1
|
Dong JX, Jiang LL, Liu YP, Zheng AX. Association between composite dietary antioxidant index and metabolic dysfunction-associated fatty liver disease: a cross-sectional study from NHANES. BMC Gastroenterol 2024; 24:465. [PMID: 39702023 DOI: 10.1186/s12876-024-03556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a typical hepatic steatosis with metabolic dysfunction. The composite dietary antioxidant index (CDAI) measures individual antioxidant capacity, and the relationship with MAFLD has received little attention. Our goal is to explore the association of CDAI with MAFLD. METHODS Participants were selected from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2020. CDAI was calculated basing on six dietary antioxidants, including zinc, selenium, carotenoids, and vitamins A, C, and E. Univariate regression and multivariable logistic regression analysis were conducted to evaluate the correlation between CDAI and MAFLD. We performed subgroup analysis to study the correlation in various populations. RESULTS A total of 18,163 participants, including 13,969 MAFLD and 4,194 non-MAFLD, were included. CDAI was significantly negatively correlated with MAFLD. After adjusting for all confounders (including age, gender, race, marital status, poverty ratio, education level, drinking status, smoking status, and physical activity), individuals in the highest quartile of CDAI exhibited a 27% lower likelihood of developing MAFLD than those in the lowest quartile (OR = 0.73; 95% CI [0.66, 0.81], p < 0.001). Physical activity subgroup analysis showed that this negative association was significant in the moderate-intensity physical exercise population (Model 3 in Q4, OR = 0.72; 95% CI [0.58-0.89], p < 0.001). Additionally, the changes in vitamins C were independently associated with MAFLD (Model 3, OR = 0.90; 95% CI [0.86-0.93], p < 0.001). CONCLUSIONS We found a negative relationship between higher CDAI scores and MAFLD. This study provided a new reference for exploring dietary interventions that affect MAFLD to reduce its incidence.
Collapse
Affiliation(s)
- Jia-Xin Dong
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Li-Li Jiang
- Department of Internal Medicine, The Fourth People's Hospital of Zibo City, No. 139 Haidaidadao Road, Economic Development Zone, Zibo, 255036, P.R. China
| | - Yan-Peng Liu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China
| | - Ai-Xi Zheng
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, P.R. China.
| |
Collapse
|
2
|
Liang G, Kow ASF, Lee YZ, Yusof R, Tham CL, Ho YC, Lee MT. Ameliorative effect of α-tocopherol and tocotrienol-rich palm oil extract on menopause-associated mood disorder in ovariectomized mice. Biochem Biophys Res Commun 2024; 734:150443. [PMID: 39088981 DOI: 10.1016/j.bbrc.2024.150443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Menopause-associated mood disorder is characterized by emotional depression, anxiety, and stress, which accompany hypogonadism in women in the menopausal phase. The current treatment for menopause-associated mood disorder provides only symptomatic relief and is associated with many side effects. Supplementation with vitamin E has been shown to be effective in ameliorating anxiety and depression. However, the effects of vitamin E and its underlying mechanism in ameliorating menopause-associated mood disorders remain uncertain. This work evaluated the effects of α-tocopherol and tocotrienol-rich palm oil extract on depressive and anxiety-related phenotypes induced by estrogen deficiency through ovariectomy in mice. Our study revealed that ovariectomized mice exhibited alterations in behavior indicative of depressive- and anxiety-like behaviors. The serum corticosterone level, a glucocorticoid hormone associated with stress, was found to be elevated in ovariectomized mice as compared to the sham group. Oral administration of α-tocopherol (50 and 100 mg/kg) and tocotrienol-rich palm oil extract (100 and 200 mg/kg) for 14 days alleviated these behavioral changes, as observed in open field, social interaction, and tail suspension tests. However, treatment with tocotrienol-rich palm oil extract, but not α-tocopherol, modulated the depressive- and anxiety-like responses in ovariectomized mice subjected to chronic restraint stress. Both treatments suppressed the elevated serum corticosterone level. Our findings suggested that α-tocopherol and tocotrienol-rich palm oil extract alleviated menopause-associated mood disorder, at least in part, by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The findings of this study can provide a new foundation for the treatment of menopause-associated depressive- and anxiety-like phenotypes, for the betterment of psychological wellbeing.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | | | - Yu-Zhao Lee
