1
|
Li J, Zhang Z, Li Q, Liu Y, Liu Y. Inactivation effects of combined thermosonication and potassium sorbate treatments on Bacillus subtilis spores. Food Sci Biotechnol 2024; 33:3357-3366. [PMID: 39328230 PMCID: PMC11422313 DOI: 10.1007/s10068-024-01577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to investigate the inactivation effect of combined TS (thermosonication) and PS (potassium sorbate) treatments on Bacillus subtilis spores. The inactivation effect and potential mechanisms were examined using plate counts, OD600 values, nucleic acid leakage, DPA (dipicolinic acid) leakage, flow cytometry, and FTIR (Fourier transform infrared spectroscopy). The results showed that, after TS + PS treatments, the integrity of the inner membrane was lost, the permeability of the inner membrane to water molecules was increased, and the intraspore substances leaked. Furthermore, the OD600 value was reduced, indicating that the spore core hydration was enhanced. Spores proportion with damaged inner membrane was significantly increased to 66%, the ordered secondary structure of the protein was changed into a disordered structure and nucleic acid was fragmented after TS + PS treatment. The results indicated that the combined TS and PS treatments may be a useful method for inactivating bacterial spores in food processing and sterilization.
Collapse
Affiliation(s)
- Jiajia Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Zhong Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Qinghuan Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Yongxia Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| | - Yichang Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021 People’s Republic of China
| |
Collapse
|
2
|
Zhang D, Tong D, Wang Z, Wang S, Jia Y, Ning Y. Inactivation mechanism of phenyllactic acid against Bacillus cereus spores and its application in milk beverage. Food Chem 2024; 453:139601. [PMID: 38754350 DOI: 10.1016/j.foodchem.2024.139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Phenyllactic acid (PLA) as a natural phenolic acid exhibits antibacterial activity against non-spore-forming bacteria, while the inhibitory effect against bacterial spore remained unknown. Herein, this study investigated the inactivation effect of PLA against Bacillus cereus spores. The results revealed that the minimum inhibitory concentration of PLA was 1.25 mg/mL. PLA inhibited the outgrowth of germinated spores into vegetative cells rather than germination of spores. PLA disrupted the spore coat, and damaged the permeability and integrity of inner membrane. Moreover, PLA disturbed the establishment of membrane potential due to the inhibition of oxidative metabolism. SEM observations further visualized the morphological changes and structural disruption caused by PLA. Besides, PLA caused the degradation of DNA of germinated spores. Finally, PLA was applied in milk beverage, and showed promising inhibitory effect against B. cereus spores. This finding could provide scientific basis for the application of PLA against spore-forming bacteria in food industry.
Collapse
Affiliation(s)
- Dongchun Zhang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Danya Tong
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shijie Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yawei Ning
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Wahia H, Fakayode OA, Mintah BK, Mustapha AT, Zhou C, Dabbour M. Effect of dual-frequency thermosonication, food matrix, and germinants on Alicyclobacillus acidoterrestris spore germination. Food Res Int 2023; 171:113054. [PMID: 37330854 DOI: 10.1016/j.foodres.2023.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
The off-odors associated with spoilage of acidic beverages are linked to the germination and growth of Alicyclobacillus acidoterrestris (AAT) spores. As a consequence, we determined the influence of nutrients, non-nutrient germinants, dual-frequency thermosonication (DFTS), and food matrix on spore germination. AAT spores in orange juice (OJ), supplemented by L-alanine (L-ala), had the highest germination rate and lowest DPA content at 10 h of incubation. The formation of microscopic pores in cell membranes during DFTS caused irreversible damage in AAT spores in citrate buffer solution (CBS); however, it stimulated AAT spore germination in CBS containing L-ala. Hence, the germination potential was established in the order: L-ala > Calcium dipicolinate > asparagine, glucose, fructose, and potassium ion mixture (AGFK) > L-valine. The conductivity analysis indicated that membrane damage could be a key factor contributing to the artificial germination in CBS. AFM images revealed that after 2 h of adding L-ala, the protein content increased with increased germinated cells. TEM showed that membrane poration and coat detachment were the main pre-germination morphological changes detected after DFTS treatment. This study provides evidence that germination stimulated with DFTS might be an effective strategy for reducing A. acidoterrestris spores in fruit juices.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239000, PR China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, PO Box 13736, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
4
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
6
|
Mok JH, Sun Y, Pyatkovskyy T, Hu X, Sastry SK. Mechanisms of Bacillus subtilis spore inactivation by single- and multi-pulse high hydrostatic pressure (MP-HHP). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Inactivation mechanism of slightly acidic electrolyzed water on Bacillus cereus spores. Food Microbiol 2022; 103:103951. [DOI: 10.1016/j.fm.2021.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/11/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
