1
|
Tan H, Huang D, Zhang Y, Luo Y, Liu D, Chen X, Suo H. Chitosan and inulin synergized with Lactiplantibacillus plantarum LPP95 to improve the quality characteristics of low-salt pickled tuber mustard. Int J Biol Macromol 2024; 278:134335. [PMID: 39111506 DOI: 10.1016/j.ijbiomac.2024.134335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Low-salt pickled vegetables are in line with a healthier diet, yet ensuring consistent quality of such products is challenging. In this study, low-salt tuber mustard pickles fermented with Lactiplantibacillus plantarum LPP95 in the presence of chitosan and inulin were analyzed over a 30-day period, and quality changes were evaluated. Total acid productions along with high bacterial counts (106 CFU/mL) were observed in the initial 20 days during indoor storage temperature, in which the reduced fiber aperture was found significantly lead to an increase in crispness (16.94 ± 1.87 N) and the maintenance of a low nitrate content (1.23 ± 0.01 mg/kg). Moreover, the combined pickling treatment resulted in higher malic acid content, lower tartaric acid content, and a decrease in the content of bitter amino acids (e.g., isoleucine and leucine), thus leading to an increase in the proportion of sweet amino acids. Additionally, combined pickling led to the production of unique volatile flavor compounds, especially the distinct spicy flavor compounds isothiocyanates. Moreover, the combined pickling treatment resulted in an increase in the abundance of Lactiplantibacillus and promoted microbial diversity within the fermentation system. Thus, the synergistic effect among chitosan, inulin, and L. plantarum LPP95 significantly enhanced the quality of pickles. The study offers a promising strategy to standardize the quality of low-salt fermented vegetables.
Collapse
Affiliation(s)
- Han Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanli Luo
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Dejun Liu
- Chongqing Fuling Zhacai Group Co., Ltd., Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Kim Y, Sung H, Kim YB, Song HS, Jung MJ, Lee J, Lee MJ, Lee SH, Roh SW, Bae JW, Whon TW. Effects of gnotobiotic fermentation on global gene expression of germ-free vegetables. PHYSIOLOGIA PLANTARUM 2024; 176:e14502. [PMID: 39238133 DOI: 10.1111/ppl.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Existing research has underscored the vital interplay between host organisms and their associated microbiomes, which affects health and function. In both plants and animals, host factors critically shape microbial communities and influence growth, health, and immunity. Post-harvest plants, such as those used in kimchi, a traditional Korean dish, offer a unique avenue for exploring host-microbe dynamics during fermentation. Despite the emphasis on lactic acid bacteria (LAB) in fermentation studies, the roles of host factors remain unclear. This study aimed to investigate the influence of these factors on plant transcriptomes during kimchi fermentation. We individually inoculated nine LAB strains into germ-free kimchi to generate LAB-mono-associated gnotobiotic kimchi and performed RNA-sequencing analysis for the host vegetables during fermentation. The transcriptomes of post-harvest vegetables in kimchi change over time, and microbes affect the transcriptome profiles of vegetables. Differentially expressed gene analyses revealed that microbes affected the temporal expression profiles of several genes in the plant transcriptomes in unique directions depending on the introduced LAB strains. Cluster analysis with other publicly available transcriptomes of post-harvest vegetables and fruits further revealed that the plant transcriptome is more profoundly influenced by the environment harboring the host than by host phylogeny. Our results bridge the gap in understanding the bidirectional relationship between host vegetables and microbes during food fermentation, illuminating the complex interplay between vegetable transcriptomes, fermentative microbes, and the fermentation process in food production. The different transcriptomic responses elicited by specific LAB strains suggest the possibility of microbial manipulation to achieve the desired fermentation outcomes.
Collapse
Affiliation(s)
- Yujin Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hye Seon Song
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Mi-Ja Jung
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jisu Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Min Ji Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Qian J, Li Z, Wang J, Lin Y, Yu Y. 6-gingerol and its derivatives inhibit Helicobacter pylori-induced gastric mucosal inflammation and improve gastrin and somatostatin secretion. Front Microbiol 2024; 15:1451563. [PMID: 39234535 PMCID: PMC11371576 DOI: 10.3389/fmicb.2024.1451563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024] Open
Abstract
The resistance of Helicobacter pylori (H. pylori) has increased in recent years, prompting a trend in the research and development of new drugs. In our study, three derivatives (JF-1, JF-2, and JF-3) were synthesized using 6-gingerol as the main component, while JF-4, containing both 6-gingerol and 6-shogaol as the main components, was extracted from dried ginger. The minimum inhibitory concentrations (MICs), determined using the ratio dilution method, were 80 μg/mL for JF-1, 40 μg/mL for JF-2, 30 μg/mL for JF-3, 40 μg/mL for JF-4, 60 μg/mL for 6-gingerol standard (SS), and 0.03 μg/mL for amoxicillin (AMX). After treating H. pylori-infected mice, the inflammation of the gastric mucosa was suppressed. The eradication rate of H. pylori was 16.7% of JF-3 low-dose treatment (LDT), 25.0% of JF-3 high-dose treatment (HDT), 16.7% of JF-4 LDT, 16.7% of JF-4 HDT, 30% of SS LDT, 50% of SS HDT, and 36.4% of the positive control group (PCG). The levels of gastrin, somatostatin (SST), IFN-γ, IL-4, and IL-8 were significantly recovered in the JF-3 and JF-4 administration groups, but the effect was stronger in the high-dose group. These results demonstrate that 6-gingerol and its derivatives have significant anti-Helicobacter pylori effects and are promising potential treatments for H. pylori infection.
