1
|
Yen CN, Bodmer JS, Wicks JC, Zumbaugh MD, Persia ME, Shi TH, Gerrard DE. Mitochondrial Abundance and Function Differ Across Muscle Within Species. Metabolites 2024; 14:553. [PMID: 39452934 PMCID: PMC11509590 DOI: 10.3390/metabo14100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Mitochondria are considered the powerhouse of cells, and skeletal muscle cells are no exception. However, information regarding muscle mitochondria from different species is limited. Methods: Different muscles from cattle, pigs and chickens were analyzed for mitochondrial DNA (mtDNA), protein and oxygen consumption. Results: Bovine oxidative muscle mitochondria contain greater mtDNA (p < 0.05), protein (succinate dehydrogenase, SDHA, p < 0.01; citrate synthase, CS, p < 0.01; complex I, CI, p < 0.05), and oxygen consumption (p < 0.01) than their glycolytic counterpart. Likewise, porcine oxidative muscle contains greater mtDNA (p < 0.01), mitochondrial proteins (SDHA, p < 0.05; CS, p < 0.001; CI, p < 0.01) and oxidative phosphorylation capacity (OXPHOS, p < 0.05) in comparison to glycolytic muscle. However, avian oxidative skeletal muscle showed no differences in absolute mtDNA, SDHA, CI, complex II, lactate dehydrogenase, or glyceraldehyde 3 phosphate dehydrogenase compared to their glycolytic counterpart. Even so, avian mitochondria isolated from oxidative muscles had greater OXPHOS capacity (p < 0.05) than glycolytic muscle. Conclusions: These data show avian mitochondria function is independent of absolute mtDNA content and protein abundance, and argue that multiple levels of inquiry are warranted to determine the wholistic role of mitochondria in skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David E. Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.-N.Y.); (J.S.B.); (J.C.W.); (M.D.Z.); (M.E.P.); (T.H.S.)
| |
Collapse
|
2
|
Patinho I, Antonelo DS, Delgado EF, Alessandroni L, Balieiro JCC, Contreras Castillo CJ, Gagaoua M. In-depth exploration of the high and normal pH beef proteome: First insights emphasizing the dynamic protein changes in Longissimus thoracis muscle from pasture-finished Nellore bulls over different postmortem times. Meat Sci 2024; 216:109557. [PMID: 38852285 DOI: 10.1016/j.meatsci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.
Collapse
Affiliation(s)
- Iliani Patinho
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Eduardo F Delgado
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Carmen J Contreras Castillo
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | |
Collapse
|
3
|
Wicks JC, Wivell AL, Beline M, Zumbaugh MD, Bodmer JS, Yen CN, Wilson TB, Greiner SP, Johnson SE, Shi TH, Silva SL, Gerrard DE. Aging increases lightness of grass-fed beef. Transl Anim Sci 2024; 8:txae140. [PMID: 39584169 PMCID: PMC11582887 DOI: 10.1093/tas/txae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024] Open
Abstract
Grass-fed beef is becoming increasingly popular and is expected to be a $14 billion industry by 2024. Even so, grass-fed beef is typically darker in appearance than that of conventional grain-fed beef. Aging has been shown to improve lean color (L*, a*) of dark-cutting beef however little work has focused on aging as it relates to improving the lean color of grass-fed beef. Therefore, the aim of this study was to evaluate the effect of dry aging on grass-fed beef compared to varying lengths of grain-feeding. Thirty commercial Angus crossbred steers were randomly assigned to either pasture finishing (CON), short (SF), or long fed (LF) programs. The SF and LF treatments ranged from 90 to 114 d (average: 98 d) and 118 to 134 d (average: 125 d) on ad libitum high concentrate feeding, respectively. Cattle were randomly identified from each treatment group and harvested over a consecutive 3-wk span. Carcass evaluation and longissimus lumborum samples were collected 24 h postmortem. Carcasses were aged for 21 d, and steaks were collected on 1-, 3-, 7-, 10-, 14-, and 21-d postharvest, and objective color was evaluated following 1 h bloom. Our data show color (L*, a*, b*) was improved with aging regardless of treatment. However, grass-fed (CON) showed the greatest improvement in both lightness (L*) and redness (a*) ultimately making grass-fed comparable to that of grain-fed beef by day 21. These data argue that dry-aging grass-fed beef improves color development similar to that of grain-fed beef.
