1
|
Legesse Bedada T, Martínez-Villaluenga C, Amare E, Birri DJ, Desalegen A, Tigu F, Frias J, Curiel JA, Assaye H, Peñas E. Unveiling the nutritional composition and bioactivity of Ethiopian native fermented foods: Kocho and Injera. Food Chem 2025; 474:143158. [PMID: 39919426 DOI: 10.1016/j.foodchem.2025.143158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Kocho and Injera are traditional Ethiopian foods but there is scarce information about their composition and potential health benefits. The aim of this research was to elucidate the nutritional and bioactivbe profiles of Kocho and Injera (white and brown) breads, and assessed the impact of in vitro digestion on their constituents. Kocho bread was rich in fiber (11.3 g/100 g dw), riboflavin (54.7 μg/100 g dw), and γ-aminobutyric acid (GABA, 36 mg/100 g dw). White and brown Injera had a notable content of protein (7.6-8.5 g/100 g dw), fiber (∼14 g/100 g dw), riboflavin (85.4-100.0 μg/100 g dw), polyols, sugars and oligosaccharides (123.0-261.3 mg/100 g dw), free amino acids (FAA,∼200 mg/100 g dw), GABA (46.0-55.5 mg/100 g dw), free phenolic compounds (FPC, 468.1-615.7 mg GAE/100 g dw), and antioxidant activity (399.2-888.3 mg TE/100 g dw). In vitro digestion increased FAA, peptides, GABA and FPC in the samples and two bioactive peptides were identified per sample.
Collapse
Affiliation(s)
- Tesfaye Legesse Bedada
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia; Nutrition, Environmental Health and Non-communicable Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Endale Amare
- Nutrition, Environmental Health and Non-communicable Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asnake Desalegen
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fitsum Tigu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28006 Madrid, Spain
| | - José Antonio Curiel
- Food Technology Department, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Hirut Assaye
- Food and Nutrition Research Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28006 Madrid, Spain.
| |
Collapse
|
2
|
Trossolo E, Alabiden Tlais AZ, Tonini S, Filannino P, Gobbetti M, Cagno RD. Fermentation of a wine pomace and microalgae blend to synergistically enhance the functional value of protein- and polyphenol-rich matrices. Food Res Int 2025; 202:115785. [PMID: 39967119 DOI: 10.1016/j.foodres.2025.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
This study aimed to generate new functional ingredients from microalgae and wine pomace through starter-assisted fermentation. Five lactic acid bacteria (LAB) and five yeasts were variously chosen for their species diversity, origin, and metabolic potential. During fermentation, the combination of Chlorella vulgaris and wine pomace overcame the limited growth observed in pomace substrate, with all LAB and yeasts effectively utilizing sugars and synthesizing microbial metabolites. Additionally, the synergistic interplay between the substrates, alongside the enzyme specificity of the starter cultures, improved the bioavailability of phenolic compounds, particularly flavanols, flavonols, and procyanidins, while simultaneously generating unique peptides in the formulated ingredients. In some cases, these metabolic changes were associated with enhanced antioxidant activity, improved protein digestibility, and overall protein quality. Our findings highlighted the potential of fermented mixed substrates as new functional ingredients, with promising health-promoting benefits and significant potential for applications in the food industry.
Collapse
Affiliation(s)
- Elisabetta Trossolo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | - Stefano Tonini
- International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Pasquale Filannino
- International Center on Food Fermentation, 39100 Bolzano, Italy; Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy
| |
Collapse
|
3
|
Terrazas-Avila P, Palma-Rodríguez HM, Navarro-Cortez RO, Hernández-Uribe JP, Piloni-Martini J, Vargas-Torres A. The effects of fermentation time on sourdough bread: An analysis of texture profile, starch digestion rate, and protein hydrolysis rate. J Texture Stud 2024; 55:e12831. [PMID: 38613314 DOI: 10.1111/jtxs.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
To ensure the best quality bread, it is important to consider the speed of digestion of starch and proteins, as well as how time fermentation and storage time influence the rate of starch digestion and the texture of the bread. This study compared the effect of fermentation time and days of storage on the texture, physicochemical, protein and starch digestibility of sourdough bread. Texture profile analysis showed that the fermentation time in recently baked sourdough bread affects hardness, chewiness, and springiness. The electrophoretic profile showed a decrease in band thickness with increase in fermentation time, consistent with a higher percentage of protein digestion. While fermentation time did not significantly affect rapidly digestible starch (RDS) and slowly digestible starch (SDS), storage time resulted in a decrease in RDS and an increase in SDS. Sourdough breads had higher levels of resistant starch (RS). The digestibility characteristics of protein and starch, as well as texture properties, are significantly influenced by fermentation and storage time. The evidence suggests that sourdough bread has the potential to improve the digestion of protein and to effectively regulate the glycemic response, which is due to its higher levels of SDS and RS.
