1
|
Zhao D, Li C, Zeng N, Wang D, Yu G, Zhang N, Li B. Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100221. [PMID: 39399738 PMCID: PMC11470240 DOI: 10.1016/j.fochms.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids, a family of lipid-soluble pigments, have garnered growing interest for their health-promoting benefits and are widely utilized in the food, feed, pharmaceutical, and cosmetic industries. Rhodosporidiobolus odoratus, a representative oleaginous red yeast, is considered a promising alternative for producing high-value carotenoids including β-carotene, torulene, and torularhodin. Here, the impact of varying concentrations of NaCl treatments on carotenoid contents in R. odoratus XQR after 120 h of incubation was examined. The results indicated that, as compared to the control (59.37 μg/gdw), the synthesis of total carotenoids was significantly increased and entirely suppressed under low-to-moderate (0.25 mol/L: 68.06 μg/gdw, 0.5 mol/L: 67.62 μg/gdw, and 0.75 mol/L: 146.47 μg/gdw) and high (1.0, 1.25, and 1.5 mol/L: 0 μg/gdw) concentrations of NaCl treatments, respectively. Moreover, the maximum production of β-carotene (117.62 μg/gdw), torulene (21.81 μg/gdw), and torularhodin (7.04 μg/gdw) was achieved with a moderate concentration (0.75 mol/L) of NaCl treatment. Transcriptomic and metabolomic analyses suggested that the increase in β-carotene, torulene, and torularhodin production might be primarily attributed to the up-regulation of some key protein-coding genes involved in the terpenoid backbone biosynthesis (atoB, HMGCS, and mvaD), carotenoid biosynthesis (crtYB and crtI), and TCA cycle (pckA, DLAT, pyc, MDH1, gltA, acnA, IDH1/2, IDH3, sucA, sucB, sucD, LSC1, SDHA, and fumA/fumB). The present study not only demonstrates a viable method to concurrently increase the production of β-carotene, torulene, torularhodin, and total carotenoids in R. odoratus XQR, but it also establishes a molecular foundation for further enhancing their production through genetic engineering.
Collapse
Affiliation(s)
- Die Zhao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunji Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Dandan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Guohui Yu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Xie ZT, Mi BQ, Lu YJ, Chen MT, Ye ZW. Research progress on carotenoid production by Rhodosporidium toruloides. Appl Microbiol Biotechnol 2024; 108:7. [PMID: 38170311 DOI: 10.1007/s00253-023-12943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Carotenoids are natural lipophilic pigments, which have been proven to provide significant health benefits to humans, relying on their capacity to efficiently scavenge singlet oxygen and peroxyl radicals as antioxidants. Strains belonging to the genus Rhodosporidium represent a heterogeneous group known for a number of phenotypic traits including accumulation of carotenoids and lipids and tolerance to heavy metals and oxidative stress. As a representative of these yeasts, Rhodosporidium toruloides naturally produces carotenoids with high antioxidant activity and grows on a wide variety of carbon sources. As a result, R. toruloides is a promising host for the efficient production of more value-added lipophilic compound carotenoids, e.g., torulene and torularhodin. This review provides a comprehensive summary of the research progress on carotenoid biosynthesis in R. toruloides, focusing on the understanding of biosynthetic pathways and the regulation of key enzymes and genes involved in the process. Moreover, the relationship between the accumulation of carotenoids and lipid biosynthesis, as well as the stress from diverse abiotic factors, has also been discussed for the first time. Finally, several feasible strategies have been proposed to promote carotenoid production by R. toruloides. It is possible that R. toruloides may become a critical strain in the production of carotenoids or high-value terpenoids by genetic technologies and optimal fermentation processes. KEY POINTS: • Biosynthetic pathway and its regulation of carotenoids in Rhodosporidium toruloides were concluded • Stimulation of abiotic factors for carotenoid biosynthesis in R. toruloides was summarized • Feasible strategies for increasing carotenoid production by R. toruloides were proposed.