Collapse
Affiliation(s)
- Jiali Qian
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhennan Li
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Jinhui Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxian Lin
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Yingcong Yu
- The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China
- School of Medicine, Shanghai University, Shanghai, China
- The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Cardinali F, Botta C, Harasym J, Ferrocino I, Reale A, Boscaino F, Di Renzo T, Milanović V, Garofalo C, Rampanti G, Aquilanti L, Osimani A. Lacto-fermented garlic handcrafted in the Lower Silesia Region (Poland): Microbial diversity, morpho-textural traits, and volatile compounds. Food Res Int 2024; 188:114484. [PMID: 38823870 DOI: 10.1016/j.foodres.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.
Collapse
Affiliation(s)
- Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristian Botta
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Floriana Boscaino
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Tiziana Di Renzo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
5
|
Lee DY, Kim EJ, Park SE, Cho KM, Kwon SJ, Roh SW, Kwak S, Whon TW, Son HS. Impact of essential and optional ingredients on microbial and metabolic profiles of kimchi. Food Chem X 2024; 22:101348. [PMID: 38623504 PMCID: PMC11016982 DOI: 10.1016/j.fochx.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
This study aimed to examine the impacts of essential and optional ingredients on the microbial and metabolic profiles of kimchi during 100 days of fermentation, using a mix-omics approach. Kimchi manufactured without essential ingredients (e.g., red pepper, garlic, ginger, green onion, and radish) had lower lactic acid content. The absence of garlic was associated with a higher proportion of Latilactobacillus and Lactococcus, while the absence of red pepper was associated with a greater proportion of Leuconostoc than the control group. In addition, red pepper and garlic served as primary determinants of the levels of organic acids and biogenic amines. Sugar was positively correlated with the levels of melibiose, and anchovy sauce was positively correlated with the levels of amino acids such as methionine, leucine, and glycine. These findings contribute to a fundamental understanding of how ingredients influence kimchi fermentation, offering valuable insights for optimizing kimchi production to meet various preferences.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc., Gyeonggi-do 13486, Republic of Korea
| | - Suryang Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Ko HI, Jeong CH, Park SJ, Kim SR, Eun JB, Kim TW. Influence of Isolation Temperature on Isolating Diverse Lactic Acid Bacteria from Kimchi and Cultural Characteristics of Psychrotrophs. J Microbiol Biotechnol 2023; 33:1066-1075. [PMID: 37280779 PMCID: PMC10468671 DOI: 10.4014/jmb.2303.03047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023]
Abstract
Kimchi is a traditional Korean fermented vegetable that is stored and fermented at low temperatures. However, kimchi lactic acid bacteria (LAB) are typically isolated under mesophilic conditions, which may be inappropriate for isolating the diverse LAB. Therefore, this study investigated the suitable conditions for isolating various LAB from kimchi. Here, LAB were isolated from four kimchi samples using MRS, PES, and LBS media and varying isolation temperatures (30, 20, 10, and 5°C). Then, MRS was selected as the suitable medium for LAB isolation. A comparison of culture-dependent and culture-independent approaches indicated that 5°C was not a suitable isolation temperature. Thus, the number and diversity of LAB were determined at 30, 20, and 10°C using 12 additional kimchi samples to elucidate the effect of isolation temperature. With the exception of two samples, most samples did not substantially differ in LAB number. However, Leuconostoc gelidum, Leuconostoc gasicomitatum, Leuconostoc inhae, Dellaglioa algida, Companilactobacillus kimchiensis, Leuconostoc miyukkimchii, Leuconostoc holzapfelii, and Leuconostoc carnosum were isolated only at 10 and 20°C. The growth curves of these isolates, except Leu. holzapfelii and Leu. carnosum, showed poor growth at 30°C. This confirmed their psychrotrophic characteristics. In Weissella koreensis, which was isolated at all isolation temperatures, there was a difference in the fatty acid composition of membranes between strains that could grow well at 30°C and those that could not. These findings can contribute to the isolation of more diverse psychrotrophic strains that were not well isolated under mesophilic temperatures.
