1
|
Wang C, Bin Z, Wang L, Zhu G, Tang S, Chen Y, Xiao D, Guo X. Metagenomic and metabolomic profiling analyses to unravel the formation mechanism of n-propanol during the first and second round of Jiangxiangxing Baijiu fermentation. Food Res Int 2025; 200:115459. [PMID: 39779118 DOI: 10.1016/j.foodres.2024.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
N-propanol is one of the higher alcohols, a moderate amount of n-propanol is beneficial for the harmony of the liquor body, whereas excessive or repeated intake will lead to discomfort and pose significant harm to human health. In actual production process of Jiangxiangxing Baijiu, the n-propanol content of the base baijiu in first round (FR) is far higher than that of second round (SR). Nevertheless, the formation mechanism and the key n-propanol producing microbials remain unclear and this limits the quality control of baijiu fermentation. Here, we combined metagenomics and metabolomics to verify the biosynthesis pathway of n-propanol and to identify characteristic microorganisms in FR and SR. The results showed that the preliminary period of pit fermentation was critical for the accumulation of n-propanol. FR was enriched in Lactobacillus plantarum, Lactobacillus ponits, Lactobacillus brevis and Lactobacillus panis, while it was harbored greater abundances of Pichia kudriazevii, Saccharomyces cerevisiae and Lactobacillus acetotolerans in SR. Function analysis combined with KEGG providing comprehensive evidence for the main synthetic pathways of n-propanol in Jiangxiangxing baijiu, and L. panis was key microbial. In addition, the experiments of inoculating L. panis and L. acetotolerans in situ indicated L. panis was mainly responsible for n-propanol production while L. acetotolerans not conducive to the production of n-propanol. Besides, the bioturbation effect on microbiota and flavor compounds were also analyzed. These results are useful for elucidating the mechanism of flavor formation in baijiu fermentation and promoting the further application of bioturbation technology in the traditional fermentation industry.
Collapse
Affiliation(s)
- Cailing Wang
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Zhiqiang Bin
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Lianqing Wang
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Guojun Zhu
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Shaopei Tang
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Yefu Chen
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Dongguang Xiao
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China
| | - Xuewu Guo
- College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China.
| |
Collapse
|
2
|
Wang D, Wu C, Hu J, Hu F, Liu L, Huang H, Yang J, Zhao W, Xie D, Zhang J, Zhu A. Exploring the impact mechanisms on different mechanized airing approaches during second round heap fermentation of sauce-flavor Baijiu: From physicochemical parameters, microbial diversity to volatile flavor compounds. Food Res Int 2025; 199:115359. [PMID: 39658161 DOI: 10.1016/j.foodres.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The airing process of sauce-flavor Baijiu is a critical operation that serves the functions of cooling, homogenizing, and facilitating microbial proliferation and metabolism. Comprehensive analysis of physicochemical parameters, bacterial and fungal community of fermented grains, and volatile flavor compounds of soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors among traditional (CT) and two different mechanized (JXA and JXB) airing operations were investigated. The results indicated that the dynamic variation patterns of moisture content, total titratable acidity, starch content, lactic acid, acetic acid, pH, and dominated microbial composition among CT, JXA, and JXB were similar, while minor bacterial genera with relative abundance including unclassified Micrococcineae, unclassified Rhizobiales, etc, and dominated fungi such as Torulaspora, Hyphopichia, Candida, Pichia, and Penicillium were profoundly influenced by mechanized airing operations, especially by JXB. A total of 100 and 101 volatile flavor compounds were qualitatively and quantitatively detected from soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors. Mechanized airing operations were more consistent with CT for mellow-sweet (Chuntian) typical base liquors, but 2,3-dimethyl-5-ethylpyrazine, 2,3-dimethylpyrazine, tetramethylpyrazine and ethyl benzoate etc. were more abundant in soy-sauce (Jiangxiang) typical base liquors by mechanized airing operations, which were mainly associated with Leuconostoc, Acetoanaerobium, Limnohabitans and Bradyhizobium etc. This study provides a theoretical evidence for understanding the relationships among physicochemical parameters, microbial communities and volatile flavor compounds during second round heap fermentation of sauce-flavor Baijiu, laying a foundation for further elucidating the mechanized brewing mechanisms.
Collapse
Affiliation(s)
- Diqiang Wang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Cheng Wu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Jianfeng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Feng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China
| | - Liping Liu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Heou Huang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Junlin Yang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Wenyu Zhao
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Dan Xie
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Jian Zhang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Anran Zhu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| |
Collapse
|
3
|
Li X, Du C, Zhao Y, Li J, Hu Y, Dong W, Peng N, Zhao S. Differences in microbial communities among different types of zaopei and their effects on quality and flavor of baijiu. Food Res Int 2024; 197:115224. [PMID: 39593310 DOI: 10.1016/j.foodres.2024.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Three types of zaopei (fermented grain) of xiaoqu light-flavor baijiu (XQZP), daqu light-flavor baijiu (DQZP), and strong-flavor baijiu (SFZP) at the end of fermentation and their dominant lactic acid bacteria were systematically compared and analyzed in this study. The results showed that these three types of zaopei differed significantly in acidity, reducing sugar content, and ethanol content, and that the main factors influencing their microbial community were acidity and lactic acid. The diversity and contents of flavor substances were significantly higher in SFZP than in DQZP and XQZP. Additionally, there was a strong correlation between dominant lactic acid bacteria and flavor substances in all three zaopei, but the correlation between fungi and flavor substances was higher than that between bacteria and flavor substances. Differential gene analysis revealed that the microbial activities followed the order of SFZP > DQZP > XQZP. The KEGG enrichment analysis indicated that the differential genes from different zaopei were enriched in different metabolic pathways. Furthermore, various microorganisms in 3 types of zaopei contained different functional genes, of which fungi mainly contained genes responsible for the synthesis of ethanol and acetic acid, while lactic acid bacteria mainly contained genes responsible for the synthesis of lactic acid. In XQZP, L. helveticus was dominant lactic acid bacteria prominent in acetic acid tolerance and lactic acid production; in DQZP, L. acetotolerans was remarkable in its tolerance to lactic acid, acetic acid, ethanol and lactic acid production; and in SFZP, A. jinshanensis was superior in acetic acid tolerance and production. Taken together, this study reveals the mechanism underlying flavor differences among three types of baijiu and provides valuable references for the development and utilization of baijiu microbial resources.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanyu Du
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jinshan Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongmei Hu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Yu H, Li Z, Zheng D, Chen C, Ge C, Tian H. Exploring microbial dynamics and metabolic pathways shaping flavor profiles in Huangjiu through metagenomic analysis. Food Res Int 2024; 196:115036. [PMID: 39614478 DOI: 10.1016/j.foodres.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
In the production of Huangjiu (Chinese rice wine), fermentation microbiota plays a crucial role in flavor formation. This study investigates the microbial dynamics and metabolic pathways that shape the flavor profiles of Huangjiu using different starters. Sensory evaluation and metabolite analysis of six starters revealed significant differences in ester, fruity, and sweet aromas. Saccharomyces, Aspergillus, and Rhizopus were identified as the dominant genera significantly impacting fermentation. Metagenomic species and functional gene annotations of Huangjiu starters elucidated the metabolic pathways for key flavor compounds synthesis pathways. Enzyme genes involved in these pathways were classified and annotated to microbial genera using the NR database, identifying 231 classes of relevant catalytic enzymes and 154 microbial genera. A metabolic relationship between flavor compound formation and different microbial genera was established using catalytic enzymes as a bridge. This study highlights the impact of starter composition on the final product and provides new insights for optimizing starters to enhance Huangjiu flavor quality.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Ziqing Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Danwei Zheng
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chang Ge
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
5
|
Mu Y, Huang Y, Li D, Zhu Z, Yu S, Xie F. Revealing the comprehensive effect of mechanization on sauce-flavor Daqu through high-throughput sequencing and multi-dimensional metabolite profiling. Food Res Int 2024; 191:114645. [PMID: 39059901 DOI: 10.1016/j.foodres.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Mechanization has emerged as a focal point in the modernization of traditional enterprises, offering standardized production and labor reduction benefits. However, little is known about how mechanization affects the microbiota and metabolite profiles of Daqu. To address this gap, we conducted a comprehensive comparison between traditional and mechanical sauce-flavor Daqu using a multi-omics approach. Results showed that mechanical Daqu exhibited higher acidity, amino acid nitrogen and enzyme activity, alongside lower fat and moisture levels. Following mechanization, lactic acid bacteria (LAB), Staphylococcus, Aspergillus and Saccharomycopsis were enriched and identified as biomarkers, whereas Oceanobacillus, Monascus and Scopulariopsis were notably decreased. Furthermore, significant disparities in metabolic profiles were observed between the two types of Daqu based on GC-MS, GC-IMS, and LC-MS/MS analyses. The content of volatile compounds was significantly higher in mechanical Daqu (332.82 ± 22.69 mg/kg), while that of non-volatile compounds was higher in traditional Daqu (753.44 ± 41.82 mg/kg). Moreover, OPLS-DA models identified 44 volatile and 31 non-volatile compounds as differential metabolites. Multivariate statistical analysis indicated that bacteria and fungi primarily contributed to protease and saccharification activities, respectively. Additionally, the co-occurrence network revealed that Oceanobacillus and Scopulariopsis were closely associated with non-volatile compound formation, while LAB and Rhizopus significantly influenced volatile compound production. These findings elucidate the multi-dimensional relationship between mechanization and Daqu quality, offering insights to advance the modernization of traditional industries.