Collapse
Affiliation(s)
- Jordan C Wicks
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexis L Wivell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mariane Beline
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | - Jocelyn S Bodmer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Con-Ning Yen
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Thomas B Wilson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Scott P Greiner
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Saulo L Silva
- Department of Animal Science and Food Engineering, College of Animal Science and Food Engineering, University of SaoPaulo, Pirassununga, SP, 13635-900, Brazil
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Sacarrão-Birrento L, Ribeiro DM, Dittmann A, Alves SP, Kunz L, Silva S, Venâncio CA, de Almeida AM. The effect of the production system on the proteomics profiles of the Longissimus thoracis muscle in Arouquesa cattle. J Proteomics 2024; 307:105265. [PMID: 39084571 DOI: 10.1016/j.jprot.2024.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Arouquesa cattle breed is an autochthonous Portuguese breed produced under a traditional mountain system that need improvement without affecting beef quality. The aim of this work is to compare the proteomics profiles of the Longissimus thoracis muscle from Arouquesa animals produced under different production systems. Sixty weaners were produced under the following systems: traditional (TF) and traditional with starter feed supplementation (TF + S1) with weaning and slaughtering at 9 months, the S1 + S2 (weaning at 5 months and grower supplement until slaughter) and two rearing periods with finishing supplementation (TF + S3 and S3). Upon slaughter, samples of L. thoracis were taken and analyzed using a shotgun proteomics workflow. Several putative markers of beef quality for the Arouquesa breed were identified: VIM, FSCN1, SERPINH1, ALDH1A1, NDUFB5, ANXA1, PDK4, CEMIP2, NDUFB9, PDLIM1, OXCT1, MYH4. These proteins are involved in actin binding, skeletal muscle development and in the mitochondrial respiratory chain and they can influence mostly meat tenderness and color. We identified specific proteins for each group related to different metabolisms involved in several aspects that affect meat quality parameters. Our results demonstrate the link between production practices and putative meat characteristics, which have the potential to improve the traceability of certified products. SIGNIFICANCE: Arouquesa breed is produced in a sustainable system using natural resources and contributing to the economy of low-populated rural regions in Northern Portugal. Besides their economic relevance, producing autochthonous breeds can counter rural depopulation and maintain local heritage. Additionally, consumer awareness about product quality is increasing and PDO products contribute to satisfying this demand. However, it is necessary to increase production so that it is possible to sell these products outside the production region. To ensure robust traceability and that PDO label characteristics are maintained despite increasing production yield, product analysis is of paramount importance. For this reason, proteomic approaches can provide insight into how production changes will affect beef quality and generate putative biomarkers of certified production systems.
Collapse
Affiliation(s)
- Laura Sacarrão-Birrento
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Antje Dittmann
- Functional Genomics Center Zürich, University of Zurich, Zurich, Switzerland
| | - Susana P Alves
- Centre for Interdisciplinary Research in Animal Health (CIISA), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Laura Kunz
- Functional Genomics Center Zürich, University of Zurich, Zurich, Switzerland
| | - Severiano Silva
- Animal Science Department, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Veterinary and Animal Research Centre (CECAV) and AL4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carlos A Venâncio
- Animal Science Department, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
5
|
Li C, Cao H, Ren Y, Jia J, Yang G, Jin J, Shi X. Eicosapentaenoic acid-mediated activation of PGAM2 regulates skeletal muscle growth and development via the PI3K/AKT pathway. Int J Biol Macromol 2024; 268:131547. [PMID: 38641281 DOI: 10.1016/j.ijbiomac.2024.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingchun Ren
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Su G, Yu C, Liang S, Wang W, Wang H. Multi-omics in food safety and authenticity in terms of food components. Food Chem 2024; 437:137943. [PMID: 37948800 DOI: 10.1016/j.foodchem.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
One of the main goals of food science is to ensure the high quality and safety of food. The inspection technology for known hazards has matured, and the identification of unknown and potential food safety hazards, as well as the identification of their composition and origin, is a challenge faced by food safety. Food safety and authenticity require multi-omics methods to support the implementation of qualitative discrimination to precise quantitative analysis, from targeted screening to non-target detection, and from multi component to full component analysis to address these challenges. The present review aims to provide characterizations, advantages, the latest progress, and prospects of using omics (including genomics, proteomics, and metabonomics) in food safety and authenticity. Multi omics strategies used to detect and verify different standard biomarkers of food will contribute to understanding the basic relationship between raw materials, processing, foods, nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR of China