Collapse
Affiliation(s)
- Hye In Ko
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chang Hee Jeong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Honam National Institute of Biological Resources, Mokpo 587262, Republic of Korea
| | - Se-Jin Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - So-Rim Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Woon Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
7
|
Lee DY, Park SH, Park SE, Kim EJ, Kim HW, Seo SH, Cho KM, Kwon SJ, Whon TW, Min SG, Choi YJ, Roh SW, Seo HY, Son HS. Comprehensive elucidation of the terroir of Korean kimchi through the study of recipes, metabolites, microbiota, and sensory characteristics. Food Res Int 2023; 166:112614. [PMID: 36914329 DOI: 10.1016/j.foodres.2023.112614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The aim of this study was to investigate the differences in characteristics of the fermented food kimchi based on the regions where it is produced. A total of 108 kimchi samples were collected from five different provinces in Korea to analyze the recipes, metabolites, microbes, and sensory characteristics. Overall, 18 ingredients (including salted anchovy and seaweed), 7 quality indicators (such as salinity and moisture content), 14 genera of microorganisms (mainly Tetragenococcus and Weissella belonging to LAB), and 38 metabolites contributed to the characteristics of kimchi by region. Kimchi from the southern and northern regions showed distinct metabolite profile (collected 108 kimchi) and flavor profile differences (kimchi manufactured using the standard regional recipes). This is the first study to investigate the terroir effect of kimchi by identifying differences in ingredients, metabolites, microbes, and sensory characteristics based on the region of production, and the correlations between these factors.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hee Park
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyun-Woo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | | | | | - Tae Woong Whon
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sung Gi Min
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yun-Jeong Choi
- World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc, Gyeonggi-do 13486, Republic of Korea.
| | - Hye-Young Seo
- World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Chen C, Li J, Cheng G, Liu Y, Yi Y, Chen D, Wang X, Cao J. Flavor changes and microbial evolution in fermentation liquid of sour bamboo shoots. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
9
|
Cha J, Kim YB, Park SE, Lee SH, Roh SW, Son HS, Whon TW. Does kimchi deserve the status of a probiotic food? Crit Rev Food Sci Nutr 2023; 64:6512-6525. [PMID: 36718547 DOI: 10.1080/10408398.2023.2170319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kimchi is a traditional fermented vegetable side dish in Korea and has become a global health food. Kimchi undergoes spontaneous fermentation, mainly by lactic acid bacteria (LAB) originating from its raw ingredients. Numerous LAB, including the genera Leuconostoc, Weissella, and Lactobacillus, participate in kimchi fermentation, reaching approximately 9-10 log colony forming units per gram or milliliter of food. The several health benefits of LAB (e.g., antioxidant and anti-inflammatory properties) combined with their probiotic potential in complex diseases including obesity, cancer, atopic dermatitis, and immunomodulatory effect have generated an interest in the health effects of LAB present in kimchi. In order to estimate the potential of kimchi as a probiotic food, we comprehensively surveyed the health functionalities of kimchi and kimchi LAB, and their effects on human gut environment, highlighting the probiotics function.
Collapse
Affiliation(s)
- Jeongmin Cha
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Relationship between Fungal Communities and Volatile Flavor Components during the Traditional Chinese Fermentation of Capsicum annuum L. Var. Dactylus M. Processes (Basel) 2022. [DOI: 10.3390/pr10081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbial diversity and dynamic changes play an important role in the production of fermented peppers. In this study, the relationship between fungal communities and the volatile flavor compounds of traditional Chinese fermented peppers was investigated by high-throughput sequencing technology. The results showed that Hanseniaspora was a dominant fungus during the whole fermentation course and accounted for 82.22% of the fungal community on average (ranging from 50.44% to 98.15%). Bidirectional orthogonal partial least squares (O2PLS) analysis between fungal community and volatile flavor compounds showed that Pichia, Hanseniaspora, Cryptococcus, Debarvomvces, and Trichosporon were closely correlated with the concentrations of the volatile flavor components such as α-terpineol, trans-3-tetradecene, 4-methylpentyl 3-methylbutanoate, and 11 other volatile flavor compounds. This study elucidated the dynamics of fungal communities and volatile flavor compounds during pepper fermentation and the correlation between them. Our analysis of the relationships between fungal communities and volatile flavor compounds advanced our understanding of the formation mechanism of volatile flavor compounds in fermented peppers.
Collapse
|
11
|
Kim N, Lee J, Seon Song H, Joon Oh Y, Kwon MS, Yun M, Ki Lim S, Kyeong Park H, Seo Jang Y, Lee S, Choi SP, Woon Roh S, Choi HJ. Kimchi intake alleviates obesity-induced neuroinflammation by modulating the gut-brain axis. Food Res Int 2022; 158:111533. [DOI: 10.1016/j.foodres.2022.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
|