Collapse
Affiliation(s)
- Yu Mu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China
| | - Ying Huang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, China
| | - Dong Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China
| | - Zhiyu Zhu
- Kweichow Moutai Co. Ltd., Renhuai 564501, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China.
| | - Feng Xie
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; Guizhou Health Wine Brewing Technology Engineering Research Center, Moutai Institute, Renhuai 564507, China.
| |
Collapse
|
6
|
Wang L, Tang P, Zhao Q, Shan Q, Qin L, Xiao D, Li C, Lu J, Guo X. Difference between traditional brewing technology and mechanized production technology of jiangxiangxing baijiu: Micro ecology of zaopei, physicochemical factors and volatile composition. Food Res Int 2024; 192:114748. [PMID: 39147555 DOI: 10.1016/j.foodres.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Mechanized production of Jiangxiangxing Baijiu (JB) stands as a pivotal trend in today's Baijiu industry. This study, employing high-throughput sequencing and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology, comprehensively analyzed the micro ecology, physicochemical factors, and volatile components during pit fermentation, comparing traditional fermentation Zaopei (TZP) and mechanized fermentation Zaopei (MZP). According to the research findings, the dominant microorganisms in the fermentation process of ZP comprise Lactobacillus, Monascus, Issatchenkia, and Zygosaccharomyces. In addition, functional microorganisms like Zygosaccharomyces, Monascus, Issatchenkia, Leiothecium, Candida, Pichia, and others exhibited differences on day 0 and throughout the fermentation process. These differences are attributed to the effects of distinct fermentation environment and physicochemical factors. Furthermore, comprehensive analysis detected 87 volatile compounds in TZP and MZP, with 56 showing significant differences, primarily including alcohols, aldehydes, ketones, acids, esters, and aromatics. Additionally, fermentation can be classified into two phases based on ethanol and volatile compounds production: the initial phase (0-12 days, P1) primarily focuses on alcohols production, while the subsequent phase (12-30 days, P2) concentrates on volatile compounds generation. The subsequent correlation analysis indicates that variations in volatile compounds primarily arise from shifts in microbial composition, with notable differences observed in fungi, specifically Monascus, Zygosaccharomyces, and Issatchenkia, which drive the disparities in volatile compounds. This study provides an important theoretical basis and practical guidance for the realization of mechanized high-quality production of JB.
Collapse
Affiliation(s)
- Lianqing Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Ping Tang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China; Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Qing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Qimuge Shan
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Liqin Qin
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China.
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China.
| |
Collapse
|
7
|
Yan Y, Liang Z, Huo Y, Wu Q, Ni L, Lv X. A Comparative Study of Microbial Communities, Biogenic Amines, and Volatile Profiles in the Brewing Process of Rice Wines with Hongqu and Xiaoqu as Fermentation Starters. Foods 2024; 13:2452. [PMID: 39123642 PMCID: PMC11311568 DOI: 10.3390/foods13152452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/12/2024] Open
Abstract
Rice wine is primarily crafted from grains through saccharification and liquification with the help of Qu. Qu plays an important role in the formation of the flavor quality of rice wine. Hongqu and Xiaoqu represent two prevalent varieties of Qu that are typically utilized in the brewing process of rice wine and play a crucial role in its production. In this study, GC, GC-MS, HPLC, and metagenomic sequencing techniques were used to contrast the microbial flora, biogenic amines, and aroma characteristics developed during the fermentation of rice wines, with Hongqu and Xiaoqu being used as initiating agents for the brewing process. The results show that the content of higher alcohols (including n-propanol, isobutanol, 3-methyl-1-butanol, and phenethyl alcohol) in rice wine brewed with Xiaoqu (XQW) was significantly higher than that in rice wine brewed with Hongqu (HQW). Contrarily, the concentration of biogenic amines in HQW surpassed that of XQW by a notable margin, but tyramine was significantly enriched in XQW and not detected in HQW. In addition, a multivariate statistical analysis revealed distinct disparities in the constitution of volatile components between HQW and XQW. Hexanoic acid, ethyl acetate, isoamyl acetate, ethyl caproate, ethyl decanoate, 2-methoxy-4-vinylphenol, etc., were identified as the characteristic aroma-active compounds in HQW and XQW. A microbiome analysis based on metagenomic sequencing showed that HQW and XQW had different dominant microorganisms in the brewing process. Burkholderia, Klebsiella, Leuconostoc, Monascus, and Aspergillus were identified as the primary microbial genera in the HQW fermentation period, while Pediococcus, Enterobacter, Rhizopus, Ascoidea, and Wickerhamomyces were the main microbial genera in the XQW brewing process. A bioinformatics analysis revealed that the concentrations of microbial genes involved in biogenic amines and esters biosynthesis were significantly higher in HQW than those in XQW, while the content of genes relevant to glycolysis, higher alcohol biosynthesis, and fatty acid metabolism was significantly higher in XQW than in HQW, which are the possible reasons for the difference in flavor quality between the two kinds of rice wine from the perspective of microbial functional genes.
Collapse
Affiliation(s)
- Yingyin Yan
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zihua Liang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yujia Huo
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Wu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Y.Y.); (Z.L.); (Y.H.); (Q.W.); (L.N.)
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
8
|
Zheng Y, Qu G, Yang Q, Chen S, Tang J, Yang S, Wu Q, Xu Y. Developing defined starter culture for reproducible profile of flavour compound in Chinese xiaoqu baijiu fermentation. Food Microbiol 2024; 121:104533. [PMID: 38637092 DOI: 10.1016/j.fm.2024.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Defined starter cultures, containing selected microbes could reduce the complexity of natural starter, are beneficial for controllable food fermentations. However, there are challenges in identifying key microbiota and constructing synthetic microbiota for traditional food fermentations. Here, we aimed to develop a defined starter culture for reproducible profile of flavour compounds, using Chinese Xiaoqu Baijiu fermentation as a case. We classified all microbes into 4 modules using weighted correlation network analysis. Module 3 presented significant correlations with flavour compounds (P < 0.05) and the highest gene abundance related with flavour compound production. 13 dominant species in module 3 were selected for mixed culture fermentation, and each species was individually deleted to analyse the effect on flavour compound production. Ten species, presenting significant effects (P < 0.05) on flavour compound production, were selected for developing the starter culture, including Rhizopus oryzae, Rhizopus microsporus, Saccharomyces cerevisiae, Pichia kudriavzevii, Wickerhamomyces anomalus, Lactobacillus acetotolerans, Levilactobacillus brevis, Weissella paramesenteroides, Pediococcus acidilactici, and Leuconostoc pseudomesenteroides. After optimising the structure of the starter culture, the profile similarity of flavour compounds produced by the starter culture reached 81.88% with that by the natural starter. This work indicated feasibility of reproducible profile of flavour compounds with defined starter culture for food fermentations.