| | - Chong Yu
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuwen Liang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haifeng Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
7
|
Li H, Feng YH, Xia C, Chen Y, Lu XY, Wei Y, Qian LL, Zhu MY, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Li YT, Lv CT, Rui XY, Wei MY, Zhang B. Physiological and transcriptomic analysis dissects the molecular mechanism governing meat quality during postmortem aging in Hu sheep ( Ovis aries). Front Nutr 2024; 10:1321938. [PMID: 38249602 PMCID: PMC10799347 DOI: 10.3389/fnut.2023.1321938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Hu sheep, known for its high quality and productivity, lack fundamental scientific research in China. Methods This study focused on the effects of 24 h postmortem aging on the meat physiological and transcriptomic alteration in Hu sheep. Results The results showed that the 24 h aging process exerts a substantial influence on the mutton color, texture, and water content as compared to untreated group. Transcriptomic analysis identified 1,668 differentially expressed genes. Functional enrichment analysis highlighted the importance of glycolysis metabolism, protein processing in endoplasmic reticulum, and the FcγR-mediated phagocytosis pathway in mediating meat quality modification following postmortem aging. Furthermore, protein-protein interaction analysis uncovered complex regulatory networks involving glycolysis, the MAPK signaling pathway, protein metabolism, and the immune response. Discussion Collectively, these findings offer valuable insights into the molecular mechanisms underlying meat quality changes during postmortem aging in Hu sheep, emphasizing the potential for improving quality control strategies in mutton production.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yan-Hui Feng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Chao Xia
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yu Chen
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Xin-Yi Lu
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yue Wei
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Le-Le Qian
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Meng-Yao Zhu
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Guo-Yv Gao
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Ya-Fei Meng
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yv-Le You
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Qi Tian
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Kun-Qi Liang
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Yun-Tao Li
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Chao-Tian Lv
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Xiang-Yun Rui
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Bin Zhang
- College of Food and Bio-engineering, Bengbu University, Bengbu, Anhui, China
| |
Collapse
|
8
|
Patinho I, Cavalcante CL, Saldaña E, Gagaoua M, Behrens JH, Contreras-Castillo CJ. Assessment of beef sensory attributes and physicochemical characteristics: A comparative study of intermediate versus normal ultimate pH striploin cuts. Food Res Int 2024; 175:113778. [PMID: 38129005 DOI: 10.1016/j.foodres.2023.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
The quality of beef, defined by key attributes such as the intrinsic sensory qualities texture, flavour, and juiciness, is shaped by various intrinsic and extrinsic factors. This study conducted a detailed examination of Nellore beef, focusing on two categories based on ultimate pH (pHu) levels: intermediate (pHu ≥ 5.8) and normal (pHu < 5.6) beef. A comprehensive approach was taken, involving twenty trained assessors who applied the Optimised Descriptive Profile (ODP) method to evaluate grilled striploin steak samples. In parallel, consumer preferences were measured through a hedonic test and a Check-all-that-apply (CATA) task, involving 135 participants. The ODP results revealed that the intermediate pHu samples were juicier (P < 0.05) compared to the normal pHu group. The CATA analysis highlighted differences in both intermediate and normal pHu beef, especially in juiciness, a crucial factor for consumer satisfaction. Notably, variations in deoxymyoglobin content linked to ageing were observed, with higher levels at the 3rd day compared to the 28th day, especially in the intermediate pHu samples (P < 0.05). Moreover, colour-related aspects such as L*, b*, chroma (C*), and oxymyoglobin were significantly influenced (P < 0.05) by both the pHu category and ageing time. Regarding consumer acceptance, the study found no significant difference in perception between the intermediate and normal pHu groups (P > 0.05). These findings revealed the complex interactions between pHu levels, sensory characteristics, and consumer preferences in beef quality, offering valuable insights for both the industry and research community.