|
8
|
Urango ACM, Strieder MM, Silva EK, Meireles MAA. Impact of Thermosonication Processing on Food Quality and Safety: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Heat activation and inactivation of bacterial spores. Is there an overlap? Appl Environ Microbiol 2022; 88:e0232421. [PMID: 35020450 DOI: 10.1128/aem.02324-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat activation at a sublethal temperature is widely applied to promote Bacillus species spore germination. This treatment also has potential to be employed in food processing to eliminate undesired bacterial spores by enhancing their germination, and then inactivating the less heat resistant germinated spores at a milder temperature. However, incorrect heat treatment could also generate heat damage in spores, and lead to more heterogeneous spore germination. Here, the heat activation and heat damage profile of Bacillus subtilis spores was determined by testing spore germination and outgrowth at both population and single spore levels. The heat treatments used were 40-80°C, and for 0-300 min. The results were as follows. 1) Heat activation at 40-70°C promoted L-valine and L-asparagine-glucose-fructose-potassium (AGFK) induced germination in a time dependent manner. 2) The optimal heat activation temperatures for AGFK and L-valine germination via the GerB plus GerK or GerA germinant receptors were 65 and 50-65°C, respectively. 3) Heat inactivation of dormant spores appeared at 70°C, and the heat damage of molecules essential for germination and growth began at 70 and 65°C, respectively. 4) Heat treatment at 75°C resulted in both activation of germination and damage to the germination apparatus, and 80°C treatment caused more pronounced heat damage. 5) For the spores that should withstand adverse environmental temperatures in nature, heat activation seems functional for a subsequent optimal germination process, while heat damage affected both germination and outgrowth. Importance Bacterial spores are thermal resistant structures that can thus survive preservation strategies and revive through the process of spore germination. The more heat resistant spores are the more heterogeneous they germinate upon adding germinants. Upon germination spores can cause food spoilage and cause food intoxication. Here we provide new information on both heat activation and inactivation regimes and their effects on the (heterogeneity of) spore germination.
Collapse
|
10
|
Onyeaka H, Miri T, Hart A, Anumudu C, Nwabor OF. Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ozioma Forstinus Nwabor
- Biological Science, Faculty of Science with Infectious Diseases, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
11
|
Combined pulsed electric field and high-power ultrasound treatments for microbial inactivation in oil-in-water emulsions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lv R, Liu D, Zhou J. Bacterial spore inactivation by non-thermal technologies: resistance and inactivation mechanisms. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Abstract
Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores—the so called “germinate to eradicate” strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.
Collapse
|
14
|
Li F, Santillan-Urquiza E, Cronin U, O'Meara E, McCarthy W, Hogan SA, Wilkinson MG, Tobin JT. Assessment of the response of indigenous microflora and inoculated Bacillus licheniformis endospores in reconstituted skim milk to microwave and conventional heating systems by flow cytometry. J Dairy Sci 2021; 104:9627-9644. [PMID: 34127263 DOI: 10.3168/jds.2020-19875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
Heat treatment is one of the most widely used processing technologies in the dairy industry. Its primary purpose is to destroy microorganisms, both pathogenic and spoilage, to ensure the product is safe and has a reasonable shelf life. In this study microwave volumetric heating (MVH) was compared with a conventional tubular heat exchanger (THE), in terms of the effects of each at a range of temperatures (75°C, 85°C, 95°C, 105°C, 115°C, and 125°C) on indigenous microflora viability and the germination of inoculated Bacillus licheniformis endospores in reconstituted skim milk. To assess the heat treatment-related effects on microbial viability, classical agar-based tests were applied to obtain the counts of 4 various microbiological groups including total bacterial, thermophilic bacterial, mesophilic aerobic bacterial endospore, and thermophilic aerobic bacterial endospore counts, and additional novel insights into cell permeability and spore germination profiles post-heat treatment were obtained using real-time flow cytometry (FC) methods. No significant differences in the plate counts of the indigenous microorganisms tested, the plate counts of the inoculated B. licheniformis, or the relative percentage of germinating endospores were observed between MVH- and THE-treated samples, at equal temperatures in the range specified above, indicating that both methods inactivated inoculated endospores to a similar degree (up to 70% as measured by FC and 5 log reduction as measured by plate counting for some treatments of inoculated endospores). Furthermore, increased cell permeability of indigenous microflora was observed by FC after MVH compared with THE treatment of uninoculated skim milk, which was reflected in lower total bacterial count at a treatment temperature of 105°C. This work demonstrates the utility of FC as a rapid method for assessing cell viability and spore inactivation for postthermal processing in dairy products and overall provides evidence that MVH is at least as effective at eliminating native microflora and inoculated B. licheniformis endospores as THE.