Collapse
Affiliation(s)
- Yifu Zheng
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanyi Qu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Yang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Shenxi Chen
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Jie Tang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Shengzhi Yang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Company, Limited, Daye, Hubei 435100, China
| | - Qun Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Dong W, Zeng Y, Ma J, Cai K, Guo T, Tan G, Yu X, Hu Y, Peng N, Zhao S. Characteristics and Functions of Dominant Yeasts Together with Their Applications during Strong-Flavor Baijiu Brewing. Foods 2024; 13:2409. [PMID: 39123600 PMCID: PMC11311647 DOI: 10.3390/foods13152409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Yeasts are pivotal brewing microbes that are associated with the flavor and quality of Chinese baijiu, yet research on dominant yeasts in strong-flavor baijiu brewing remains limited. In this study, Saccharomyces cerevisiae, Pichia kudriavzevii, and Kazachstania bulderi were identified as predominated yeasts in strong-flavor baijiu. Each strain showed distinct characteristics in ethanol resistance, thermal tolerance, and lactic acid tolerance, severally. S. cerevisiae FJ1-2 excelled in ethanol and ethyl ester production, P. kudriavzevii FJ1-1 in ethyl acetate, and K. bulderi FJ1-3 in lactic acid generation. Subsequently, the reinforced Fuqu of each yeast were severally prepared for application in baijiu brewing to verify their functions. Results revealed that the relative abundance of fortified yeast in each group rose. Pichia, Kazachstania, and Saccharomyces emerged as the core microbe for each group, respectively, by co-occurrence network analysis, influencing the microbiota to regulate flavor substances. In short, P. kudriavzevii FJ1-1 enhanced ethyl acetate. K. bulderi FJ1-3 improved ethyl caproate production and decreased levels of ethyl acetate and higher alcohols by modulating yeast community between Pichia and Saccharomyces. This is a systematic endeavor to study the functions of yeasts of strong-flavor baijiu, providing a solid basis for improving baijiu quality.
Collapse
Affiliation(s)
- Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulun Zeng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyuan Ma
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
| | - Kaiyun Cai
- Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China
| | - Tingting Guo
- Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China
| | - Guangxun Tan
- Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Shi G, Fang C, Xing S, Guo Y, Li X, Han X, Lin L, Zhang C. Heterogenetic mechanism in high-temperature Daqu fermentation by traditional craft and mechanical craft: From microbial assembly patterns to metabolism phenotypes. Food Res Int 2024; 187:114327. [PMID: 38763631 DOI: 10.1016/j.foodres.2024.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
The mechanical process has a widely usage in large-scale high-temperature Daqu (HTD) enterprises, however, the quality of the mechanical HTD is gapped with the HTD by traditional process. Currently, the understanding of the mechanism behind this phenomenon is still over-constrained. To this end, the discrepancies in fermentation parameters, enzymatic characteristics, microbial assembly and succession patterns, metabolic phenotypes were compared between traditional HTD and mechanical HTD in this paper. The results showed that mechanical process altered the temperature ramping procedure, resulting in a delayed appearance of the peak temperature. This alteration shifted the assembly pattern of the initial bacterial community from determinism to stochasticity, while having no impact on the stochastic assembly pattern of the fungal community. Concurrently, mechanical pressing impeded the accumulation of arginase, tetramethylpyrazine, trimethylpyrazine, 2-methoxy-4-vinylphenol, and butyric acid, as the target dissimilarities in metabolism between traditional HTD and mechanical HTD. Pearson correlation analysis combined with the functional prediction further demonstrated that Bacillus, Virgibacillus, Oceanobacillus, Kroppenstedtia, Lactobacillus, and Monascus were mainly contributors to metabolic variances. The Redundancy analysis (RDA) of fermented environmental factors on functional ASVs indicated that high temperature, high acid and low moisture were key positive drivers on the microbial metabolism for the characteristic flavor in HTD. Based on these results, heterogeneous mechanisms between traditional HTD and mechanical HTD were explored, and controllable metabolism targets were as possible strategies to improve the quality of mechanical HTD.
Collapse
Affiliation(s)
- Gailing Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chao Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Shuang Xing
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Ying Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
11
|
Liu Y, Li H, Liu W, Ren K, Li X, Zhang Z, Huang R, Han S, Hou J, Pan C. Bioturbation analysis of microbial communities and flavor metabolism in a high-yielding cellulase Bacillus subtilis biofortified Daqu. Food Chem X 2024; 22:101382. [PMID: 38665634 PMCID: PMC11043814 DOI: 10.1016/j.fochx.2024.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, a fortified Daqu (FF Daqu) was prepared using high cellulase-producing Bacillus subtilis, and the effects of in situ fortification on the physicochemical properties, flavor, active microbial community and metabolism of Daqu were analyzed. The saccharification power, liquefaction power, and cellulase activity of the FF Daqu were significantly increased compared with that of the traditional Daqu (CT Daqu). The overall differences in flavor components and their contents were not significant, but the higher alcohols were lower in FF Daqu. The relative abundance of dominant active species in FF Daqu was 85.08% of the total active microbiota higher than 63.42% in CT Daqu, and the biomarkers were Paecilomyces variotii and Aspergillus cristatus, respectively. The enzymes related to starch and sucrose metabolic pathways were up-regulated and expressed in FF Daqu. In the laboratory level simulation of baijiu brewing, the yield of baijiu was increased by 3.36% using FF Daqu.
Collapse
Affiliation(s)
- Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Haideng Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenxi Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Kejin Ren
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Xuehan Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhenke Zhang
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Runna Huang
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Suna Han
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Jianguang Hou
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
12
|
Liang J, Deng L, Li Z, Fei Y, Bai W, Zhao W, He S, Cao R. Metagenomic analysis of core differential microbes between traditional starter and Round-Koji-mechanical starter of Chi-flavor Baijiu. Front Microbiol 2024; 15:1390899. [PMID: 38952453 PMCID: PMC11215056 DOI: 10.3389/fmicb.2024.1390899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Xiaoqu starter serves as the saccharifying and fermenting agent in the production of Cantonese soybean-flavor (Chi-flavor) Baijiu, and the complex microbial communities determine the flavor and quality of the product. Round-Koji-mechanical starter (produced by using an automated starter-making disk machine) is advantageous as it decreases operator influence, labor costs, and fermentation time, but the product quality is lower compared to traditional starter. Thus, two types of starters (traditional and Round-Koji-mechanical starter) from a Cantonese Baijiu factory were compared in a metagenomic analysis to investigate the differences in microbial community composition and core microbes. The results showed that several core microbes related to carbohydrate metabolism, amino acid metabolism and lipid metabolism, were differentially enriched in the traditional starter. Mucor lusitanicus and Rhizopus delemar were significantly positively correlated with the three key metabolic pathways. Saccharomyces cerevisiae, Cyberlindnera fabianii, Kluyveromyces marxianus, Lactobacillus fermentum, Mucor ambiguous, Rhizopus microspores, Rhizopus azygosporus, Mucor circinelloides, and Ascoidea rubescens were significantly positively correlated with two of the three key metabolic pathways. The results of this study provide a basis for understanding the differential core microbes in traditional and Round-Koji-mechanical starters of Chi-flavor Baijiu, and they also provide guidance for improving Round-Koji-mechanical starter.
Collapse
Affiliation(s)
- Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lichuan Deng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhipu Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenhong Zhao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Songgui He
- Guangdong Jiujiang Distillery Co. Ltd., Foshan, China
| | - Rongbing Cao
- Guangdong Jiujiang Distillery Co. Ltd., Foshan, China
| |
Collapse
|
13
|
Wang H, Wang Y, Ruan Y, Ma D, Wang H, Yang S, Lyu L, Yang F, Wu X, Chen Y. Core microbes identification and synthetic microbiota construction for the production of Xiaoqu light-aroma Baijiu. Food Res Int 2024; 183:114196. [PMID: 38760131 DOI: 10.1016/j.foodres.2024.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/19/2024]
Abstract
Baijiu production has relied on natural inoculated Qu as a starter culture, causing the unstable microbiota of fermentation grains, which resulted in inconsistent product quality across batches. Therefore, revealing the core microbes and constructing a synthetic microbiota during the fermentation process was extremely important for stabilizing product quality. In this study, the succession of the microbial community was analyzed by high-throughput sequencing technology, and ten core microbes of Xiaoqu light-aroma Baijiu were obtained by mathematical statistics, including Acetobacter, Bacillus, Lactobacillus, Weissella, Pichia,Rhizopus, Wickerhamomyces, Issatchenkia, Saccharomyces, and Kazachstania. Model verification showed that the core microbiota significantly affected the composition of non-core microbiota (P < 0.01) and key flavor-producing enzymes (R > 0.8, P < 0.01), thus significantly affecting the flavor of base Baijiu. Simulated fermentation validated that the core microbiota can reproduce the fermentation process and quality of Xiaoqu light-aroma Baijiu. The succession of bacteria was mainly regulated by acidity and ethanol, while the fungi, especially non-Saccharomyces cerevisiae, were mainly regulated by the initial dominant bacteria (Acetobacter, Bacillus, and Weissella). This study will play an important role in the transformation of Xiaoqu light-aroma Baijiu fermentation from natural fermentation to controlled fermentation and the identification of core microbes in other fermented foods.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yumei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yulei Ruan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Han Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | - Linjie Lyu
- Jing Brand Co., Ltd, HuangShi, HuBei 435100, China.