Collapse
Affiliation(s)
- Iliani Patinho
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil.
| | - Cecylyana Leite Cavalcante
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Peru
| | | | - Jorge H Behrens
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, SP, Brazil
| | - Carmen J Contreras-Castillo
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
9
|
Ma X, Wang Y, Li X, Wang J, Wang B, Lin Y, Xiong Y. Cloning of goat PGAM2 gene and its overexpression promotes the differentiation of intramuscular preadipocytes. Anim Biotechnol 2023; 34:4210-4218. [PMID: 36315243 DOI: 10.1080/10495398.2022.2138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
As a member of the PGAMs family, PGAM2 has been proved to catalyze the reversible reaction of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate (2-PGA) in the glycolytic pathway. However, it is unclear whether PGAM2 has a role in regulating differentiation in goat intramuscular preadipocytes. Here, this study was carried to clone the open reading frame (ORF) of goat PGAM2, elucidate its molecular and expressional characteristics, and evaluate the involvement in adipogenesis of intramuscular preadipocytes. According to our findings, the cloned goat PGAM2 gene was 784 bp in full length, including 762 bp of ORF and encoding a protein of 253 amino acids. The expressional level of PGAM2 peaked at 48 hours after induced adipogenic differentiation and was highest in the skeletal muscle of triceps. Moreover, overexpression of PGAM2 transfected by its overexpression plasmid promotes lipid accumulation of goat intramuscular adipocyte as shown by Oil Red O and bodipy staining, accompanied by up-regulating the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) (p < 0.001), sterol regulatory element-binding protein 1 (SREBP1) (p < 0.001), CCAAT/Enhancer-binding protein α (C/EBPα) (p < 0.01) and lipoprotein lipase (LPL) (p < 0.01). Taken together, these findings indicate that PGAM2 is a positive regulator for goat intramuscular adipocytes and provide new insights into improvement intramuscular fat deposition in goat meat.
Collapse
Affiliation(s)
- Xiao Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Yuxue Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P.R. China
| | - Xinyi Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Jian Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Botao Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P.R. China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, Sichuan, P.R. China
| |
Collapse
|
10
|
Huang C, Zhang D, Wang Z, Zhao Y, Blecker C, Li S, Zheng X, Chen L. Validation of protein biological markers of lamb meat quality characteristics based on the different muscle types. Food Chem 2023; 427:136739. [PMID: 37392625 DOI: 10.1016/j.foodchem.2023.136739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
This work investigated the ability of 8 potential biomarkers (phosphoglycerate kinase-1 (PGK1), pyruvate kinase-M2 (PKM2), phosphoglucomutase-1 (PGM1), β-enolase (ENO3, myosin-binding protein-C (MYBPC1), myosin regulatory light chain-2 (MYLPF), troponin C-1 (TNNC1) and troponin I-1 (TNNI1)) to characterize meat quality by analyzing their relative abundance and enzymatic activity. Two different meat quality groups (Quadriceps femoris (QF) and Longissimus thoracis (LT) muscles) were selected at 24 h postmortem from 100 lamb carcasses. The relative abundance of PKM2, PGK1, PGM1, ENO3, MYBPC1, MYLPF, and TNNI1 was significantly different between LT and QF muscle groups (P < 0.01). Moreover, PKM, PGK, PGM, and ENO activity in LT muscle group was significantly lower than that in QF muscle (P < 0.05). Suggesting that PKM2, PGK1, PGM1, ENO3, MYBPC1, MYLPF, and TNNI1 can be used as robust biomarkers of lamb meat quality, providing the reference for understanding the molecular mechanism of postmortem meat quality formation in future.