Collapse
Affiliation(s)
- Zhuo-Ting Xie
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China
| | - Bing-Qian Mi
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong-Jun Lu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Mou-Tong Chen
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Bernard A, Rossignol T, Park YK. Biotechnological approaches for producing natural pigments in yeasts. Trends Biotechnol 2024; 42:1644-1662. [PMID: 39019677 DOI: 10.1016/j.tibtech.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Pigments are widely used in the food, cosmetic, textile, pharmaceutical, and materials industries. Demand for natural pigments has been increasing due to concerns regarding potential health problems and environmental pollution from synthetic pigments. Microbial production of natural pigments is a promising alternative to chemical synthesis or extraction from natural sources. Here, we discuss yeasts as promising chassis for producing natural pigments with their advantageous traits such as genetic amenability, safety, rapid growth, metabolic diversity, and tolerance. Metabolic engineering strategies and optimizing strategies in downstream process to enhance production of natural pigments are thoroughly reviewed. We discuss the challenges, including expanding the range of natural pigments and improving their feasibility of industrial scale-up, as well as the potential strategies for future development.
Collapse
Affiliation(s)
- Armand Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
4
|
Li Q, Pan H, Hao P, Ma Z, Liang X, Yang L, Gao Y. Mechanisms underlying the low-temperature adaptation of 17β-estradiol-degrading bacterial strain Rhodococcus sp. RCBS9: insights from physiological and transcriptomic analyses. Front Microbiol 2024; 15:1465627. [PMID: 39640852 PMCID: PMC11617531 DOI: 10.3389/fmicb.2024.1465627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
The 17β-estradiol (E2)-degrading bacterium Rhodococcus sp.RCBS9 previously showed remarkable resistance to the combined stresses of low temperature and E2. In this study, physiological experiments and transcriptomic analysis were performed to investigate the mechanisms underlying the strain's low-temperature adaptation and briefly analyze how it maintains its ability to degrade E2 at low temperature. The results showed that the strain's signal transduction functions, adaptive changes in cell membrane and cell wall structure, gene repair functions, and synthesis of antioxidants and compatible solutes are key to its ability to adapt to low temperature. In addition, its stress proteins in response to low temperature were not typical cold shock proteins, but rather universal stress proteins (USPs) and heat shock proteins (HSPs), among others. The strain also upregulated biofilm production, transporter proteins for carbon source uptake, and proteins for fatty acid degradation to ensure energy generation. The strain's multiple stress responses work synergistically to resist low-temperature stress, ensuring its adaptability to low-temperature environments and ability to degrade E2. Finally, six genes related to survival at low temperature (identified in the transcriptome analysis) were expressed in E. coli BL21, and they were found to contribute to recombinant E. coli growth at low temperature.
Collapse
Affiliation(s)
- Qiannan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hanyu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Zhenhua Ma
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lianyu Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Kot AM, Laszek P, Kieliszek M, Pobiega K, Błażejak S. Biotechnological potential of red yeast isolated from birch forests in Poland. Biotechnol Lett 2024; 46:641-669. [PMID: 38687405 PMCID: PMC11217099 DOI: 10.1007/s10529-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Paulina Laszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
6
|
Huang X, Fan J, Guo C, Chen Y, Qiu J, Zhang Q. Integrated Transcriptomics and Metabolomics Analysis Reveal the Regulatory Mechanisms Underlying Sodium Butyrate-Induced Carotenoid Biosynthesis in Rhodotorula glutinis. J Fungi (Basel) 2024; 10:320. [PMID: 38786675 PMCID: PMC11122558 DOI: 10.3390/jof10050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Sodium butyrate (SB) is a histone deacetylase inhibitor that can induce changes in gene expression and secondary metabolite titers by inhibiting histone deacetylation. Our preliminary analysis also indicated that SB significantly enhanced the biosynthesis of carotenoids in the Rhodotorula glutinis strain YM25079, although the underlying regulatory mechanisms remained unclear. Based on an integrated analysis of transcriptomics and metabolomics, this study revealed changes in cell membrane stability, DNA and protein methylation levels, amino acid metabolism, and oxidative stress in the strain YM25079 under SB exposure. Among them, the upregulation of oxidative stress may be a contributing factor for the increase in carotenoid biosynthesis, subsequently enhancing the strain resistance to oxidative stress and maintaining the membrane fluidity and function for normal cell growth. To summarize, our results showed that SB promoted carotenoid synthesis in the Rhodotorula glutinis strain YM25079 and increased the levels of the key metabolites and regulators involved in the stress response of yeast cells. Additionally, epigenetic modifiers were applied to produce fungal carotenoid, providing a novel and promising strategy for the biosynthesis of yeast-based carotenoids.