| | - Fengjun Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaole Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Wang H, Sun C, Yang S, Ruan Y, Lyu L, Guo X, Wu X, Chen Y. Exploring the impact of initial moisture content on microbial community and flavor generation in Xiaoqu baijiu fermentation. Food Chem X 2023; 20:100981. [PMID: 38144799 PMCID: PMC10740107 DOI: 10.1016/j.fochx.2023.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Moisture is essential in microbiota succession and flavor formation during baijiu fermentation. However, it remains unknown how moisture content affects microbiota, metabolism, and their relationship. Here, we compared the difference in volatiles, microbiota characteristics, and potential functions with different initial moisture contents (50 %, 55 %, 60 %, 65 %, 70 %). Results showed that the ratio of ethyl acetate to ethyl lactate and total volatile compounds content increased as the moisture content was elevated from 50 % to 70 %. As increasing moisture content, fermentation system microbiota dominated by Lactobacillus was formed more rapidly. Lactobacillus, Dekkera, and Pediococcus were positively correlated with moisture, promoting the production of propanol, acetic acid, butyric acid, and 2-butanol. The complexity and stability of ecological networks enhanced as moisture content increased (R2 = 0.94, P = 0.004). Our study revealed that moisture-drive microbiota was a critical contributor to flavor formation, providing the theoretical basis for moisture control to regulate flavor compounds.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunhong Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | | | - Yulei Ruan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Linjie Lyu
- Jing Brand Co., Ltd, HuangShi, HuBei 435100, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaole Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Pan Y, Wang Y, Hao W, Zhou S, Duan C, Li Q, Wei J, Liu G. Exploring the Role of Active Functional Microbiota in Flavor Generation by Integrated Metatranscriptomics and Metabolomics during Niulanshan Baijiu Fermentation. Foods 2023; 12:4140. [PMID: 38002197 PMCID: PMC10669994 DOI: 10.3390/foods12224140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Active functional microbiota for producing volatile flavors is critical to Chinese baijiu fermentation. Microbial communities correlated with the volatile metabolites are generally explored using DNA-based sequencing and metabolic analysis. However, the active functional microbiota related to the volatile flavor compounds is poorly understood. In this study, an integrated metatranscriptomic and metabolomics analysis was employed to unravel the metabolite profiles comprehensively and the contributing active functional microbiota for flavor generation during Niulanshan baijiu fermentation. A total of 395, 83, and 181 compounds were annotated using untargeted metabolomics, including LC-MS, GC-MS, and HS-SPME-GC-MS, respectively. Significant variances were displayed in the composition of compounds among different time-point samples according to the heatmaps and orthogonal partial least-square discriminant analysis. The correlation between the active microbiota and the volatile flavors was analyzed based on the bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) model. Six bacterial genera, including Streptococcus, Lactobacillus, Pediococcus, Campylobacter, Yersinia, and Weissella, and five fungal genera of Talaromyces, Aspergillus, Mixia, Rhizophagus, and Gloeophyllum were identified as the active functional microbiota for producing the volatile flavors. In summary, this study revealed the active functional microbial basis of unique flavor formation and provided novel insights into the optimization of Niulanshan baijiu fermentation.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
| | - Ying Wang
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Wenjun Hao
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Sen Zhou
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiushi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinwang Wei
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Luo LJ, Song L, Han Y, Zhen P, Han DY, Zhao X, Zhou X, Wei YH, Yu HX, Han PJ, Bai FY. Microbial communities and their correlation with flavor compound formation during the mechanized production of light-flavor Baijiu. Food Res Int 2023; 172:113139. [PMID: 37689903 DOI: 10.1016/j.foodres.2023.113139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
Light-flavor Baijiu fermentation is a typical spontaneous solid-state fermentation process fueled by a variety of microorganisms. Mechanized processes have been increasingly employed in Baijiu production to replace traditional manual operation processes, however, the microbiological and physicochemical dynamics in mechanized processes remain largely unknown. Here, we investigated the microbial community succession and flavor compound formation during a whole mechanized fermentation process of light-flavor Baijiu using the conventional dilution plating method, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The results showed that largely different fungal and bacterial communities were involved in the soaking and fermentation processes. A clear succession from Pantoea agglomerans to Bacillus (B.) smithii and B. coagulans in dominant bacterial species and from Cladosporium exasperatum to Saccharomyces cerevisiae and Lichtheimia ramosa in dominant fungal species occurred in the soaking processes. In the fermentation process, the most dominant bacterial species was shifted from Pantoea agglomerans to Lactobacillus (La.) acetotolerans and the most dominant fungal species were shifted from Lichtheimia ramose and Rhizopus arrhizus to Saccharomyces cerevisiae. The bacterial and fungal species positively associated with acidity and the formation of ethanol and different flavor compounds were specified. The microbial species exhibited strong co-occurrence or co-exclusion relationships were also identified. The results are helpful for the improvement of mechanized fermentation process of light-flavor Baijiu production.
Collapse
Affiliation(s)
- Lu-Jun Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying Han
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pan Zhen
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hui-Xin Yu
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Fan J, Qu G, Wang D, Chen J, Du G, Fang F. Synergistic Fermentation with Functional Microorganisms Improves Safety and Quality of Traditional Chinese Fermented Foods. Foods 2023; 12:2892. [PMID: 37569161 PMCID: PMC10418588 DOI: 10.3390/foods12152892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Traditional fermented foods are favored by people around the world for their positive health and taste advantages. Many of the fermented foods, including Chinese traditional fermented foods, are produced through mixed-culture fermentation. Apart from reducing the formation of harmful compounds such as ethyl carbamate (EC) and biogenic amines (BAs) during food fermentation, it is also difficult to precisely control and regulate the fermentation process based on the control of environmental conditions alone, due to the complex microbiota and an unclarified fermentation mechanism. In this review, key microorganisms involved in Chinese fermented foods such as baijiu, soy sauce, and vinegar production are elaborated, and relations between microbial composition and the aroma or quality of food are discussed. This review focuses on the interpretation of functions and roles of beneficial (functional) microorganisms that participate in food fermentation and the discussion of the possibilities of the synergistic use of functional microorganisms to improve the safety and quality of Chinese fermented foods. Conducting work toward the isolation of beneficial microorganisms is a challenge for modern food fermentation technology. Thus, methods for the isolation and mutagenesis of functional microbial strains for synergistic food fermentation are summarized. Finally, the limitations and future prospects of the use of functional microorganisms in traditional Chinese fermented foods are reviewed. This review provides an overview of the applications of synergistic fermentation with functional microorganisms in the improvement of the safety or sensory qualities of fermented foods.
Collapse
Affiliation(s)
- Jingya Fan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guanyi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Datao Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (J.F.); (G.Q.); (D.W.); (J.C.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Wang H, Zhang M, Qu C, Fei Y, Liang J, Bai W, Zhao W, Xiao G, Liu G. Characterization and Correlation of Microbiota and Higher Alcohols Based on Metagenomic and Metabolite Profiling during Rice-Flavor Baijiu Fermentation. Foods 2023; 12:2720. [PMID: 37509812 PMCID: PMC10379614 DOI: 10.3390/foods12142720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Higher alcohol, as an inevitable product of fermentation, plays an important role in the flavor and quality of Baijiu. However, the relationship between the complex microbial metabolism and the formation of higher alcohols in rice-flavor Baijiu was not clear. To investigate the relationship between microorganisms and higher alcohol production, two fermentation mashes inoculated with starters from Heyuan Jinhuangtian Liquor Co., Ltd. (Heyuan, China) as JM and Guangdong Changleshao Co., Ltd. (Meizhou, China) as CM, respectively, with significant differences in higher alcohol profiles during rice-flavor Baijiu fermentation were selected. In general, higher alcohols presented a rapid accumulation during the early fermentation stages, especially in JM, with higher and faster increases than those in CM. As for their precursors including amino acids, pyruvic acid and ketoacids, complex variations were observed during the fermentation. Metagenomic results indicated that Saccharomyces cerevisiae and Rhizopus microsporus were the microorganisms present throughout the brewing process in JM and CM, and the relative abundance of R. microsporus in JM was significantly higher than that in CM. The results of higher alcohol metabolism in JM may contribute to the regulation of higher alcohols in rice-flavor Baijiu.