Collapse
Affiliation(s)
- Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
11
|
Jia W, Wu X. Potential biomarkers analysis and protein internal mechanisms by cold plasma treatment: Is proteomics effective to elucidate protein-protein interaction network and biochemical pathway? Food Chem 2023; 426:136664. [PMID: 37352708 DOI: 10.1016/j.foodchem.2023.136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
New market trends of meat flavor, tenderness, and color quality indicators have prompted the research on meat preservation as a crucial topic to received attention. Present research about the effects of irradiation, cold plasma technology on meat is incomplete. There are strongly recommended that proteomics techniques be jointly to enhance the coverage of internal meat molecules for meat research. By identifying meat proteins, detecting biological functions, and quantifying the protein segments of specific meat biomarkers, which can be provided for the information of diagnostic components in preservative technologies. The current review provides scientific findings on various control strategies: (i) combine the data-independent acquisition to provide a reference for the meat molecular mechanism and rapid identification; (ii) design molecular networks biological functions assessment model; (iii) molecular investigations of cold plasma techniques and underlying mechanisms; (iv) explore the X-rays and γ-rays treatment in meat preservation and myoglobin change mechanism more comprehensively.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
12
|
Meat Quality and Muscle Tissue Proteome of Crossbred Bulls Finished under Feedlot Using Wet Distiller Grains By-Product. Foods 2022. [PMCID: PMC9602256 DOI: 10.3390/foods11203233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Wet distiller grains (WDG) are a corn by-product rich in protein and fiber that can be used in feedlot diets. This study evaluated F1 Angus-Nellore bulls fed on a control diet vs. WDG (n = 25/treatment). After a period of 129 days on these feeds, the animals were slaughtered and Longissimus thoracis samples were collected for both a meat quality evaluation and gel-based proteomic analyses. A greater ribeye area (99.47 cm²) and higher carcass weight (333.6 kg) (p < 0.05) were observed in the WDG-finished cattle compared to the control (80.7 cm²; 306.3 kg). Furthermore, there were differences (p < 0.05) in the intramuscular fat between the WDG and control animals (IMF = 2.77 vs. 4.19%), which led to a significant decrease (p < 0.05) in saturated fatty acids (FA). However, no differences (p > 0.10) were observed in terms of tenderness, evaluated using Warner–Bratzler shear force (WBSF). The proteomic and bioinformatic analyses revealed substantial changes in the biological processes, molecular functions, and cellular components of the WDG-finished cattle compared to the control. Proteins related to a myriad of interconnected pathways, such as contractile and structural pathways, energy metabolism, oxidative stress and cell redox homeostasis, and transport and signaling. In this experiment, the use of WDG supplementation influenced the protein expression of several proteins, some of which are known biomarkers of beef quality (tenderness and color), as well as the protein–protein interactions that can act as the origins of increases in muscle growth and reductions in IMF deposition. However, despite the effects on the proteome, the tenderness, evaluated by WBSF, and fatty acid profile were not compromised by WDG supplementation.
Collapse
|
13
|
Severino M, Gagaoua M, Baldassini W, Ribeiro R, Torrecilhas J, Pereira G, Curi R, Chardulo LA, Padilha P, Neto OM. Proteomics Unveils Post-Mortem Changes in Beef Muscle Proteins and Provides Insight into Variations in Meat Quality Traits of Crossbred Young Steers and Heifers Raised in Feedlot. Int J Mol Sci 2022; 23:ijms232012259. [PMID: 36293120 PMCID: PMC9603352 DOI: 10.3390/ijms232012259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Proteomics has been widely used to study muscle biology and meat quality traits from different species including beef. Beef proteomics studies allow a better understanding of the biological processes related to meat quality trait determination. This study aimed to decipher by means of two-dimensional electrophoresis (2D-PAGE), mass spectrometry and bioinformatics the changes in post-mortem muscle with a focus on proteins differentially expressed in the Longissimus thoracis (LT) muscle of immunocastrated young heifers and steers. Carcass traits, chemical composition, pH, instrumental color (L*, a*, b*), cooking loss and Warner-Bratzler shear force (WBSF) of meat from F1 Montana-Nellore cattle were also evaluated. Backfat thickness (BFT) and intramuscular fat content (IMF) were 46.8% and 63.6% higher in heifers (p < 0.05), respectively, while evaporation losses (EL) were 10.22% lower compared to steers. No differences (p > 0.05) were observed for tenderness evaluated by WBSF (3, 10, and 17 days post-mortem), pH, and color traits (L*, a* and b*) between the experimental groups. The study revealed several proteins to be differentially expressed proteins in heifers compared steers (p < 0.05). In heifers, proteins involved in nutrient transport (TF, ALB, and MB), energy metabolism (ALDOA, GAPDH, and PKM), and oxidative stress and response to stress (HSPA8 and CA3) were associated with a greater BFT and IMF deposition. The higher expression of these proteins indicated greater oxidative capacity and lower glycolytic activity in the LT muscle of heifers. In steers, there was greater abundance of protein expression related to muscle contraction and proteins of structure (ACTA1, TPM2 and TNNT3), energy metabolism (ENO1, ENO3, PYGM, PGM1 and TPI1) and ATP metabolism (ATP5F1B, PEBP1 and AK1), indicating greater glycogenolysis in LT muscle, suggesting a shift in the glycolytic/oxidative fibers of steers.
