1
|
Akter S, Thi Phan AD, Adiamo OQ, Bobasa EM, Seididamyeh M, Rajagopal G, Sivakumar D, Sultanbawa Y. Bio-functional properties of Jilungin (Terminalia canescens). J Food Sci 2024. [PMID: 39385396 DOI: 10.1111/1750-3841.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Jilungin (Terminalia canescens) is a native Australian plant and the Indigenous "Nyul Nyul" people of the Kimberley region of Western Australia use its leaves to make herbal tea. Due to the rise in the popularity of drinking Jilungin tea among the consumers in Australia and internationally, it is important to study the nutritional and health-beneficial properties as well as safety of Jilungin leaves. This study aims to determine the nutritional composition, anti-nutritional factors, antimicrobial and antidiabetic properties of Jilungin leaves. Also, the phytochemical profiling using UHPLC-MS/MS (Ultra-performance liquid chromatographymass spectrometry) and antioxidant activity of Jilungin methanolic extracts and herbal infusion were investigated. The safety of the leaves and infusion was also investigated by using in vitro mammalian cell lines (Caco2, HT29, and HepG2) through cell viability assays. The leaves are rich in dietary fiber (43.9%) and linoleic acid (30.4% of total fatty acids). Phytochemical profiling revealed ellagic acid, geraniin, pedunculagin, and punicalagin as the major bioactive compounds. The results also demonstrated that Jilungin has strong antioxidant and antidiabetic activities. A significant (p < 0.01) strong positive correlation was observed between the high antioxidant activity of Jilungin infusion with the major bioactive compounds. Jilungin extracts (50 mg/mL) exhibited strong antimicrobial activity against Staphylococcus aureus and Bacillus cereus. Its infusion and methanolic extract were safe on the studied cell lines (Caco-2, HT29, and HepG2) at higher concentrations of 66.6 and 98 mg/mL, respectively. Therefore, Jilungin teas or infusions could be a safe and effective way to promote health and well-being. PRACTICAL APPLICATION: Jilungin tea is very popular among consumers in Australia and is gaining popularity worldwide. The current study will increase knowledge on the nutritional aspects and safety of the Jilungin use.
Collapse
Affiliation(s)
- Saleha Akter
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Oladipupo Q Adiamo
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Eshetu Mulisa Bobasa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Gayathri Rajagopal
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Belobrajdic DP, Osborne S, Conlon M, Brook H, Addepalli R, Muhlhausler BS. Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince. Nutrients 2024; 16:2339. [PMID: 39064781 PMCID: PMC11279466 DOI: 10.3390/nu16142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The nutritional quality of plant-based meat analogues compared to traditional meat products has been questioned in recent commentary, particularly in relation to protein quality and micronutrient bioavailability. However, the attributes of specific products within this category are unclear. We therefore undertook a comprehensive assessment of the compositional and functional attributes of v2food® (Sydney, Australia) plant-based mince, including an assessment of the effects of reformulation, including the addition of amino acids, ascorbic acid, and different forms of elemental iron. The protein digestibility and protein quality of v2food® plant-based mince were comparable to beef mince in the standardized INFOGEST system, and favourable effects on microbiota composition and short-chain fatty acid (SCFA) production were demonstrated in an in vitro digestion system. The use of ferrous sulphate as an iron source improved in vitro intestinal iron absorption by ~50% in comparison to other forms of iron (p < 0.05), although levels were ~3-fold lower than beef mince, even in the presence of ascorbic acid. In conclusion, the current study identified some favourable nutritional attributes of plant-based v2food® mince, specifically microbiota and SCFA changes, as well as other areas where further reformulation could be considered to further enhance the bioavailability of key nutrients. Further studies to assess the effect of plant-based meat analogues on health measures in vivo will be important to improve knowledge in this area.
Collapse
Affiliation(s)
- Damien P. Belobrajdic
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
- College of Medicine and Public Health, Health Flinders University, Bedford Park, SA 5042, Australia
| | - Simone Osborne
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD 4067, Australia; (S.O.); (R.A.)
| | - Michael Conlon
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
| | - Henri Brook
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
| | - Rama Addepalli
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD 4067, Australia; (S.O.); (R.A.)
| | - Beverly S. Muhlhausler
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
3
|
Drabo MS, Shumoy H, De Meulenaer B, Savadogo A, Raes K. Nutritional quality of the traditionally cooked Zamnè, a wild legume and a delicacy in Burkina Faso: assessment of the process effectiveness and the properties of cooking alkalis. Food Funct 2024; 15:1279-1293. [PMID: 38197166 DOI: 10.1039/d3fo02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Zamnè is a wild legume and a famine food that attracts interest for its health benefits and has become a delicacy in Burkina Faso. This study aimed to determine the nutritional quality of the traditionally cooked Zamnè, appreciate the effectiveness of the traditional cooking process, and compare the properties of the traditionally used cooking alkalis (i.e., potash or plant ash leachate and sodium bicarbonate). Yet, as shown, the traditional cooking of Zamnè is a very aggressive process that results in high disintegration of cell walls and membranes and leaching of most water-soluble constituents and nutrients (i.e., free amino acids, soluble nitrogen, sugars, soluble dietary fibers, and soluble phenolics). In addition, the extensive boiling and the cooking alkalis induced the sequestration of calcium, iron, magnesium, and zinc, significantly impairing their bioaccessibility. Despite the difference in the modus operandi of the cooking alkalis, there was no significant difference in the cooking outcomes. The traditionally cooked Zamnè presented high dietary protein (4.8 g), lipid (3.3 g), fiber (6.7-7.7 g), and metabolizable energy (63-65 kcal) contents (per 100 g fresh weight). Most antinutritional factors (i.e., non-protein nitrogen, tannins, and trypsin inhibitors) were eliminated. The proteins were relatively well preserved despite the aggressive alkaline processing. They demonstrated an appreciable digestibility (75%) and predicted PER (1.5) and a fairly balanced essential amino acid composition - which should completely meet the requirements for adults. The lipid content and composition were also well preserved and contained predominantly linoleic (C18:2n-6), oleic (C18:1c9), stearic (C18:0), and palmitic (C16:0) acids (33, 34, 10, and 15% total fatty acids, respectively). Overall, though extensive alkaline cooking seems a straightforward option to overcome the hard-to-cook problem of Zamnè, processing alternatives might be useful to reduce nutrient losses, improve the digestibility of the final product, and capture its full nutritional value.
Collapse
Affiliation(s)
- Moustapha Soungalo Drabo
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
- Laboratory of Applied Biochemistry and Immunology, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso
| | - Habtu Shumoy
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Bruno De Meulenaer
- Research Unit nutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Aly Savadogo
- Laboratory of Applied Biochemistry and Immunology, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|