Collapse
Affiliation(s)
- Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Minqian Zhang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunyun Qu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
19
|
Yu X, Huang T, Huang Z, Wu Z, Che J, Qin F, Zhang W. Effects of six commercially available koji (Chinese Xiaoqu) on the production of ethyl acetate, ethyl lactate, and higher alcohols in Chinese Baijiu (distilled spirit) brewing. Heliyon 2023; 9:e17739. [PMID: 37483820 PMCID: PMC10362182 DOI: 10.1016/j.heliyon.2023.e17739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Commercial koji has been increasingly used in Chinese Baijiu brewing; however, there are only few studies comparing different koji and their relationship with key components of Chinese Baijiu such as ethyl acetate, ethyl lactate, and higher alcohols. Here, we studied six commercially available koji and showed that the microbial communities in the individual koji varied in composition, with Rhizopus, Aspergillus, and Bacillus primarily associated with starch hydrolysis and Saccharomyces mainly associated with alcohol production. In the brewing processes using the six koji, Saccharomyces was undoubtedly the most abundant fungus and Weissella, Bacillus, and Acinetobacter were the predominant bacterial groups. The levels of ethyl acetate, ethyl lactate, and higher alcohols in all brewing processes using the koji exhibited rapid increase in the early stages of fermentation, which stabilized in the later stages, followed by substantial increase after distillation. The results of metagenomic and redundancy analyses of samples taken during the brewing processes indicated that Saccharomyces from the koji was closely related to the production of ethyl acetate, ethyl lactate, and higher alcohols. This study provides a basis for the quality improvement and application of commercial koji.
Collapse
Affiliation(s)
- Xiaoyang Yu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Tingting Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | | | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jingwei Che
- Zuiqingfeng Liquor Co., Luzhou 646000, China
| | - Fengyang Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Huang J, Qiao C, Wang X, Gao Y, Zhao J, Luo H, Wang Y, Hou C, Huo D. The microsphere of sodium alginate-chitosan-Pichia kudriavzevii enhanced esterase activity to increase the content of esters in Baijiu solid-state fermentation. Food Chem 2023; 407:135154. [PMID: 36502727 DOI: 10.1016/j.foodchem.2022.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Pichia kudriavzevii was one of the important aroma-producing fungi in the solid-state fermentation of Baijiu, and immobilization was an effective strategy for improving microbial performance. Herein, P. kudriavzevii cells were immobilized in a gel network that crosslinked by chitosan and sodium alginate to form sodium alginate/chitosan-P. kudriavzevii microspheres (SA/CS-PMs). Their structural characteristics and formation processes were characterized by SEM and FT-IR. The effect of synthesis conditions on the performance of microspheres were determined by single-factor experiments. Under the optimal conditions, the SA/CS-PMs could increase the amylase activity of the fermentation broth by 57.18%, the esterase activity by 66.13%, the content of ester by 67.04%, and could be reused at least three times. Further research results indicated that the content of ester could be increased significantly in Baijiu solid-state fermentation with the SA/CS-PMs. In conclusion, the SA/CS-PMs could improve the ester production ability of P. kudriavzevii by increasing the esterase activity, which was a valuable exploration of directional biosynthesis and a feasible strategy to improve solid-state fermentation quality.
Collapse
Affiliation(s)
- Jiaqing Huang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinrou Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuwei Gao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
21
|
Li X, Tan G, Chen P, Cai K, Dong W, Peng N, Zhao S. Uncovering acid resistance genes in lactic acid bacteria and impact of non-viable bacteria on bacterial community during Chinese strong-flavor baijiu fermentation. Food Res Int 2023; 167:112741. [PMID: 37087286 DOI: 10.1016/j.foodres.2023.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Chinese strong-flavor baijiu (CSFB) brewing is a spontaneously solid-state fermentation process for approximately 60 days. Numerous microorganisms grow, die, and spark a series of metabolic reactions during fermentation. In this study, the microbial community and structure between total and viable bacteria in zaopei from the 5- and 20-year pits of CSFB are revealed by amplicon sequencing. Metagenome sequencing was applied to investigate acid resistance genes in Lactobacillus and predict carbohydrate active enzyme in zaopei. Besides, SourceTracker was conducted to expose bacterial sources. Results revealed that there was no significant difference in the bacterial community and structure between the total and viable bacteria; Lactobacillus was the most dominant bacterium in zaopei of two types of pits. Meanwhile, acid resistance genes argR, aspA, ilvE, gshA, DnaK, and cfa were genes that sustained Lactobacillus survival in the late stages of fermentation with high contents of acid and ethanol, and glycosyltransferases were identified as the predominated enzymes during the CSFB fermentation which catalyzed the process of lactic acid generation via Embden-Meyerhof-Parnas pathway and Hexose Monophosphate Pathway. Moreover, the environment contributed most bacteria to zaopei of the 5- and 20-year pits. These findings will provide a deeper understanding of the microbial community structure of viable and total bacteria and the reason for the dominance of Lactobacillus in the later stages of CSFB fermentation.
Collapse
|
22
|
Liu WH, Chai LJ, Wang HM, Lu ZM, Zhang XJ, Xiao C, Wang ST, Shen CH, Shi JS, Xu ZH. Bacteria and filamentous fungi running a relay race in Daqu fermentation enable macromolecular degradation and flavor substance formation. Int J Food Microbiol 2023; 390:110118. [PMID: 36796164 DOI: 10.1016/j.ijfoodmicro.2023.110118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
As the saccharifying and fermentative agent, medium-temperature Daqu (MT-Daqu) plays an irreplaceable role in the production of strong-flavor Baijiu. Numerous studies have focused on the microbial community structure and potential functional microorganisms, however, little is known about the succession of active microbial community and the formation mechanism of community function during MT-Daqu fermentation. In this study, we presented an integrated analysis of metagenomics, metatranscriptomics, and metabonomics covering the whole fermentation process of MT-Daqu to reveal the active microorganisms and their participations in metabolic networks. The results showed that dynamic of metabolites were time-specific, and the metabolites and co-expressed active unigenes were further classified into four clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across fermentation. Based on KEGG enrichment analysis in co-expression clusters and succession of active microbial community, we revealed that Limosilactobacillus, Staphylococcus, Pichia, Rhizopus, and Lichtheimia were metabolically active members at the early stage, and their metabolic activities were conducive to releasing abundant energy to drive multiple basal metabolisms such as carbohydrates and amino acids. Thereafter, during the high temperature period and at the end of fermentation, multiple heat-resistant filamentous fungi were transcriptionally active populations, and they acted as both the saccharifying agents and flavor compound producers, especially aromatic compounds, suggesting their crucial contribution to enzymatic activity and aroma of mature MT-Daqu. Our findings revealed the succession and metabolic functions of the active microbial community, providing a deeper understanding of their contribution to MT-Daqu ecosystem.
Collapse
Affiliation(s)
- Wen-Hu Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Li-Juan Chai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Hong-Mei Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zhen-Ming Lu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Chen Xiao
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|
23
|
Stochastic Processes Drive the Assembly and Metabolite Profiles of Keystone Taxa during Chinese Strong-Flavor Baijiu Fermentation. Microbiol Spectr 2023:e0510322. [PMID: 36916915 PMCID: PMC10101002 DOI: 10.1128/spectrum.05103-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Multispecies communities participate in the fermentation of Chinese strong-flavor Baijiu (CSFB), and the metabolic activity of the dominant and keystone taxa is key to the flavor quality of the final product. However, their roles in metabolic function and assembly processes are still not fully understood. Here, we identified the variations in the metabolic profiles of dominant and keystone taxa and characterized their community assembly using 16S rRNA and internal transcribed spacer (ITS) gene amplicon and metatranscriptome sequencing. We demonstrate that CSFB fermentations with distinct metabolic profiles display distinct microbial community compositions and microbial network complexities and stabilities. We then identified the dominant taxa (Limosilactobacillus fermentum, Kazachstania africana, Saccharomyces cerevisiae, and Pichia kudriavzevii) and the keystone ecological cluster (module 0, affiliated mainly with Thermoascus aurantiacus, Weissella confusa, and Aspergillus amstelodami) that cause changes in metabolic profiles. Moreover, we highlight that the alpha diversity of keystone taxa contributes to changes in metabolic profiles, whereas dominant taxa exert their influence on metabolic profiles by virtue of their relative abundance. Additionally, our results based on the normalized stochasticity ratio (NST) index and the neutral model revealed that stochastic and deterministic processes together shaped CSFB microbial community assemblies. Stochasticity and environmental selection structure the keystone and dominant taxa differently. This study provides new insights into understanding the relationships between microbial communities and their metabolic functions. IMPORTANCE From an ecological perspective, keystone taxa in microbial networks with high connectivity have crucial roles in community assembly and function. We used CSFB fermentation as a model system to study the ecological functions of dominant and keystone taxa at the metabolic level. We show that both dominant taxa (e.g., those taxa that have the highest relative abundances) and keystone taxa (e.g., those taxa with the most cooccurrences) affected the resulting flavor profiles. Moreover, our findings established that stochastic processes were dominant in shaping the communities of keystone taxa during CSFB fermentation. This result is striking as it suggests that although the controlled conditions in the fermentor can determine the dominant taxa, the uncontrolled rare keystone taxa in the microbial community can alter the resulting flavor profiles. This important insight is vital for the development of potential manipulation strategies to improve the quality of CSFB through the regulation of keystone species.