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; UCSI Wellbeing Research Centre, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
3
|
Goshtasbi H, Awale S, Amini-Fazl MS, Fathi M, Movafeghi A, Barar J, Omidi Y. Chitosan-graft-poly(lactide) nanocarriers: An efficient antioxidant delivery system for combating oxidative stress. Int J Biol Macromol 2024; 279:135280. [PMID: 39349320 DOI: 10.1016/j.ijbiomac.2024.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 10/02/2024]
Abstract
Oxidative stress is a key factor in various diseases, and thus exogenous antioxidants offer effective therapeutic potential. While astaxanthin (ATX) is a potent natural antioxidant, its poor water solubility, bioavailability, and stability hinder its application. This study aimed to develop an amphiphilic chitosan-graft-poly(lactide) (CS-g-PLA) copolymer utilizing a new strategy by ring-opening polymerization of D, l-lactide via organosoluble CS/sodium dodecyl sulfate complex. Subsequently, CS-g-PLA micelles were prepared for efficient encapsulation and delivery of ATX. CS-g-PLA copolymers were characterized by FT-IR and 1H NMR. Transmission electron microscopy and dynamic light scattering revealed micellar morphology and size distribution. The antioxidant activity of CS-g-PLA/ATX was assessed using the DPPH assay, demonstrating significant improvement compared to free ATX. Furthermore, the cytotoxicity of micellar ATX was evaluated on H2O2-treated bone marrow mesenchymal stem cells (BMSCs) using MTT assay. Annexin V staining and mitochondrial membrane potential (∆Ψm) analysis revealed reduced apoptosis and enhanced protection by ATX-loaded micelles compared to free ATX. These findings suggest CS-g-PLA micelles as promising nanocarriers for ATX delivery, putatively enhancing its antioxidant potential and protecting stem cells in oxidative stress environments. This approach could hold significant implications for stem cell therapy in diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
4
|
Ongtanasup T, Tawanwongsri W, Manaspon C, Srisang S, Eawsakul K. Comprehensive investigation of niosomal red palm wax gel encapsulating ginger (Zingiber officinale Roscoe): Network pharmacology, molecular docking, In vitro studies and phase 1 clinical trials. Int J Biol Macromol 2024; 277:134334. [PMID: 39094890 DOI: 10.1016/j.ijbiomac.2024.134334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriwan Srisang
- Energy Engineering Division, Department of Engineering, King Mongkut's Institute of Technology Lad-krabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
5
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
6
|
Tietel Z, Melamed S, Galilov I, Ben-Gal A, Dag A, Yermiyahu U. Elevated nitrogen fertilization differentially affects jojoba wax phytochemicals, fatty acids and fatty alcohols. FRONTIERS IN PLANT SCIENCE 2024; 15:1425733. [PMID: 39129760 PMCID: PMC11310937 DOI: 10.3389/fpls.2024.1425733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
Jojoba wax is gaining popularity among cosmetics consumers for its skin wound healing and rejuvenation bioactivities, attributed to collagen and hyaluronic acid synthesis. However, information regarding wax phytochemical composition and quality parameters, as well as effect of cultivation practices, and fertilization in particular, on wax quality is limited. The aim of the current work was to study the effect of nitrogen (N) availability to jojoba plants on wax phytochemical composition and beneficial skin-related contents. For this, wax quality from a six-year fertilization experiment with five N application levels was evaluated. The chemical parameters included antioxidant activity, free fatty acid, total tocopherol, total phytosterol and oxidative stability, as well as fatty acid and fatty alcohol profile. Our results reveal that the majority of wax quality traits were affected by N fertilization level, either positively or negatively. Interestingly, while fatty acids were unaffected, fatty alcohol composition was significantly altered by N level. Additionally, fruit load also largely affected wax quality, and, due to jojoba's biennial alternate bearing cycles, harvest year significantly affected all measured parameters. Results shed light on the effects of N application on various biochemical constituents of jojoba wax, and imply that N availability should be considered part of the entire agricultural management plan to enhance wax quality. Some traits are also suggested as possible chemical quality parameters for jojoba wax.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Sarit Melamed
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Izabella Galilov
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Alon Ben-Gal
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Uri Yermiyahu
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| |