Collapse
Affiliation(s)
- F Li
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, P61 C996, Ireland
| | - E Santillan-Urquiza
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, P61 C996, Ireland
| | - U Cronin
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX, Ireland
| | - E O'Meara
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX, Ireland
| | - W McCarthy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, P61 C996, Ireland
| | - S A Hogan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, P61 C996, Ireland
| | - M G Wilkinson
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX, Ireland
| | - J T Tobin
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, P61 C996, Ireland.
| |
Collapse
|
15
|
Fan L, Ismail BB, Hou F, Guo M, Ding T, Liu D. Thermosonication pretreatment enhances the killing of germinated Bacillus spores adhered to stainless steel surface. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Farag MA, Mesak MA, Saied DB, Ezzelarab NM. Uncovering the dormant food hazards, a review of foodborne microbial spores' detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Evelyn, Silva FV. Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kang JW, Hong HN, Kang DH. Application of a Krypton-Chlorine Excilamp To Control Alicyclobacillus acidoterrestris Spores in Apple Juice and Identification of Its Sporicidal Mechanism. Appl Environ Microbiol 2020; 86:e00159-20. [PMID: 32220842 PMCID: PMC7237776 DOI: 10.1128/aem.00159-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the sporicidal effect of a krypton-chlorine (KrCl) excilamp against Alicyclobacillus acidoterrestris spores and to compare its inactivation mechanism to that of a conventional UV lamp containing mercury (Hg). The inactivation effect of the KrCl excilamp was not significantly different from that of the Hg UV lamp for A. acidoterrestris spores in apple juice despite the 222-nm wavelength of the KrCl excilamp having a higher absorption coefficient in apple juice than the 254-nm wavelength of the Hg UV lamp; this is because KrCl excilamps have a fundamentally greater inactivation effect than Hg UV lamps, which is confirmed under ideal conditions (phosphate-buffered saline). The inactivation mechanism analysis revealed that the DNA damage induced by the KrCl excilamp was not significantly different (P > 0.05) from that induced by the Hg UV lamp, while the KrCl excilamp caused significantly higher (P < 0.05) lipid peroxidation incidence and permeability change in the inner membrane of A. acidoterrestris spores than did the Hg UV lamp. Meanwhile, the KrCl excilamp did not generate significant (P > 0.05) intracellular reactive oxygen species, indicating that the KrCl excilamp causes damage only through the direct absorption of UV light. In addition, after KrCl excilamp treatment with a dose of 2,011 mJ/cm2 to reduce A. acidoterrestris spores in apple juice by 5 logs, there were no significant (P > 0.05) changes in quality parameters such as color (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity.IMPORTANCEAlicyclobacillus acidoterrestris spores, which have high resistance to thermal treatment and can germinate even at low pH, are very troublesome in the juice industry. UV technology, a nonthermal treatment, can be an excellent means to control heat-resistant A. acidoterrestris spores in place of thermal treatment. However, the traditionally applied UV sources are lamps that contain mercury (Hg), which is harmful to humans and the environment; thus, there is a need to apply novel UV technology without the use of Hg. In response to this issue, excilamps, an Hg-free UV source, have been actively studied. However, no studies have been conducted applying this technique to control A. acidoterrestris spores. Therefore, the results of this study, which applied a KrCl excilamp for the control of A. acidoterrestris spores and elucidated the inactivation principle, are expected to be utilized as important basic data for application to actual industry or conducting further studies.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hak-Nyeong Hong
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|