Collapse
|
24
|
Cheng W, Chen X, Guo Y, Zhou D, Zeng H, Fu H. The microbial diversity and flavour metabolism of Chinese strong flavour Baijiu: a review. JOURNAL OF THE INSTITUTE OF BREWING 2023. [DOI: 10.58430/jib.v129i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Strong flavour Baijiu is widely consumed in China and is produced by the fermentation of grains using microbial starters. However, a comprehensive understanding of the diversity and metabolic characteristics of microbial communities involved in the solid-state fermentation of Baijiu is important for determining the relationship between microbial composition, flavour metabolism and understanding Baijiu fermentation conditions. Although studies have examined the metabolic pathways and impact of major processes on flavour compounds in strong flavour Baijiu, aspects of the fermentation process remain unexplored. In this review, methods are discussed for the optimisation of microbial diversity in strong flavour Baijiu and associated effects on the flavour of Baijiu. Recent studies are reviewed on starters (Daqu), fermented grains (Jiupei), and pit mud together with the effects of microbial composition on the quality of strong flavour Baijiu. The challenges of Baijiu research and production are discussed, including the role of the microbial diversity of Daqu and Jiupei in the flavour composition of strong flavour Baijiu. This review contributes to the current understanding of processing strong flavour Baijiu and serves as a reference for screening flavour related microorganisms, which is valuable for improving the quality of strong flavour Baijiu.
Collapse
|
25
|
Zhang B, Sun Z, Lin L, Zhang C, Wei C. Analysis of the Effect of Mixed Fermentation on the Quality of Distilled Jujube Liquor by Gas Chromatography-Ion Mobility Spectrometry and Flavor Sensory Description. Foods 2023; 12:foods12040795. [PMID: 36832870 PMCID: PMC9957257 DOI: 10.3390/foods12040795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Distilled jujube liquor is an alcoholic beverage made from jujube, which has a unique flavor and a sweet taste. The purpose of this study was to explore the effect of mixed fermentation on the quality of distilled jujube liquor by comparing the performance of mixed fermentation between S. cerevisiae, Pichia pastoris and Lactobacillus. The results showed that there were significant differences in the quality of the jujube liquor between the combined strains. Moreover, Lactobacillus increased and P. pastoris reduced the total acid content. The results from an E-nose showed that the contents of methyl, alcohol, aldehyde, and ketone substances in the test bottle decreased significantly after decanting, while the contents of inorganic sulfide and organic sulfide increased. Fifty flavor compounds were detected, including nineteen esters, twelve alcohols, seven ketones, six aldehydes, three alkenes, one furan, one pyridine, and one acid. There were no significant differences in the type or content of flavor compounds. However, PLS-DA showed differences among the samples. Eighteen volatile organic compounds with variable importance in projection values > 1 were obtained. There were sensory differences among the four samples. Compared with the sample fermented with only S. cerevisiae, the samples co-fermented with Lactobacillus or with P. pastoris had an obvious bitter taste and mellow taste, respectively. The sample fermented by all three strains had a prominent fruity flavor. Except for the sample fermented with only S. cerevisiae, the jujube flavor was weakened to varying degrees in all samples. Co-fermentation could be a valuable method to improve the flavor quality of distilled jujube liquor. This study revealed the effects of different mixed fermentation modes on the sensory flavor of distilled jujube liquor and provided a theoretical basis for the establishment of special mixed fermentation agents for distilled jujube liquor in the future.
Collapse
Affiliation(s)
- Busheng Zhang
- Shandong Engineering Technology Research Center of Pomegranate Deep Processing, College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277100, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongguan Sun
- Shandong Engineering Technology Research Center of Pomegranate Deep Processing, College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277100, China
- Correspondence: (Z.S.); (C.Z.)
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (Z.S.); (C.Z.)
| | - Chunhui Wei
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Zigong 643002, China
| |
Collapse
|
26
|
Liu S, Zhou Y, Ma D, Zhang S, Dong Y, Zhang X, Mao J. Environment microorganism and mature daqu powder shaped microbial community formation in mechanically strong-flavor daqu. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
27
|
Zhao W, Liang Z, Qian M, Li X, Dong H, Bai W, Wei Y, He S. Evolution of microbial communities during fermentation of Chi-flavor type Baijiu as determined by high-throughput sequencing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Xiao R, Chen S, Wang X, Chen K, Hu J, Wei K, Ning Y, Xiong T, Lu F. Microbial community starters affect the profiles of volatile compounds in traditional Chinese Xiaoqu rice wine: Assement via high-throughput sequencing and gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Zhu L, Li L, Yang Q, Chen L, Zhang L, Zhang G, Lin B, Tang J, Zhang Z, Chen S. Study on microbial community of "green-covering" Tuqu and the effect of fortified autochthonous Monascus purpureus on the flavor components of light-aroma-type Baijiu. Front Microbiol 2022; 13:973616. [PMID: 36060768 PMCID: PMC9434108 DOI: 10.3389/fmicb.2022.973616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
"Green-covering" Tuqu (TQ), as one of Xiaoqu, is a special fermentative starter (also known as Jiuqu in Chinese) that originated in southern China and is characterized by a layer of green mold covering (Aspergillus clavatus) the surface and (sometimes) with a red heart. It plays a vital role in producing light-aroma-type Baijiu (LATB). However, to date, the microbiota that causes red heart of TQ remain largely unexplored, and it is still unclear how these microbiota influence on the quality of LATB. In this study, two types of TQ, one with a red heart (RH) and another with a non-red heart (NRH), were investigated by high throughput sequencing (HTS) and directional screening of culture-dependent methods. The obtained results revealed the differences in the microbial communities of different TQ and led to the isolation of two species of Monascus. Interestingly, the results of high performance liquid chromatography (HPLC) detection showed that citrinin was not detected, indicating that Monascus isolated from TQ was no safety risk, and the contents of gamma-aminobutyric acid in the fermented grains of RH were higher than that of NRH during the fermentation. Selecting the superior autochthonous Monascus (M1) isolated from the TQ to reinoculate into the TQ-making process, established a stable method for producing the experimental "red heart" Tuqu (ERH), which confirmed that the cause of "red heart" was the growth of Monascus strains. After the lab-scale production test, ERH increased ethyl ester production and reduced higher alcohols production. In addition, Monascus had an inhibitory effect on the growth of Saccharomyces and Aspergillus. This study provides the safe, health-beneficial, and superior fermentation strains and strategies for improving the quality of TQ and LATB.
Collapse
Affiliation(s)
- Liping Zhu
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lanqi Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Qiang Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Liang Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lei Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Gang Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Bin Lin
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Jie Tang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| |
Collapse
|
30
|
Fu H, Yang Y, Li J. Optimization of fermentation conditions and volatile substance analysis of wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences Honghe University Mengzi Yunnan China
| | - Yongchao Yang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences Honghe University Mengzi Yunnan China
| | - Jie Li
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences Honghe University Mengzi Yunnan China
| |
Collapse
|
31
|
Microbial succession and its effect on key aroma components during light-aroma-type Xiaoqu Baijiu brewing process. World J Microbiol Biotechnol 2022; 38:166. [PMID: 35861902 DOI: 10.1007/s11274-022-03353-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Light-aroma-type Baijiu is a Chinese distilled alcoholic beverage produced from fermented sorghum. Microbial composition and dynamics during Baijiu production have a great influence on the flavor and quality of Chinese Baijiu. However, the microbial changes that occur during brewing of Xiaoqu Baijiu are poorly understood. In this study, the microbial composition of light-aroma-type Xiaoqu Baijiu at the saccharification and fermentation stages was investigated to explore microbial dynamics and their effects on aroma components using high-throughput sequencing and gas chromatography-flame ionization detection (GC-FID). Rhizopus, Pichia, Wickerhamomyces, Saccharomyces, Acinetobacter, Lactobacillus, and Weissella constituted the core microbes for Xiaoqu Baijiu production. Microbial succession during brewing could be divided into two phases: at the saccharification and early fermentation stages (F-0d to F-4d), Rhizopus and Acinetobacter were identified as the predominant microbes, accounting for 78.2-90.8% and 53.9-89.5% of the fungal and bacterial communities, respectively, whereas at the middle and late stages of fermentation (F-5d to F-14d), the abundance of Pichia, Wickerhamomyces, Saccharomyces, and Lactobacillus increased. Redundancy analysis (RDA) and Mantel tests indicated that the water, amino acid nitrogen, acid, and reducing sugar contents were significantly correlated with the fungal and bacterial communities in grains (p < 0.05). Pichia, Rhizopus, Saccharomyces, and Wickerhamomyces, especially Saccharomyces, were closely related to the contents of major alcohols, esters and aldehydes, and these microbes had an important functional role in the formation of Xiaoqu Baijiu flavor. This work provides insights into the microbial succession that occurs during brewing of light-aroma-type Xiaoqu Baijiu and the microbial contribution to flavor, which have potential for optimizing production and enhancing the flavor of Baijiu.
