1
|
Li H, Li C, Sun Y, He J, Pan D. Quinoa Polysaccharides: Extraction, Purification, Structure, Functional Properties, and Applications in Food Science and Health. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:49. [PMID: 39869277 DOI: 10.1007/s11130-024-01284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Quinoa polysaccharides have attracted significant research interest in recent years due to their diverse biological activities, including antiviral, anti-inflammatory, antioxidant, and immunoregulatory properties. These attributes align with the growing global demand for natural, functional food ingredients, positioning quinoa polysaccharides as a valuable resource in food science and technology. This review presents an overview of the various bioactivities of quinoa polysaccharides, critically evaluates the methods used for their extraction and purification, describes their structural characteristics, and discusses their practical applications across multiple areas within the food industry, including food additives, meat products, health foods, and innovative food packaging. This study examines the relationship between the preparation methods and the structural characteristics of quinoa polysaccharides, as well as their versatile applications in the food industry, such as improving product quality and shelf life, enhancing nutritional value and antioxidant activity, and providing health benefits in functional foods. This review also emphasizes the need for further research on the emulsification and gelation properties of quinoa polysaccharides and highlights their significant market potential, driven by their diverse functional properties. From our perspective, quinoa polysaccharides, with their wide range of functional and health benefits, hold a promising future in the food and health industries, driven by technological advancements and consumer demands.
Collapse
Affiliation(s)
- Huimin Li
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China
| | - Chuyan Li
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China
| | - Yangying Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China
| | - Jun He
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China.
| | - Daodong Pan
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China.
| |
Collapse
|
2
|
Li WB, Wang J, Qu Mo MM, Li J, Li M, Liu Y, Wang S, Hu YC, Zou L, Wu DT. Pectic polysaccharides from Tartary buckwheat sprouts: Effects of ultrasound-assisted Fenton treatment and mild alkali treatment on their physicochemical characteristics and biological functions. ULTRASONICS SONOCHEMISTRY 2024; 109:107014. [PMID: 39111249 DOI: 10.1016/j.ultsonch.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.
Collapse
Affiliation(s)
- Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Min Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Yuan Liu
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Chengdu Agricultural College, Chengdu 611130, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
3
|
Li J, Feng J, Luo X, Qu Mo MM, Li WB, Huang JW, Wang S, Hu YC, Zou L, Wu DT. Potential structure-function relationships of pectic polysaccharides from quinoa microgreens: Impact of various esterification degrees. Food Res Int 2024; 187:114395. [PMID: 38763655 DOI: 10.1016/j.foodres.2024.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Feng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu 610045, Sichuan, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China.
| | - Jing-Wei Huang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
4
|
Li WB, Lei J, Qu Mo MM, Li J, Wei J, Liu Y, Wang S, Hu YC, Zou L, Wu DT. Impacts of ultrasound-assisted Fenton degradation and alkaline de-esterification on structural properties and biological effects of pectic polysaccharides from Tartary buckwheat leaves. ULTRASONICS SONOCHEMISTRY 2024; 106:106895. [PMID: 38705082 PMCID: PMC11074966 DOI: 10.1016/j.ultsonch.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.
Collapse
Affiliation(s)
- Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Jing Lei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China; Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Wei
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Yuan Liu
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
5
|
Wu DT, Lei J, Li J, Qu Mo MM, Li WB, Huang YJ, Hu YC, Wang AL, Zou L. Efficient and Selective Extraction of Rhamnogalacturonan-I-Enriched Pectic Polysaccharides from Tartary Buckwheat Leaves Using Deep-Eutectic-Solvent-Based Techniques. Foods 2024; 13:625. [PMID: 38397602 PMCID: PMC10887792 DOI: 10.3390/foods13040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Tartary buckwheat green leaves are considered to be among the most important by-products in the buckwheat industry. Although Tartary buckwheat green leaves are abundant in pectic polysaccharides, their potential applications in the food industry are quite scarce. Therefore, to promote their potential applications as functional or fortified food ingredients, both deep-eutectic-solvent-assisted extraction (DESE) and high-pressure-assisted deep eutectic solvent extraction (HPDEE) were used to efficiently and selectively extract pectic polysaccharides from Tartary buckwheat green leaves (TBP). The results revealed that both the DESE and HPDEE techniques not only improved the extraction efficiency of TBP but also regulated its structural properties and beneficial effects. The primary chemical structures of TBP extracted using different methods were stable overall, mainly consisting of homogalacturonan and rhamnogalacturonan-I (RG-I) pectic regions. However, both the DESE and HPDEE methods could selectively extract RG-I-enriched TBP, and the proportion of the RG-I pectic region in TBP obviously improved. Additionally, both the DESE and HPDEE methods could improve the antioxidant and anti-glycosylation effects of TBP by increasing its proportion of free uronic acids and content of bound polyphenolics and reducing its molecular weight. Moreover, both the DESE and HPDEE methods could partially intensify the immunostimulatory effect of TBP by increasing its proportion of the RG-I pectic region. These findings suggest that DES-based extraction techniques, especially the HPDEE method, can be promising techniques for the efficient and selective extraction of RG-I-enriched TBP.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jing Lei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, China
| | - Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, China
| | - Yu-Jing Huang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ai-Li Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|