10.2%), carbonic acid, 2-dimethylaminoethyl 2-methoxyethyl ester (7.3%), 9,12-octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester (5.13%) and maltol (4%), while for undehulled dawadawa, it was indoline, 2-(hydroxydiphenylmethyl) (26.1%), benzoic acid, 4-amino-4-hydroximino-2,2,6,6-tetramethyl-1-piperidinyl ester (8.2%), 2-undecen-4-ol (4.7%), 2-methylbutyl propanoate (4.7%) and ë-tocopherol (4.3%). These observed metabolites reported herein provides an overview of the metabolites in these investigated foods, some of which could be related to nutrition, bioactivity as well as sensory properties. It is important to emphasize that based on some of the metabolites detected, it could be suggested that Bambara groundnut and derived dawadawa might serve as functional foods that are beneficial to health.
Collapse
Affiliation(s)
- Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein Campus, Gauteng, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| |
Collapse
|
20
|
Ruan Y, Cai Z, Deng Y, Pan D, Zhou C, Cao J, Chen X, Xia Q. An untargeted metabolomic insight into the high-pressure stress effect on the germination of wholegrain Oryza sativa L. Food Res Int 2021; 140:109984. [PMID: 33648219 DOI: 10.1016/j.foodres.2020.109984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
High hydrostatic pressure (HHP) technique is used as a novel abiotic stress factor for efficiently enhancing the biosynthesis of selected bioactive phytochemicals in germinated wholegrain, but the information about HHP stress-induced metabolic changes remains rather limited. Thus, the current work employed an untargeted gas chromatography-mass spectrometry-based metabolomic approach combining with multivariate models to analyze the effect of mild HHP stress (30 MPa/5 min) on the overall metabolome shifts of wholegrain brown rice (WBR) during germination. Simultaneously, major phenolics in germinated WBR (GBR) were detected by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, to explore the potential relationship between HHP stress-induced rice metabolome alternations and the biotransformation of bioactive components. The results demonstrated that the influence of HHP stress on GBR metabolite profiles was defined by germination durations, as revealed by the differentiation of the stressed grains from the naturally germinated grains at different germination points according to principal component analysis. This was further confirmed by the results of orthogonal projections to latent structures discriminant analysis, in which the discriminating metabolites between naturally germinated and HHP-stressed grains varied across the germination process. The metabolite signatures differentiating natural and HHP-stressed germination included glycerol-3-phosphate, monosaccharides, gamma-aminobutyric acid, 2,3-butanediol, glyceryl-glycoside, amino acids and myo-inositol. Besides, HHP stress led to the increase in ribose, arabinitol, salicylic acid, azelaic acid and gamma-aminobutyric acid, as well as the reduced phenolic acids. These results demonstrated that HHP stress before germination matched with appropriate process parameters could be used as a promising technology to tailor metabolic features of germinated products, thus exerting targeted nutrition and health implications.
Collapse
Affiliation(s)
- Yifan Ruan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yun Deng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
21
|
Oyedeji AB, Green E, Adebiyi JA, Ogundele OM, Gbashi S, Adefisoye MA, Oyeyinka SA, Adebo OA. Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Res Int 2021; 140:110042. [PMID: 33648268 DOI: 10.1016/j.foodres.2020.110042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 12/13/2020] [Indexed: 12/30/2022]
Abstract
Metabolomics is a high precision analytical approach to obtaining detailed information of varieties of metabolites produced in biological systems, including foods. This study reviews the use of metabolomic approaches such as liquid chromatography mass spectrometry (LCMS), gas chromatography mass spectrometry (GC-MS), matrix assisted laser desorption /ionization tandem time of flight mass spectrometry (MALDI-TOF-MS) and nuclear magnetic resonance (NMR) for investigating the presence of foodborne pathogens and their metabolites. Pathogenic fungi and their notable metabolites (mycotoxins) have been studied more extensively using metabolomics as compared to bacteria, necessitating further studies in this regard. Nevertheless, such identified fungal and bacteria metabolites could be used as biomarkers for a more rapid detection of these pathogens in food. Other important compounds detected through metabolomics could also be correlated to functionality of these pathogenic strains, determined by the composition of the foods in which they exist, thereby providing insights into their metabolism. Considering the prevalence of these food pathogens, metabolomics still has potentials in the determination of food-borne pathogenic microorganisms especially for the determination of pathogenic bacteria toxins and is expected to generate research interests for further studies and applications.
Collapse
Affiliation(s)
- Ajibola Bamikole Oyedeji
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa.
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Opeolu Mayowa Ogundele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Martins Ajibade Adefisoye
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Samson Adeoye Oyeyinka
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa.
| |
Collapse
|
22
|
Hu N, Lei M, Zhao X, Zhang Z, Gu Y, Zhang Y, Wang S. Analysis of the Microbial Diversity and Characteristics of Fermented Blueberry Beverages from Different Regions. Foods 2020; 9:foods9111656. [PMID: 33198380 PMCID: PMC7697986 DOI: 10.3390/foods9111656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
In this study, high-throughput sequencing methods were used to analyze the composition and diversity of the microbial communities of three different traditional fermented blueberry beverages (Jiaosu A, Jiaosu B, and Jiaosu C) produced in three different regions. Lactic acid bacteria and yeast counts, total soluble solids, total titration acid, total phenols, total flavonoids, total anthocyanin, superoxide dismutase, and antioxidant activity were analyzed in all samples. The results showed that at the phylum level, the bacteria in all samples were predominantly Firmicutes and Proteobacteria, while the majority of fungus belonged to Ascomycota. At the genus level, Lactobacillus, Gluconobacter, and Acetobacter were the dominant bacteria, and Dekkera and Issatchenkia were the dominant fungi. Our data show that the lactic acid bacteria counts in Jiaosu A were the lowest of the three products, in the range of 4.31–10.9 log CFU/mL, while yeast counts ranged from 6.71 to 7.35 log CFU/mL. The antioxidant activities of Jiaosu C were greater than those of Jiaosu A and Jiaosu B, and Spearman correlation analysis showed that the relative abundance of Lactobacillus and Dekkera was significantly positively correlated with total phenolics, total anthocyanin, total flavonoids, and antioxidant index.