Collapse
Affiliation(s)
- Paulina Terrazas-Avila
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Heidi M Palma-Rodríguez
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Ricardo O Navarro-Cortez
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Juan P Hernández-Uribe
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Javier Piloni-Martini
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Apolonio Vargas-Torres
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| |
Collapse
|
4
|
Ameur H, Tlais AZA, Paganoni C, Cozzi S, Suman M, Di Cagno R, Gobbetti M, Polo A. Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. Int J Food Microbiol 2024; 410:110513. [PMID: 38043376 DOI: 10.1016/j.ijfoodmicro.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | | | - Serena Cozzi
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy
| | - Michele Suman
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy; Department for Sustainable Food Process, Catholic University Sacred Heart, via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy.
| |
Collapse
|
5
|
Yang H, Li Y, Zhao J, Chen Z, Huang X, Fan G. Regulating the composition and secondary structure of wheat protein through canopy shading to improve dough performance and nutritional index. Food Res Int 2023; 173:113399. [PMID: 37803737 DOI: 10.1016/j.foodres.2023.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
Viscoelastic properties of gluten proteins critically determine the biscuit-making quality. However, cultivar genetics and light conditions closely regulate the composition of the gluten proteins. The impact of pre- and post-anthesis shading (60 %) on amino acid profile, gluten protein composition, secondary structure, dough performance, and biscuit-making quality were evaluated using four wheat cultivars that differ in gluten protein composition. Pre- and post-anthesis shading increased the contents of gliadin, by 35.8 and 3.1 %; glutenin, by 27.6 and 7.3 %; and total protein, by 21.7 and 10.6 %, respectively, compared with those of unshaded plants. Conversely, the ratios of glutenin/gliadin, ω-/(α,β + γ)-gliadin, and high-molecular-weight/low-molecular-weight glutenin subunits decreased with shading. Strong-gluten cultivars exhibited smaller declines in these parameters than weak-gluten cultivars. Secondary structure analysis of the wheat protein revealed that shading increased β-sheet content but decreased β-turn content. Changes in protein components and their secondary structures caused an increase in wet gluten content, dough development time, and gluten performance index, thereby decreasing the biscuit spread ratio. Shading stress increased the protein content and nutrition index but decreased the biological value of protein by 2.5 %. Transcriptomic results revealed that shading induced 139 differentially expressed genes that decreased carbohydrate metabolism and increased amino acid metabolism, involved in increased protein content. Thus, canopy shading improves dough performance and nutrition index by regulating the amino acid profiles, protein compositions, and secondary structures. The study provides key insights for achieving superior grain quality under global dimming.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Jiarong Zhao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China; Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
6
|
Costantini A, Verni M, Mastrolonardo F, Rizzello CG, Di Cagno R, Gobbetti M, Breedveld M, Bruggink S, Lefever K, Polo A. Sourdough "Biga" Fermentation Improves the Digestibility of Pizza Pinsa Romana: An Investigation through a Simulated Static In Vitro Model. Nutrients 2023; 15:2958. [PMID: 37447283 DOI: 10.3390/nu15132958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Baked goods manufacturing parameters and fermentation conditions interfere with the nutrients content and affect their gastrointestinal fate. Pinsa Romana is a type of pizza that, recently, has been commercially rediscovered and that needed elucidation from a nutritional and digestibility perspective. In this study, six types of Pinsa Romana (five made with indirect method and one produced with straight dough technology) were characterized for their biochemical and nutritional features. Several variables like indirect (biga) Pinsa Romana production process, fermentation time and use of sourdough were investigated. The Pinsa Romana made with biga including sourdough and fermented for 48 h at 16 °C ((PR_48(SD)) resulted in the lowest predicted glycemic index, in the highest content of total peptides, total and individual free amino acids and gamma-amino butyric acid (GABA), and in the best protein quality indexes (protein efficiency ratio and nutritional index). The static in vitro digestion showed that the digesta from PR_48(SD) confirmed a reduced in vitro glycemic response after intake, and it showed a lower bioavailability of hydrophilic peptides. Furthermore, the inclusion of sourdough in biga enhanced the bioavailability of protein-related end-products including human health promoting compounds such as essential amino acids.
Collapse
Affiliation(s)
- Alice Costantini
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Michela Verni
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Mastrolonardo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá 5, 39100 Bolzano, Italy
| | | | - Suzan Bruggink
- Fourneo, 300 Rue Gilbert Chiquet, 62500 Leulinghem, France
| | | | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá 5, 39100 Bolzano, Italy
| |
Collapse
|
7
|
Identification and Selection of Prospective Probiotics for Enhancing Gastrointestinal Digestion: Application in Pharmaceutical Preparations and Dietary Supplements. Nutrients 2023; 15:nu15061306. [PMID: 36986037 PMCID: PMC10053534 DOI: 10.3390/nu15061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Our study investigated the effectiveness of 446 strains of lactic acid bacteria (LAB) belonging to different species and isolated from diverse sources (food, human, and animal) as potential probiotic candidates, with the perspective of producing dietary supplements or pharmacological formulations suitable for enhancing gastrointestinal digestion. The survival capability of all the isolates under harsh gastrointestinal tract conditions was evaluated, in which only 44 strains, named high-resistant, were selected for further food digestibility investigations. All 44 strains hydrolyzed raffinose and exhibited amino and iminopeptidase activities but at various extents, confirming species- and strain-specificity. After partial in vitro digestion mimicking oral and gastric digestive phases, food matrices were incubated with single strains for 24 h. Fermented partially digested matrices provided additional functional properties for some investigated strains by releasing peptides and increasing the release of highly bio-accessible free phenolic compounds. A scoring procedure was proposed as an effective tool to reduce data complexity and quantitively characterize the probiotic potential of each LAB strain, which could be more useful in the selection procedure of powerful probiotics.
Collapse
|
8
|
Liquid sourdough from stone-ground soft wheat (Triticum aestivum) flour: Development and exploitation in the breadmaking process. Food Res Int 2022; 161:111796. [DOI: 10.1016/j.foodres.2022.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|