Collapse
|
7
|
Koriem KMM, Arbid MSS. Palm oil amends serum female hormones, ovarian antioxidants, inflammatory markers, and DNA fragmentation in favism-induced female rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0082. [PMID: 38701114 DOI: 10.1515/jcim-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Favism is a metabolic disease and this study evaluates the effectiveness of palm oil and its triacylglycerol constituent in favism-induced female rats to restore serum female hormones, ovarian antioxidants, inflammatory markers, and DNA fragmentation. METHODS Animals were 36 female albino rats. They classified to two equal (normal and favism) groups. The normal group was divided into three equal subgroups: the control, palm oil, and triacylglycerol subgroups. The normal rats were given 1 mL of saline, 1 mL of palm oil, and 1 mL of triacylglycerol orally, respectively. The Favism group was classified also into three equal subgroups: the favism group, the favism + palm oil, the Favism + triacylglycerol. The favism rats were given 1 mL of saline, 1 mL of palm oil, and 1 mL of triacylglycerol orally. For four weeks, all treatments were administered orally via oral gavage once daily. RESULTS The hemoglobin, hematocrite, the blood cells, glucose and glucose-6-phosphate dehydrogenase, and liver function were decreased in favism. Female hormones such as serum luteinizing hormone, follicle stimulating hormone, Estrone, Estriol, 17α-Estradiol, 17β-Estradiol, and Estradiol-17-β-stearate were decreased in favism. Ovarian antioxidants were decreased while ovarian inflammatory markers were increased in favism. Favism induced ovarian DNA apoptosis. Furthermore, oral administration with palm oil or its triacylglycerol constituent in favism-induced female rats restored all these parameters to be approached the control levels. CONCLUSIONS Palm oil restored serum female hormones, ovarian antioxidants, inflammatory markers, and DNA fragmentation in favism-induced female rats and this effect related to oil triacylglycerol constituent.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Department of Medical Physiology, 68787 Medical Research and Clinical Studies Institute, National Research Centre , Dokki, Cairo, Egypt
| | - Mahmoud S S Arbid
- Department of Pharmacology, 68787 Medical Research and Clinical Studies Institute, National Research Centre , Dokki, Cairo, Egypt
| |
Collapse
|
8
|
Guo P, Yu J. Association of multiple serum minerals and vitamins with metabolic dysfunction-associated fatty liver disease in US adults: National Health and Nutrition Examination Survey 2017-2018. Front Nutr 2024; 11:1335831. [PMID: 38562487 PMCID: PMC10982334 DOI: 10.3389/fnut.2024.1335831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite the rapid increase in the global prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), there are no approved therapeutic drugs for MAFLD yet. Nutrient supplementation might mitigate the risk of MAFLD. It is more typical for individuals to consume multiple nutrients simultaneously. However, the studies exploring the combined effects of multiple nutrients on MAFLD are limited. This study aimed to investigate the relationship between both individual nutrients and their combined influence on the risk of MAFLD. Methods Data were obtained from National Health and Nutrition Examination Survey (NHANES), and 18 types of nutrients were considered in this study. Logistic regression analysis was performed to evaluate the correlation between single nutrients and the risk of MAFLD. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to pinpoint the most relevant nutrient associated with the risk of MAFLD. Subsequently, both Weighted Quantile Sum (WQS) regression and Quantile g-computation (Qgcomp) were used to assess the combined effects of multiple nutrients on the risk of MAFLD. Results A total of 3,069 participants were included in this study. LASSO regression analysis showed that Se, α-tocopherol, and γ-tocopherol exhibited a positive association with the risk of MAFLD. In contrast, the serum levels of Co, P, α-cryptoxanthin, LZ, and trans-β-carotene were inversely associated with the prevalence of MAFLD. When Se and two types of vitamin E were excluded, the WQS index showed a significant inverse relationship between the remaining 15 nutrients and the risk of MAFLD; α-cryptoxanthin showed the most substantial contribution. Similarly, Qgcomp suggested that the combined effects of these 15 nutrients were associated with a lower risk of MAFLD, with α-cryptoxanthin possessing the most significant negative weights. Conclusion This study suggested that the complex nutrients with either a low proportion of Se, α-tocopherol, and γ-tocopherol or without them should be recommended for patients with MAFLD to reduce its risk.