Collapse
Affiliation(s)
| | | | | | | | - Jingwen Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.H.); (J.F.); (C.G.); (Y.C.)
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.H.); (J.F.); (C.G.); (Y.C.)
| |
Collapse
|
7
|
Tian D, Qin L, Verma KK, Wei L, Li J, Li B, Zhou W, He Z, Wei D, Huang S, Long S, Huang Q, Li C, Wei S. Transcriptomic and metabolomic differences between banana varieties which are resistant or susceptible to Fusarium wilt. PeerJ 2023; 11:e16549. [PMID: 38107578 PMCID: PMC10722978 DOI: 10.7717/peerj.16549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Background Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense race 4 (Foc4), is the most lethal disease of bananas in Asia. Methods To better understand the defense response of banana to Fusarium wilt, the transcriptome and metabolome profiles of the roots from resistant and susceptible bananas inoculated with Foc4 were compared. Results After Foc4 inoculation, there were 172 and 1,856 differentially expressed genes (DEGs) in the Foc4-susceptible variety (G1) and Foc4-resistant variety (G9), respectively. In addition, a total of 800 DEGs were identified between G1 and G9, which were mainly involved in the oxidation-reduction process, cell wall organization, phenylpropanoid biosynthesis, and lipid and nitrogen metabolism, especially the DEGs of Macma4_08_g22610, Macma4_11_g19760, and Macma4_03_g06480, encoding non-classical arabinogalactan protein; GDSL-like lipase; and peroxidase. In our study, G9 showed a stronger and earlier response to Foc4 than G1. As the results of metabolomics, lipids, phenylpropanoids and polyketides, organic acids, and derivatives played an important function in response to Fusarium wilt. More importantly, Macma4_11_g19760 might be one of the key genes that gave G9 more resistance to Foc4 by a lowered expression and negative regulation of lipid metabolism. This study illustrated the difference between the transcriptomic and metabolomic profiles of resistant and susceptible bananas. These results improved the current understanding of host-pathogen interactions and will contribute to the breeding of resistant banana plants.
Collapse
Affiliation(s)
- Dandan Tian
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuyan Qin
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liping Wei
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jialin Li
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoshen Li
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Zhou
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhangfei He
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Di Wei
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sumei Huang
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shengfeng Long
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Quyan Huang
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chaosheng Li
- Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaolong Wei
- Guangxi Subtropical Crops Research Institute, Naning, China
| |
Collapse
|
8
|
Chen QH, Qian YD, Niu YJ, Hu CY, Meng YH. Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids. Appl Microbiol Biotechnol 2023; 107:6299-6313. [PMID: 37642716 DOI: 10.1007/s00253-023-12731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/20/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The application of clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) technology in the genetic modification of Yarrowia lipolytica is challenged by low efficiency and low throughput. Here, a highly efficient CRISPR-iCas9 (with D147Y and P411T mutants) genetic manipulation tool was established for Y. lipolytica, which was further utilized to integrate carotene synthetic key genes and significantly improve the target product yield. First, CRISPR-iCas9 could shorten the time of genetic modification and enable the rapid knockout of nonsense suppressors. iCas9 can lead to more than 98% knockout efficiency for NHEJ-mediated repair after optimal target disruption of a single gene, 100% knockout efficiency for a single gene-guided version, and more than 80% knockout efficiency for multiple genes simultaneously in Y. lipolytica. Subsequently, this technology allowed for rapid one-step integration of large fragments (up to 9902-bp) of genes into chromosomes. Finally, YL-ABTG and YL-ABTG2Z were further constructed through CRISPR-iCas9 integration of key genes in a one-step process, resulting in a maximum β-carotene and zeaxanthin content of 3.12 mg/g and 2.33 mg/g dry cell weight, respectively. Therefore, CRISPR-iCas9 technology provides a feasible approach to genetic modification for efficient biosynthesis of biological compounds in Y. lipolytica. KEY POINTS: • iCas9 with D147Y and P411T mutants improved the CRISPR efficiency in Y. lipolytica. • CRISPR-iCas9 achieved efficient gene knockout and integration in Y. lipolytica. • CRISPR-iCas9 rapidly modified Y. lipolytica for carotenoid bioproduction.
