1
|
Xu M, Zhang L, Zeng Y, Zhou Z, Han Y. Preparation and characterization of Levan composite film incorporating vanillin for use as a potential edible coating for peony seed oil. Int J Biol Macromol 2024; 288:138732. [PMID: 39674469 DOI: 10.1016/j.ijbiomac.2024.138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The study prepared an edible packaging material for peony seed oil by adding natural antioxidant vanillin to a microbial Levan composite film. The presence of highly branched Levan, containing polyhydroxyl groups, significantly enhanced the maximum tension (26.57 N), tensile strength (36.31 MPa), and elongation at break (42.15 %) of the Aga/Lev film. The values were 9.84-fold, 5.74-fold, and 1.11-fold higher than those of Aga films, respectively. Furthermore, SEM and FTIR analysis revealed that Levan increased the intermolecular force of the vanillin composite film (Aga/Lev/Gly/Van), forming a dense gel network with a Schiff base reaction occurring between vanillin and glycine. The addition of vanillin and glycine slightly lowered the transparency of the film but enhanced the ultra violet (UV)-blocking with 100 % UV-region and 91 % visible region light screening. The Aga/Lev/Gly/Van films showed strong antioxidant efficacy with 91.85 % ABTS and 44.33 % DPPH radical scavenging potential. The electrical conductivity, P-anisidine value, thiobarbituric acid value, and fatty acid distribution of peony seed oil samples were analyzed after accelerated storage. The Aga/Lev/Gly/Van group had a significantly higher retention rate (95.65 %) for total conjugated fatty acids compared to the control group (84.17 %). The utilization of Aga/Lev/Gly/Van film packaging effectively extended the shelf life of peony seed oil and retarded the degradation of unsaturated fatty acids in the oil. Therefore, Levan composite films incorporating vanillin can be used as sustainable packaging materials to minimize the oxidation of susceptible foods.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Lixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yihong Zeng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
2
|
Yoon S, Jeong H, Jo SM, Hong SJ, Park H, Ban Y, Youn MY, Shin EC. Physicochemical and chemosensory properties of pomegranate (Punica granatum L.) seeds under various oven-roasting conditions. Food Chem 2024; 446:138907. [PMID: 38452508 DOI: 10.1016/j.foodchem.2024.138907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
This study investigated the effects of oven-roasting temperature (160, 180, and 200 ℃) and time (5, 10, 15, and 20 min) on pomegranate seeds. Physicochemical properties, such as color (L*, a*, and b* values), browning index (BI), total phenolic and flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, and chemosensory properties, including taste and volatile compounds, were analyzed. The L* and a* values, and level of sourness, umami, sweetness, and terpenes decreased, whereas the b* value, BI, and level of saltiness, bitterness, furan derivatives, pyrazines, and sulfur-containing compounds, increased with roasting time. The findings of this study showed that the positive roasting conditions for pomegranate seeds were 10-20 min at 160 ℃ and, 5-10 min at 180 ℃. This study is expected to be used as a primary reference for selecting the optimal oven-roasting conditions in which positive effects appear and for developing products utilizing pomegranate seeds.
Collapse
Affiliation(s)
- Sojeong Yoon
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hyangyeon Jeong
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Seong Min Jo
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Seong Jun Hong
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hyeonjin Park
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Younglan Ban
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Moon Yeon Youn
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
3
|
Meneguelli TS, Kravchychyn ACP, Wendling AL, Dionísio AP, Bressan J, Martino HSD, Tako E, Hermsdorff HHM. Cashew nut ( Anacardium occidentale L.) and cashew nut oil reduce cardiovascular risk factors in adults on weight-loss treatment: a randomized controlled three-arm trial (Brazilian Nuts Study). Front Nutr 2024; 11:1407028. [PMID: 38988854 PMCID: PMC11234893 DOI: 10.3389/fnut.2024.1407028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Cashew nut contains bioactive compounds that modulate satiety and food intake, but its effects on body fat during energy restriction remains unknown. This study aimed to assess the effects of cashew nut and cashew nut oil on body fat (primary outcome) as well as adiposity, cardiometabolic and liver function markers (secondary outcomes). Materials and methods An eight-week (8-wk) randomized controlled-feeding study involved 68 adults with overweight/obesity (40 women, BMI: 33 ± 4 kg/m2). Participants were randomly assigned to one of the energy-restricted (-500 kcal/d) groups: control (CT, free-nuts), cashew nut (CN, 30 g/d), or cashew nut oil (OL, 30 mL/d). Body weight, body composition, and blood collection were assessed at the baseline and endpoint of the study. Results After 8-wk, all groups reduced significantly body fat (CT: -3.1 ± 2.8 kg; CN: -3.3 ± 2.7 kg; OL: -1.8 ± 2.6 kg), body weight (CT: -4.2 ± 3.8 kg; CN: -3.9 ± 3.1 kg; OL: -3.4 ± 2.4 kg), waist (CT: -5.1 ± 4.6 cm; CN: -3.9 ± 3.9 cm; OL: -3.7 ± 5.3 cm) and hip circumferences (CT: -2.9 ± 3.0 cm; CN: -2.7 ± 3.1 cm; OL: -2.9 ± 2.3 cm). CN-group reduced liver enzymes (AST: -3.1 ± 5.3 U/L; ALT: -6.0 ± 9.9 U/L), while the OL-group reduced LDL-c (-11.5 ± 21.8 mg/dL) and atherogenic index (-0.2 ± 0.5). Both intervention groups decreased neck circumference (CN: -1.0 ± 1.2 cm; OL: -0.5 ± 1.2 cm) and apo B (CN: -6.6 ± 10.7 mg/dL; OL: -7.0 ± 15.3 mg/dL). Conclusion After an 8-wk energy-restricted intervention, all groups reduced body fat (kg), weight, and some others adiposity indicators, with no different effect of cashew nut or cashew nut oil. However, participants in the intervention groups experienced additional reductions in atherogenic marker, liver function biomarkers, and cardiovascular risk factors (neck circumference and apo B levels), with these effects observed across the OL group, CN group, and both intervention groups, respectively.Clinical trial registration:https://ensaiosclinicos.gov.br/rg/RBR-8xzkyp2, identifier 8xzkyp2.