Collapse
|
32
|
Dong W, Zeng Y, Cui Y, Chen P, Cai K, Guo T, Tan G, Peng N, Liang Y, Zhao S. RETRACTED: Unraveling the composition and succession of microbial community and its relationship to flavor substances during Xin-flavor baijiu brewing. Int J Food Microbiol 2022; 372:109679. [PMID: 35439680 DOI: 10.1016/j.ijfoodmicro.2022.109679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors. The authors reported unauthorized use of several figures in this paper of copyrighted material from the Daohuaxiang Liquor Co., Ltd. Therefore, the authors are retracting the paper in its entirety. They apologize for any inconvenience this may have caused.
Collapse
Affiliation(s)
- Weiwei Dong
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiting Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Cui
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Chen
- Hubei Daohuaxiang Liquor Co., Ltd, Yichang 443112, China
| | - Kaiyun Cai
- Hubei Daohuaxiang Liquor Co., Ltd, Yichang 443112, China
| | - Tingting Guo
- Hubei Daohuaxiang Liquor Co., Ltd, Yichang 443112, China
| | - Guangxun Tan
- Hubei Daohuaxiang Liquor Co., Ltd, Yichang 443112, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Wang Q, Wang C, Xiang X, Xu H, Han G. Analysis of microbial diversity and succession during Xiaoqu Baijiu fermentation using high-throughput sequencing technology. Eng Life Sci 2022; 22:495-504. [PMID: 35865650 PMCID: PMC9288988 DOI: 10.1002/elsc.202200015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, high-throughput sequencing (HTS) was used to compare and analyze the microbial diversity and succession during the brewing process of xiaoqu Baijiu. A total of 34 phyla and 378 genera of bacteria, as well as four phyla, 32 genera of fungi were detected. At the phylum level, Firmicutes, Proteobacteria, Ascomycota, and Mucoromycota were the dominant groups. During the brewing process of xiaoqu Baijiu, the dominant bacteria were Weissella and unidentified Rickettsiales within the first 2 days of brewing, followed by Lactobacillus at 3 days until to the end of brewing. The dominant fungi were Rhizopus, Saccharomyces, and Issatchenkia. The relative abundance of Rhizopus decreased with the extension of brewing time, while the relative abundance of Saccharomyces increased, and Saccharomyces became the dominant species at the second day of brewing. This study revealed the diversity and changes of the microbial community during the brewing process of xiaoqu Baijiu, providing theoretical support and laying a foundation for future study on the contribution of microbial metabolism during brewing of xiaoqu Baijiu, thereby promoting the development of xiaoqu Baijiu industry.
Collapse
Affiliation(s)
- Qing Wang
- School of Advanced Agriculture and BioengineeringYangtze Normal UniversityChongqingPeople's Republic of China
| | - ChaoYan Wang
- School of Advanced Agriculture and BioengineeringYangtze Normal UniversityChongqingPeople's Republic of China
| | - XiaoQing Xiang
- School of Advanced Agriculture and BioengineeringYangtze Normal UniversityChongqingPeople's Republic of China
| | - HaiLin Xu
- School of Advanced Agriculture and BioengineeringYangtze Normal UniversityChongqingPeople's Republic of China
| | - GuoQiang Han
- School of Advanced Agriculture and BioengineeringYangtze Normal UniversityChongqingPeople's Republic of China
| |
Collapse
|
34
|
Pan Y, Wang Y, Hao W, Duan C, Wang S, Wei J, Liu G. Metatranscriptomics Unravel Composition, Drivers, and Functions of the Active Microorganisms in Light-Flavor Liquor Fermentation. Microbiol Spectr 2022; 10:e0215121. [PMID: 35638860 PMCID: PMC9241730 DOI: 10.1128/spectrum.02151-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
The microbial community in the fermented pit determines the quantity and quality of light-flavor liquor. Genetic diversity and the potential functions of the microbial community are often analyzed by DNA-based omics sequencing. However, the features of the active microbial community have not been systematically studied. Here, metatranscriptomic analysis was performed to elucidate the active microbial composition, drivers, and their functions in light-flavor liquor fermentation. Bacterial genera, Lactobacillus, Streptococcus, Pediococcus, Thermotoga, and Faecalibacterium, and fungal genera, Saccharomyces, Talaromyces, Aspergillus, Clavispora, Rhizophagus, Cyberlindnera, and Wickerhamomyces, were the dominant active microorganisms during the fermentation process. Additionally, they dominated the three-stage fermentation successively. Redundancy analysis showed that pH, ethanol, moisture, and starch were the main driving forces of microbial succession. Among the genes for the respective carbohydrate-active enzyme families, those for the glycoside hydrolase family 23, the glycosyltransferase family 2, the carbohydrate-binding module family 50, the polysaccharide lyase family 4, the auxiliary activity family 1, and the carbohydrate esterase family 9 showed the highest expression level. Additionally, the highly expressed enzymes and their contributed microorganisms were found in the key KEGG pathways, including carbohydrate metabolism, energy metabolism, lipid metabolism, and amino acid metabolism. Based on these data, a functional model of carbohydrate hydrolysis, ethanol production, and flavor generation were proposed. Taken together, Saccharomyces, Lactobacillus, Wickerhamomyces, Pediococcus, Candida, and Faecalibacterium were suggested as the core active microorganisms. Overall, our findings provide new insights into the composition, drivers, and functions of the active microorganisms, which is crucial for improving the quality of light-flavor liquor. IMPORTANCE There is an urgent need for discovering the diversity and functions of the active microbial community in solid-state fermentation, especially in the pit of Chinese distilled liquor fermentation. Although the genetic composition of the microbial community has been clarified frequently by DNA-based sequencing, the composition and functions of the active microbial community have not been systematically revealed so far. Therefore, analysis of RNA-based data is crucial for discovering the functional microbial community. In this study, we employed metatranscriptomic analysis to elucidate the active microbial composition, successive drivers, and their functions in light-flavor liquor fermentation. The strategy can be broadly useful for discovering the active microbial community and exploring their functions in other types of flavor distilled liquor or other ecosystems. This study provides new insights into the understanding of the active microbial community composition and its functions.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Beijing Shunxin Agriculture Company Limited, Niulanshan Distillery, Beijing, China
| | - Wenjun Hao
- Beijing Shunxin Agriculture Company Limited, Niulanshan Distillery, Beijing, China
| | - Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinwang Wei
- Beijing Shunxin Agriculture Company Limited, Niulanshan Distillery, Beijing, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Qin F, Wu Z, Zhang W. Evaluation of six commercial koji on the formation of biogenic amines and higher alcohols in rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengyang Qin
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Zhengyun Wu
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
36
|
Effects of modernized fermentation on the microbial community succession and ethyl lactate metabolism in Chinese baijiu fermentation. Food Res Int 2022; 159:111566. [DOI: 10.1016/j.foodres.2022.111566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
|
37
|
Chen S, Perez-Samper G, Herrera-Malaver B, Zhu L, Liu Y, Steensels J, Yang Q, Verstrepen KJ. Breeding of New Saccharomyces cerevisiae Hybrids with Reduced Higher Alcohol Production for Light-Aroma-Type- Xiaoqu Baijiu Production. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2033608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shenxi Chen
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Gemma Perez-Samper
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| | - Liping Zhu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Jan Steensels
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd, Daye, Hubei, People’s Republic of China
| | - Kevin J. Verstrepen
- Department M2S, CMPG Laborary for Genetics and Genomics, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Bio-Incubator, Leuven, Belgium
| |
Collapse
|
38
|
Hu Y, Huang X, Yang B, Zhang X, Han Y, Chen XX, Han BZ. Contrasting the microbial community and metabolic profile of three types of light-flavor Daqu. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Tang J, Liu Y, Lin B, Zhu H, Jiang W, Yang Q, Chen S. Effects of ultra-long fermentation time on the microbial community and flavor components of light-flavor Xiaoqu Baijiu based on fermentation tanks. World J Microbiol Biotechnol 2021; 38:3. [PMID: 34817705 PMCID: PMC8611178 DOI: 10.1007/s11274-021-03183-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023]
Abstract
Microbial structure and succession of fermented grains play a significant role in Baijiu's flavor and quality. In this study, high-throughput sequencing (HTS) coupled with headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the microbial community structures and flavor components in the fermented grains at the end of fermentation from different fermentation time of light-flavor Xiaoqu Baijiu. HTS results showed that Lactobacillus acetotolerans, Lactobacillus helveticus, Lactobacillus buchneri, Wickerhamomyces, Saccharomyces, and Condenascus were identified as the dominant microbes, but Lactobacillus (96.28%) exhibited obvious advantages at the end of ultra-long fermentation time (day 98). HS-SPME-GC-MS analysis revealed that esters and alcohols had the most abundance in fermented grains of day 98, containing high concentrations of ethyl acetate, diethyl succinate, phenylethyl alcohol, isoamyl alcohol, and n-propanol, which were related to the succession of Lactobacillus and yeast communities. Interestingly, the content of n-propanol in the ultra-long fermentation time samples (day 98) was 6 times of that in normal fermented grains (day 14), which may be caused by higher abundance of Lactobacillus in day 98 samples. Monte Carlo permutation test showed residual starch, acidity, and amino nitrogen (p < 0.05) were important factors affecting the microbial community. Together, these results shed light on the physicochemical changes, microbial dynamics, and key flavor components of fermented grains at the end of fermentation from different fermentation time and provide a strategy for further improvement of Baijiu quality.