Collapse
Affiliation(s)
- Qi Hang Chen
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China
| | - Ya Dan Qian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China
| | - Yong Jie Niu
- Xian Healthful Biotechnology Co, Ltd. Hangtuo Road, Xian, Shaanxi, 710100, People's Republic of China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China.
| |
Collapse
|
9
|
He Q, Gong G, Wan T, Hu H, Yu P. An integrated transcriptomic and metabolic phenotype analysis to uncover the metabolic characteristics of a genetically engineered Candida utilis strain expressing δ-zein gene. Front Microbiol 2023; 14:1241462. [PMID: 37744922 PMCID: PMC10513430 DOI: 10.3389/fmicb.2023.1241462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Candida utilis (C. utilis) has been extensively utilized as human food or animal feed additives. With its ability to support heterologous gene expression, C. utilis proves to be a valuable platform for the synthesis of proteins and metabolites that possess both high nutritional and economic value. However, there remains a dearth of research focused on the characteristics of C. utilis through genomic, transcriptomic and metabolic approaches. Methods With the aim of unraveling the molecular mechanism and genetic basis governing the biological process of C. utilis, we embarked on a de novo sequencing endeavor to acquire comprehensive sequence data. In addition, an integrated transcriptomic and metabolic phenotype analysis was performed to compare the wild-type C. utilis (WT) with a genetically engineered strain of C. utilis that harbors the heterologous δ-zein gene (RCT). Results δ-zein is a protein rich in methionine found in the endosperm of maize. The integrated analysis of transcriptomic and metabolic phenotypes uncovered significant metabolic diversity between the WT and RCT C. utilis. A total of 252 differentially expressed genes were identified, primarily associated with ribosome function, peroxisome activity, arginine and proline metabolism, carbon metabolism, and fatty acid degradation. In the experimental setup using PM1, PM2, and PM4 plates, a total of 284 growth conditions were tested. A comparison between the WT and RCT C. utilis demonstrated significant increases in the utilization of certain carbon source substrates by RCT. Gelatin and glycogen were found to be significantly utilized to a greater extent by RCT compared to WT. Additionally, in terms of sulfur source substrates, RCT exhibited significantly increased utilization of O-Phospho-L-Tyrosine and L-Methionine Sulfone when compared to WT. Discussion The introduction of δ-zein gene into C. utilis may lead to significant changes in the metabolic substrates and metabolic pathways, but does not weaken the activity of the strain. Our study provides new insights into the transcriptomic and metabolic characteristics of the genetically engineered C. utilis strain harboring δ-zein gene, which has the potential to advance the utilization of C. utilis as an efficient protein feed in agricultural applications.
Collapse
Affiliation(s)
- Qiburi He
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Gaowa Gong
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Tingting Wan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - He Hu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Peng Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
10
|
Liu M, Wang H, Yan X, Zhang S, Ji C, Chen Y, Zhu B, Lin X. Multi-omics analysis reveals the mechanism of torularhodin accumulation in the mutant Rhodosporidium toruloides A1-15 under nitrogen-limited conditions. Food Funct 2023. [PMID: 37325941 DOI: 10.1039/d3fo01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A carotenoid production strain Rhodosporidium toruloides NP11 and its mutant strain R. toruloides A1-15 were studied under chemostat nitrogen-limited cultivation. Multi-omics analysis (metabolomics, lipidomics and transcriptomics) was used to investigate the different mechanisms of torularhodin accumulation between NP11 and A1-15. The results showed that the carotenoid synthesis pathway was significantly enhanced in A1-15 compared to NP11 under nitrogen limitation, due to the significant increase of torularhodin. Under nitrogen-limited conditions, higher levels of β-oxidation were present in A1-15 compared to those in NP11, which provided sufficient precursors for carotenoid synthesis. In addition, ROS stress accelerated the intracellular transport of iron ions, promoted the expression of CRTI and CRTY genes, and reduced the transcript levels of FNTB1 and FNTB2 in the bypass pathway, and these factors may be responsible for the regulation of high torularhodin production in A1-15. This study provided insights into the selective production of torularhodin.