Collapse
Affiliation(s)
- Talitha Silva Meneguelli
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline Lage Wendling
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ana Paula Dionísio
- Brazilian Agricultural Research Corporation (Embrapa) Agroindústria Tropical-CNPAT, Brasília, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Hercia Stampini Duarte Martino
- Laboratory of Experimental Nutrition, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Elad Tako
- Trace Minerals and Nutrition Lab, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
Qu L, Zhao Y, Xu X, Li Y, Lv H. Untargeted Lipidomics Reveal Quality Changes in High-Moisture Japonica Brown Rice at Different Storage Temperatures. Foods 2023; 12:4218. [PMID: 38231596 DOI: 10.3390/foods12234218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Low temperatures are an effective way of delaying grain rancidity and deterioration. However, little is known about the difference in quality changes in high-moisture japonica brown rice at different storage temperatures. In this study, the storage quality changes in japonica brown rice with a 15.50% moisture content stored at 15 °C, 20 °C, and 25 °C were investigated. In addition, an untargeted lipidomics analysis coupled with gas chromatography and mass spectrometry (GC-MS) was applied to analyze the volatile compounds and metabolite changes in the high-moisture japonica brown rice. The results showed that storage at 15 °C could well maintain the color and aroma stability of the brown rice and delay the increase in fatty acid value (FAV). The lipidomics results showed that storage at 15 °C delayed glycerolipid and sphingolipid metabolism and reduced glycerophospholipid catabolism in the brown rice. The low-temperature environment regulated these three metabolic pathways to maintain higher contents of triglycerides (TG), phosphatidylserine (PS), abd phosphatidylethanolamine (PE), and lower contents of diglycerides (DG), OAcyl-(gamma-hydroxy) FA (OAHFA), ceramides (Cer), and glycosylceramides (Hex1Cer) in the high-moisture japonica brown rice, which maintained the storage stability of the brown rice. Our results proposed the cryoprotection mechanism of postharvest brown rice from the perspective of volatile compounds and metabolite changes, providing a foothold for the further exploration of low-temperature storage as a safe and efficient cryoprotectant in the grain storage field.
Collapse
Affiliation(s)
- Lingyu Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Zhao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangdong Xu
- Yihai Kerry (Wuhan) Oils & Grains Industries Co., Ltd., Wuhan 430040, China
| | - Yanfei Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Haoxin Lv
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Gao H, Liu M, Zheng L, Zhang T, Chang X, Liu H, Zhou S, Zhang Z, Li S, Sun J. Comparative Analysis of Key Odorants and Aroma Characteristics in Hot-Pressed Yellow Horn ( Xanthoceras sorbifolia bunge) Seed Oil Via Gas Chromatography-Ion Mobility Spectrometry and Gas Chromatography-Olfactory-Mass Spectrometry. Foods 2023; 12:3174. [PMID: 37685109 PMCID: PMC10487206 DOI: 10.3390/foods12173174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Volatile compounds (VOCs) present in the oil extracted from yellow horn seeds were first analyzed using GC-IMS and GC-O-MS at varying roasting temperatures. A total of 97 VOCs were detected using GC-IMS, while 77 were tentatively identified using GC-O-MS. Moreover, both methods allowed the identification of 24 VOCs, of which the type of aldehydes is the most abundant. Combining the results of GC-IMS, GC-O-MS, OAVs, and VIP, it was concluded that hexanal, 2,5-dimethylpyrazine, heptanal, 2-pentylfuran, 1-hexanol, and 1-octen-3-ol were the key aroma compounds. The PLS-DA and OPLS-DA models have demonstrated the ability to discriminate between different oil roasting temperatures with high accuracy. The roasting temperature of 160 °C was found to yield the highest content of main aroma substances, indicating its optimality for yellow horn seed oil production. These findings will prove beneficial for optimizing industrial production and enhancing oil aroma control.
Collapse
Affiliation(s)
- Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Xiuliang Chang
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| |
Collapse
|