Collapse
Affiliation(s)
- Jie Tang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Bin Lin
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Hao Zhu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Wei Jiang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China.
| | - Shenxi Chen
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China.
| |
Collapse
|
40
|
Detection of viable and total fungal community in zaopei of Chinese strong-flavor baijiu using PMA combined with qPCR and HTS based on ITS2 region. BMC Microbiol 2021; 21:274. [PMID: 34625023 PMCID: PMC8499482 DOI: 10.1186/s12866-021-02334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chinese strong-flavor baijiu (CSFB), one of the three major baijiu types, is the most popular baijiu type among consumers in China. A variety of microbes are involved in metabolizing raw materials to produce ethanol and flavor substances during fermentation, which fundamentally determined the quality of baijiu. It is of great importance to study microbial community of fermented grains (zaopei) during baijiu brewing process for improving its quality. In this study, we firstly used propidium monoazide (PMA) to treat zaopei samples from 5-year pit and 20-year pit for removing the interference of non-viable fungi, and analyzed the diversity of total fungi and viable fungi by quantitative PCR (qPCR) and high-throughput sequencing (HTS) based on ITS2 gene. Results The results showed that total fungi and viable fungi displayed no significant differences at OTU, phylum, or genus levels during fermentation within two kinds of pits. A total of 6 phyla, 19 classes, and 118 genera in fungi were found based on OTUs annotation in zaopei samples from 5-year pit and 20-year pit. Besides, non-viable fungi had little effect on the fungal community diversity during the fermentation cycle. It was found that the most dominant viable fungi belonged to Saccharomyces, Kazachstania, Naumovozyma, and Trichosporon, and Naumovozyma was firstly detected in zaopei samples of CSFB. Moreover, based on the variation of flavor substances in zaopei samples, the quality of CSFB produced from older pit was better than that produced from younger pit. Conclusion The non-viable fungi had little effect on the fungal diversity, structure, and relative abundance in zaopei samples of CSFB, and Naumovozyma was firstly detected in zaopei samples of CSFB. Our findings can be applied as guidance for improving the quality and stability of CSFB. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02334-8.
Collapse
|
41
|
Wang JW, Han PJ, Han DY, Zhou S, Li K, He PY, Zhen P, Yu HX, Liang ZR, Wang XW, Bai FY. Genetic diversity and population structure of the amylolytic yeast Saccharomycopsis fibuligera associated with Baijiu fermentation in China. J Microbiol 2021; 59:753-762. [PMID: 34219208 DOI: 10.1007/s12275-021-1115-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
The amylolytic yeast Saccharomycopsis fibuligera is a predominant species in starters and the early fermentation stage of Chinese liquor (Baijiu). However, the genetic diversity of the species remains largely unknown. Here we sequenced the genomes of 97 S. fibuligera strains from different Chinese Baijiu companies. The genetic diversity and population structure of the strains were analyzed based on 1,133 orthologous genes and the whole genome single nucleotide polymorphisms (SNPs). Four main lineages were recognized. One lineage contains 60 Chinese strains which are exclusively homozygous with relatively small genome sizes (18.55-18.72 Mb) and low sequence diversity. The strains clustered in the other three lineages are heterozygous with larger genomes (21.85-23.72 Mb) and higher sequence diversity. The genomes of the homozygous strains showed nearly 100% coverage with the genome of the reference strain KPH12 and the sub-genome A of the hybrid strain KJJ81 at the above 98% sequence identity level. The genomes of the heterozygous strains showed nearly 80% coverage with both the sub-genome A and the whole genome of KJJ81, suggesting that the Chinese heterozygous strains are also hybrids with nearly 20% genomes from an unidentified source. Eighty-three genes were found to show significant copy number variation between different lineages. However, remarkable lineage specific variations in glucoamylase and α-amylase activities and growth profiles in different carbon sources and under different environmental conditions were not observed, though strains exhibiting relatively high glucoamylase activity were mainly found from the homozygous lineage.
Collapse
Affiliation(s)
- Ju-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sen Zhou
- Niulanshan Distillery, Shunxin Agriculture Co. Ltd., Beijing, 101301, P. R. China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Peng-Yu He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pan Zhen
- ShanxiFenjiu Co. Ltd., Fenyang, Shanxi, 032205, P. R. China
| | - Hui-Xin Yu
- ShanxiFenjiu Co. Ltd., Fenyang, Shanxi, 032205, P. R. China
| | - Zhen-Rong Liang
- Tianlongquan Distillery Co. Ltd., Hechi, Guangxi, 546400, P. R. China
| | - Xue-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
42
|
Hu Y, Lei X, Zhang X, Guan T, Wang L, Zhang Z, Yu X, Tu J, Peng N, Liang Y, Zhao S. Characteristics of the Microbial Community in the Production of Chinese Rice-Flavor Baijiu and Comparisons With the Microflora of Other Flavors of Baijiu. Front Microbiol 2021; 12:673670. [PMID: 33995338 PMCID: PMC8116502 DOI: 10.3389/fmicb.2021.673670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rice-flavor baijiu is one of the four basic flavor types of Chinese baijiu. Microbial composition plays a key role in the classification of baijiu flavor types and the formation of flavor substances. In this study, we used high-throughput sequencing technology to study the changes of microbial community in the production of rice-flavor baijiu, and compared the microbial community characteristics during production of rice-, light-, and strong-flavor baijiu. The results showed that the species diversity of bacteria was much higher than that of fungi during the brewing of rice-flavor baijiu. The bacterial diversity index first increased and then decreased, while the diversity of fungi showed an increasing trend. A variety of major microorganisms came from the environment and raw rice materials; the core bacteria were Lactobacillus, Weissella, Pediococcus, Lactococcus, Acetobacter, etc., among which Lactobacillus was dominant (62.88-99.23%). The core fungi were Saccharomyces (7.06-83.50%) and Rhizopus (15.21-90.89%). Temperature and total acid content were the main physicochemical factors affecting the microbial composition. Non-metric multidimensional scaling analysis showed that during the fermentation of rice-, light-, and strong-flavor baijiu, their microbial communities formed their own distinct systems, with considerable differences among different flavor types. Compared with the other two flavor types of baijiu, in the brewing process of rice-flavor baijiu, microbial species were fewer and dominant microorganisms were prominent, which may be the main reason for the small variety of flavor substances in rice-flavor baijiu. This study provides a theoretical basis for the production of rice-flavor baijiu, and lays a foundation for studying the link between baijiu flavor formation and microorganisms.
Collapse
Affiliation(s)
- Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center of Typical Wild Vegetable Breeding and Comprehensive Utilization Technology, Huangshi, China
| | - Xinyi Lei
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Xiaomin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangdong Deqing Incomparable Health Wine Co., Ltd., Zhaoqing, China
| | - Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Luyao Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Hu Y, Wang L, Zhang Z, Yang Q, Chen S, Zhang L, Xia X, Tu J, Liang Y, Zhao S. Microbial community changes during the mechanized production of light aroma Xiaoqu baijiu. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1892525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Luyao Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Qiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Shenxi Chen
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Long Zhang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|