Collapse
Affiliation(s)
- Mengyang Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Haitao Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Xu Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Sufang Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Chaofan Ji
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Yingxi Chen
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
11
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
12
|
Zhao D, Li C. Effects of TiO2 and H2O2 treatments on the biosynthesis of carotenoids and lipids in oleaginous red yeast Rhodotorula glutinis ZHK. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Gu S, Zhuang J, Zhang Z, Chen W, Xu H, Zhao M, Ma D. Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1110724. [PMID: 36714747 PMCID: PMC9880419 DOI: 10.3389/fpls.2022.1110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
As low environmental temperature adversely affects the growth, development and geographical distribution, plants have evolved multiple mechanisms involving changing physiological and metabolic processes to adapt to cold stress. In this study, we revealed that nucleoporin-coding gene OsSEH1 was a positive regulator of cold stress in rice. Physiological assays showed that the activity of antioxidant enzymes showed a significant difference between osseh1 knock-out lines and wild type under cold stress. Metabolome analysis revealed that the contents of large-scale flavonoids serving as ROS scavengers were lower in osseh1 mutants compared with wild type under cold stress. Transcriptome analysis indicated that the DEGs between osseh1 knock-out lines and wild type plants were enriched in defense response, regulation of hormone levels and oxidation-reduction process. Integration of transcriptomic and metabolic profiling revealed that OsSEH1 plays a role in the oxidation-reduction process by coordinately regulating genes expression and metabolite accumulation involved in phenylpropanoid and flavonoid biosynthetic pathway. In addition, Exogenous ABA application assays indicated that osseh1 lines had hypersensitive phenotypes compared with wild type plants, suggesting that OsSEH1 may mediate cold tolerance by regulating ABA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianrong Ma
- *Correspondence: Minghui Zhao, ; Dianrong Ma,
| |
Collapse
|
14
|
Guo R, Liu T, Guo C, Chen G, Fan J, Zhang Q. Carotenoid biosynthesis is associated with low-temperature adaptation in Rhodosporidium kratochvilovae. BMC Microbiol 2022; 22:319. [PMID: 36564716 PMCID: PMC9789556 DOI: 10.1186/s12866-022-02728-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Low temperatures greatly limit the growth of microorganisms. Low-temperature adaptation in microorganisms involves multiple mechanisms. Carotenoids are naturally occurring lipid-soluble pigments that act as antioxidants and protect cells and tissues from the harmful effects of free radicals and singlet oxygen. However, studies on the regulation of carotenoid biosynthesis at low temperatures in microorganisms are limited. In this study, we investigated the correlation between carotenoids and low-temperature adaptation in the cold-adapted strain of Rhodosporidium kratochvilovae YM25235. RESULTS Carotenoid biosynthesis in YM25235 was inhibited by knocking out the bifunctional lycopene cyclase/phytoene synthase gene (RKCrtYB) using the established CRISPR/Cas9 gene-editing system based on endogenous U6 promoters. The carotenoids were extracted with acetone, and the content and composition of the carotenoids were analyzed by spectrophotometry and HPLC. Then, the levels of reactive oxygen species (ROS) and the growth rate in YM25235 were determined at a low temperature. The results indicated that the carotenoid biosynthesis and ROS levels were increased in the YM25235 strain at a low temperature and inhibition of carotenoid biosynthesis was associated with higher ROS levels and a significant decrease in the growth rate of YM25235 at a low temperature. CONCLUSIONS The regulation of carotenoid biosynthesis was associated with low-temperature adaptation in YM25235. Our findings provided a strong foundation for conducting further studies on the mechanism by which YM25235 can adapt to low-temperature stress.
Collapse
Affiliation(s)
- Rui Guo
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Tao Liu
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Caina Guo
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Gongshui Chen
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Jingdie Fan
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Qi Zhang
- grid.218292.20000 0000 8571 108XFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
15
|
Zhao D, Li C. Multi-omics profiling reveals potential mechanisms of culture temperature modulating biosynthesis of carotenoids, lipids, and exopolysaccharides in oleaginous red yeast Rhodotorula glutinis ZHK. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|