Collapse
Affiliation(s)
| | - Jiahui Yu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Pawlak K, Jopek Z, Święcicka-Füchsel E, Kutyła A, Namo Ombugadu J, Wojciechowski K. A new RPLC-ESI-MS method for the determination of eight vitamers of vitamin E. Food Chem 2024; 432:137161. [PMID: 37633151 DOI: 10.1016/j.foodchem.2023.137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Vitamin E consists of four (α-, β-, γ-, δ-) isoforms of tocopherols (T) and tocotrienols (T3), collectively known as tocols. Current LC methods for tocols suffer from either the poor ability to resolve the β- and γ- isoforms (RPLC), or require the use of nonpolar solvents (NPLC), which complicates subsequent MS/MS detection. Moreover, we show that coupling of UV with MS leads to tocols photodegradation. To solve these problems, we developed a new RPLC-MS/MS method, allowing to resolve not only α- and δ-, but also β- and γ- tocols in hydrophobic matrices. We took advantage of an observation that the peak area ratios are specific for the given isomer and constant. The new method with a linear range between 0.2 and 60 ng·mL-1 (for α-T) and 1.1-60 ng·mL-1 (for β-T3 and γ-T3) was validated and employed for quantitative analysis of several oils, including false flax (Camelina sativa) oil stored under different conditions.
Collapse
Affiliation(s)
- Katarzyna Pawlak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| | - Zuzanna Jopek
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Alicja Kutyła
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
10
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
11
|
Fu JY, Meganathan P, Gunasegaran N, Tan DMY. Effect of nano-delivery systems on the bioavailability and tissue biodistribution of vitamin E tocotrienols. Food Res Int 2023; 171:113048. [PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
Collapse
Affiliation(s)
- Ju-Yen Fu
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Puvaneswari Meganathan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nisanthei Gunasegaran
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Doryn Meam Yee Tan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
12
|
Darenskaya M, Kolesnikov S, Semenova N, Kolesnikova L. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies. Int J Mol Sci 2023; 24:12378. [PMID: 37569752 PMCID: PMC10419189 DOI: 10.3390/ijms241512378] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes mellitus (DM) belongs to the category of socially significant diseases with epidemic rates of increases in prevalence. Diabetic nephropathy (DN) is a specific kind of kidney damage that occurs in 40% of patients with DM and is considered a serious complication of DM. Most modern methods for treatments aimed at slowing down the progression of DN have side effects and do not produce unambiguous positive results in the long term. This fact has encouraged researchers to search for additional or alternative treatment methods. Hyperglycemia has a negative effect on renal structures due to a number of factors, including the activation of the polyol and hexosamine glucose metabolism pathways, the activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, the accumulation of advanced glycation end products and increases in the insulin resistance and endothelial dysfunction of tissues. The above mechanisms cause the development of oxidative stress (OS) reactions and mitochondrial dysfunction, which in turn contribute to the development and progression of DN. Modern antioxidant therapies for DN involve various phytochemicals (food antioxidants, resveratrol, curcumin, alpha-lipoic acid preparations, etc.), which are widely used not only for the treatment of diabetes but also other systemic diseases. It has also been suggested that therapeutic approaches that target the source of reactive oxygen species in DN may have certain advantages in terms of nephroprotection from OS. This review describes the significance of studies on OS biomarkers in the pathogenesis of DN and analyzes various approaches to reducing the intensity of OS in the prevention and treatment of DN.