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; (N.H.); (M.L.); (X.Z.); (Z.Z.); (Y.G.)
| | - Ming Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; (N.H.); (M.L.); (X.Z.); (Z.Z.); (Y.G.)
| | - Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; (N.H.); (M.L.); (X.Z.); (Z.Z.); (Y.G.)
| | - Zhen Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; (N.H.); (M.L.); (X.Z.); (Z.Z.); (Y.G.)
| | - Ying Gu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; (N.H.); (M.L.); (X.Z.); (Z.Z.); (Y.G.)
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; (N.H.); (M.L.); (X.Z.); (Z.Z.); (Y.G.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
- Correspondence: ; Tel.: +86-22-85358445
| |
Collapse
|
23
|
Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Samson Adeoye Oyeyinka
- School of Agriculture and Food Technology Alafua Campus University of the South Pacific Suva Fiji
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University One Washington Square San Jose CA95192USA
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science School of Applied Sciences Abertay University Dundee United Kingdom
| | - Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P. O. Box 524Bunting Road Campus Johannesburg South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Fidele Tugizimana
- International R&D Omnia Group, Ltd P.O. Box 69888 Gauteng South Africa
| |
Collapse
|
24
|
Metabolite profile of whole grain ting (a Southern African fermented product) obtained using two strains of Lactobacillus fermentum. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
van Rayne KK, Adebo OA, Ngobese NZ. Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source. Foods 2020; 9:E1060. [PMID: 32764277 PMCID: PMC7466246 DOI: 10.3390/foods9081060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022] Open
Abstract
Strychnos madagascariensis Poir is an underutilized fruit that is considered a valuable food during droughts and famine. The aim of this research was to characterize the nutritional composition and the flour functional properties, for the use as a potential food source. Seed flour was analysed using a standard enzymatic assay for sugars, acid/neutral detergent analysis for fibre, ether extraction for fat and HPLC for strychnine. Results showed that the seeds contained 41% reducing sugars and 53% fibre. The mineral composition, determined using microwave-assisted acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES), showed that the seeds contained high quantities of iron (15.78 mg/100 g) and manganese (9.86 mg/100 g). The flour water absorption index (1.37 g/g) was substantially higher than that of wheat, brown rice and tapioca flours and the oil absorption index showed similarities to the reference flours (1.09 g/g). The flour peak (37,788 RVU) and final viscosities (62,928 RVU) were significantly (p < 0.001) higher than the reference flours. This study was the first to quantify the strychnine content (0.08%) in the seeds. Results suggest that the seeds have good potential for food product development; however, further processing is essential to ensure safety for consumption.
Collapse
Affiliation(s)
- Kiana Kirsty van Rayne
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. BOX 524, Johannesburg 2006, South Africa;
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, University of Johannesburg, P.O. BOX 17011, Johannesburg 2028, South Africa;
| | - Nomali Ziphorah Ngobese
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. BOX 524, Johannesburg 2006, South Africa;
| |
Collapse
|
26
|
Adebiyi JA, Kayitesi E, Njobeh PB. Mycotoxins reduction in dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Adebo OA. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020; 12:E1111. [PMID: 32316319 PMCID: PMC7231209 DOI: 10.3390/nu12041111] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022] Open
Abstract
Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg (Doornfontein Campus), P.O. Box 17011 Johannesburg, Gauteng 2028, South Africa
| |
Collapse
|
28
|
Adebo OA, Gabriela Medina-Meza I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020; 25:molecules25040927. [PMID: 32093014 PMCID: PMC7070691 DOI: 10.3390/molecules25040927] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Urbanization, emergence, and prominence of diseases and ailments have led to conscious and deliberate consumption of health beneficial foods. Whole grain (WG) cereals are one type of food with an array of nutritionally important and healthy constituents, including carotenoids, inulin, β-glucan, lignans, vitamin E-related compounds, tocols, phytosterols, and phenolic compounds, which are beneficial for human consumption. They not only provide nutrition, but also confer health promoting effects in food, such as anti-carcinogenic, anti-microbial, and antioxidant properties. Fermentation is a viable processing technique to transform whole grains in edible foods since it is an affordable, less complicated technique, which not only transforms whole grains but also increases nutrient bioavailability and positively alters the levels of health-promoting components (particularly antioxidants) in derived whole grain products. This review addresses the impact of fermentation on phenolic compounds and antioxidant activities with most available studies indicating an increase in these health beneficial constituents. Such increases are mostly due to breakdown of the cereal cell wall and subsequent activities of enzymes that lead to the liberation of bound phenolic compounds, which increase antioxidant activities. In addition to the improvement of these valuable constituents, increasing the consumption of fermented whole grain cereals would be vital for the world's ever-growing population. Concerted efforts and adequate strategic synergy between concerned stakeholders (researchers, food industry, and government/policy makers) are still required in this regard to encourage consumption and dispel negative presumptions about whole grain foods.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa
- Correspondence: ; Tel.: +27-11-559-6261
| | - Ilce Gabriela Medina-Meza
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 South Shaw Lane, East Lansing, MI 48824-1323, USA;
| |
Collapse
|