Collapse
Affiliation(s)
- Mariane Severino
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
- Correspondence: or (M.G.); (O.M.N.)
| | - Welder Baldassini
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Richard Ribeiro
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Juliana Torrecilhas
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Guilherme Pereira
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Rogério Curi
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- Physiologie, Environnement et Génétique Pour l’Animal et les Systèmes d’Élevage (PEGASE), INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - Luis Artur Chardulo
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Pedro Padilha
- Institute of Bioscience (IB), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
| | - Otávio Machado Neto
- College of Agriculture and Veterinary Science (FCAV), São Paulo State University (UNESP), Jaboticabal, Sao Paulo 14884-900, Brazil
- College of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-681, Brazil
- Correspondence: or (M.G.); (O.M.N.)
| |
Collapse
|
14
|
Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites 2022; 12:metabo12070640. [PMID: 35888764 PMCID: PMC9320084 DOI: 10.3390/metabo12070640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 02/06/2023] Open
Abstract
The present study explored changes in the meat metabolome of animals subjected to different finishing systems and growth rates. Thirty-six Angus × Nellore crossbred steers were used in a completely randomized design with four treatments: (1) feedlot system with high average daily gain (ADG; FH); (2) feedlot system with low ADG (FL); (3) pasture system with high ADG (PH); and (4) pasture system with low ADG (PL). After harvest and chilling, Longissimus thoracis (LT) muscle samples were taken for metabolite profile analysis using nuclear magnetic resonance. Spectrum was analyzed using chenomx software, and multi- and mega-variate data analyses were performed. The PLS-DA showed clear separation between FH and PL groups and overlap among treatments with different finishing systems but similar for matching ADG (FL and PH) treatments. Using a VIP cut-off of around 1.0, ATP and fumarate were shown to be greater in meat from PL cattle, while succinate, leucine, AMP, glutamate, carnosine, inosine, methionine, G1P, and choline were greater in meat from FH. Comparing FL and PH treatments, glutamine, carnosine, urea, NAD+, malonate, lactate, isoleucine, and alanine were greater in the meat of PH cattle, while G6P and betaine were elevated in that of FL cattle. Relevant pathways were also identified by differences in growth rate (FH versus PL) and finishing system were also noted. Growth rate caused a clear difference in meat metabolism that was highlighted by energy metabolism and associated pathways, while the feeding system tended to alter protein and lipid metabolism.
Collapse
|
15
|
Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the longissimus thoracis of yaks. Curr Res Food Sci 2022; 5:1494-1507. [PMID: 36132491 PMCID: PMC9483648 DOI: 10.1016/j.crfs.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Yaks (Bos mutus) live in the Qinghai–Tibet plateau. The quality of yak meat is unique due to its genetic and physiological characteristics. Identification of the proteome of yak muscle could help to reveal its meat-quality properties. The common proteome, phosphoproteome, and N-glycoproteome of yak longissimus thoracis (YLT) were analyzed by liquid chromatography-tandem mass spectrometry-based shotgun analysis. A total of 1812 common proteins, 1303 phosphoproteins (3918 phosphorylation sites), and 204 N-glycoproteins (285 N-glycosylation sites) were identified in YLT. The common proteins in YLT were involved mainly in myofibril structure and energy metabolism; phosphoproteins were associated primarily with myofibril organization, regulation of energy metabolism, and signaling; N-glycoproteins were engaged mainly in extracellular-matrix organization, cellular immunity, and organismal homeostasis. We reported, for the first time, the “panorama” of the YLT proteome, specifically the N-glycoproteome of YLT. Our results provide essential information for understanding post mortem physiology (rigor mortis and aging) and the quality of yak meat. A total of 2650 proteins were identified in yak longissimus thoracis. Common proteins were involved mainly in myofibril structure and energy metabolism. Phosphoproteins were associated with myofibrils, energy metabolism, and signaling. N-glycoproteins were engaged mainly in ECM organization, immunity, and homeostasis.
Collapse
|