Collapse
Affiliation(s)
- Marina Darenskaya
- Department of Personalized and Preventive Medicine, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (S.K.); (N.S.); (L.K.)
| | | | | | | |
Collapse
|
13
|
Le X, Zhang W, Sun G, Fan J, Zhu M. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods 2023; 12:2444. [PMID: 37444182 DOI: 10.3390/foods12132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Acer truncatum Bunge (ATB) is an excellent edible woody oil tree species since it bears a huge amount of fruit and has strong adaptability to be widely cultivated. Selecting an optimal cultivation region for ATB is crucial to improving China's woody oil industrialization. Chemical analysis, correlation analysis, and affiliation function values were used in the present research to systematically analyze the phenotypic traits, organic compound content, and seed oil chemical composition of the seeds of ATB from nine regions. The average contents of oil, protein, and soluble sugar in ATB seeds were 43.30%, 17.40%, and 4.57%, respectively. Thirteen fatty acids were identified from ATB seed oil, the highest content of which was linoleic acid (37.95%) and nervonic acid content was 5-7%. The maximum content of unsaturated fatty acids in ATB seed oil was 90.09%. Alpha-tocopherol content was up to 80.75 mg/100 g. The degree of variation in seed quality traits (25.96%) was stronger than in morphological traits (14.55%). Compared to environmental factors, the phenotypic traits of seeds contribute more to organic compounds and fatty acids. Combining the values of the indicator affiliation functions, Gilgarang, Tongliao, Inner Mongolia was selected as the optimal source of ATB for fruit applications from nine regions.
Collapse
Affiliation(s)
- Xiaona Le
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Wen Zhang
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Guotao Sun
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Jinshuan Fan
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
- College of Forestry, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Shaikh SA, Muthuraman A. Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats. Pharmaceuticals (Basel) 2023; 16:828. [PMID: 37375775 DOI: 10.3390/ph16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascular dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e., tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl3)-induced VaD in rats. Rats were induced with AlCl3 (150 mg/kg) intraperitoneally for seven days followed by TRF treatment for twenty-one days. The elevated plus maze test was performed for memory assessment. Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothelial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance (TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-C) expression in the hippocampus was identified using immunohistochemistry for detecting the neovascularisation process. AlCl3 showed a significant decrease in memory and serum nitrite levels, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite, decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C expression for neovascularisation process, protects neurons, and improves memory in neurovascular dysfunction-associated VaD rats.
Collapse
Affiliation(s)
- Sohrab A Shaikh
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
15
|
Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int J Mol Sci 2022; 23:ijms232113531. [PMID: 36362316 PMCID: PMC9653761 DOI: 10.3390/ijms232113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
Collapse
|
16
|
Liang G, Kow ASF, Tham CL, Ho YC, Lee MT. Ameliorative Effect of Tocotrienols on Perimenopausal-Associated Osteoporosis-A Review. Antioxidants (Basel) 2022; 11:2179. [PMID: 36358550 PMCID: PMC9686558 DOI: 10.3390/antiox11112179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2023] Open
Abstract
Osteoporosis, or bone loss, is a disease that affects many women globally. As life expectancy increases, the risk of osteoporosis in women also increases, too, and this will create a burden on the healthcare and economic sectors of a country. Osteoporosis was once thought to be a disease that would occur only after menopause. However, many studies have shown that osteoporosis may develop even in the perimenopausal stage. Due to the erratic levels of estrogen and progesterone during the perimenopausal stage, studies suggest that women are exposed to the risk of developing osteoporosis even at this stage. The erratic hormonal changes result in the production of proinflammatory mediators and cause oxidative stress, which leads to the progressive loss of bone-building activities. Tocotrienols, members of vitamin E, have many health-promoting properties. Due to their powerful anti-oxidative and anti-inflammatory properties, tocotrienols have shown positive anti-osteoporotic properties in post-menopausal studies. Hence, we propose here that tocotrienols could also possibly alleviate perimenopausal osteoporosis by discussing in this review the connection between inflammatory mediators produced during perimenopause and the risk of osteoporosis. Tocotrienols could potentially be an anti-osteoporotic agent, but due to their low bioavailability, they have not been as effective as they could be. Several approaches have been evaluated to overcome this issue, as presented in this review. As the anti-osteoporotic effects of tocotrienols were mostly studied in post-menopausal models, we hope that this review could pave the way for more research to be done to evaluate their effect on peri-menopausal models so as to reduce the risk of osteoporosis from an earlier stage.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|