1
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
2
|
Lin J, Cui M, Zhang X, Alharbi M, Alshammari A, Lin Y, Yang DP, Lin H. Fabricating active Egg Albumin/Sodium Alginate/Sodium Lignosulfonate Nanoparticles film with significantly improved multifunctional characteristics for food packing. Int J Biol Macromol 2024; 273:133110. [PMID: 38876230 DOI: 10.1016/j.ijbiomac.2024.133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
In food packaging, sodium lignosulfonate nanoparticles (SLS NPs) showed significant antibacterial properties, antioxidant and UV barrier activities. Herein, the SLS NPs were synthesized via a sustainable green method and were added into egg albumin/sodium alginate mixture (EA/SA) to fabricate a safe, edible EA/SA/SNPs food packaging. A composite film EA/SA/SNP was examined microstructurally and physicochemically. The mechanical characteristics, UV protection, water resistance, and the composite film's thermal stability were all enhanced by the inclusion of SLS NPs, and water vapor permeability reduced by 44 %. This composite film exhibited robust antioxidative properties with DPPH and ABTS free radical scavenging rates reaching 76.84 % and 92.56 %, and effective antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with antibacterial rates reaching 98.25 % and 97.13 % for the positively charged nanoparticles interacting with the cell membrane. Freshness tests showed that the EA/SA/SNPs packaging film could delay the quality deterioration of fresh tomatoes. This composite film can slow down spoilage bacteria proliferation and prolongs food's preservation period by eight days at ambient temperature.
Collapse
Affiliation(s)
- Jinlai Lin
- Key Laboratory of Chemical Materials and Green Nanotechnology, The Key Laboratory of Fujian Provincial Higher Education, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Malin Cui
- Key Laboratory of Chemical Materials and Green Nanotechnology, The Key Laboratory of Fujian Provincial Higher Education, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiaoyan Zhang
- Key Laboratory of Chemical Materials and Green Nanotechnology, The Key Laboratory of Fujian Provincial Higher Education, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yifen Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Da-Peng Yang
- Key Laboratory of Chemical Materials and Green Nanotechnology, The Key Laboratory of Fujian Provincial Higher Education, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266024, China.
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
3
|
Fan S, Yin X, Liu X, Wang G, Qiu W. Enhancing bread preservation through non-contact application of starch-based composite film infused with clove essential oil nanoemulsion. Int J Biol Macromol 2024; 263:130297. [PMID: 38382781 DOI: 10.1016/j.ijbiomac.2024.130297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
In this study, we have successfully produced a corn starch-based composite film through the casting method, formulated with clove essential oil nanoemulsion (NCEO) and corn starch. The physical and chemical changes of the composite films were investigated at various concentrations (10 %, 20 % and 40 %) of NCEO. Furthermore, the non-contact preservation effects of the composite films on bread during 15-day storage were also examined in this study. As the concentration of NCEO increased, the composite films presented a gradual thinning, roughening, and yellowing in appearance. Following this, the water content, water vapor permeability rate, and elongation at break of the films decreased, while their hydrophobicity, tensile strength, antioxidant and antimicrobial activity increased accordingly. Through FT-IR, X-ray diffraction and thermal gravimetric analysis, it was demonstrated that NCEO has strong compatibility with corn starch. Additionally, the indices' analysis indicated that utilizing the composite film incorporating 40 % NCEO can significantly boost the shelf life and quality of bread. Moreover, it was revealed that application of the non-contact treatment with composite film could potentially contribute certain preservation effects towards bread. In light of these findings, the composite film with non-contact treatment exhibits potential as an effective, safe, and sustainable preservation technique for grain products.
Collapse
Affiliation(s)
- Saifeng Fan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoyu Yin
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xingxun Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
4
|
Liang X, Chen L, McClements DJ, Peng X, Xu Z, Meng M, Jin Z. Bioactive delivery systems based on starch and its derivatives: Assembly and application at different structural levels. Food Chem 2024; 432:137184. [PMID: 37633137 DOI: 10.1016/j.foodchem.2023.137184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Starch and modified starch, spanning various structural levels, are comprehensively reviewed, with a special emphasis on the advancement of starch and its derivative-based delivery systems for bioactive substances. The pivotal aspect highlighted is the controlled release of active ingredients by starch-based delivery systems with distinct hierarchical structures. At the molecular level, diverse categories of starch degradation products, such as dextrin and highly branched starch, serve as versatile amphiphilic carriers for encapsulating active ingredients. At the level of helical structure, the distinctive configuration of the starch-guest complex partly determines the mechanism of controlled release for diverse active components. At the crystal and particle structural level, starch assumes the role of a carrier, effectively modulating the release of active substances, and enhances the innate physiological activity of different active components. As a natural polymer molecule, starch can also generate hydrogel materials in polymer form, expanding its utility in the fields of food, materials, and even medicine.
Collapse
Affiliation(s)
- Xiuping Liang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
6
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
7
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
8
|
Sun X, Li Q, Wu H, Zhou Z, Feng S, Deng P, Zou H, Tian D, Lu C. Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15081959. [PMID: 37112108 PMCID: PMC10141166 DOI: 10.3390/polym15081959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications.
Collapse
Affiliation(s)
- Xunwen Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qingye Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hejun Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Pengcheng Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dong Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| |
Collapse
|
9
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
10
|
Lu H, He X, Qin Y, Ji N, Dai L, Xiong L, Shi R, Wang T, Sun Q. Preparation and characterization of V-type starch nanoparticles by an oil-water interface method. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Production of Thermoplastic Starch- Aloe vera Gel Film with High Tensile Strength and Improved Water Solubility. Polymers (Basel) 2022; 14:polym14194213. [PMID: 36236161 PMCID: PMC9571595 DOI: 10.3390/polym14194213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Biodegradable film packaging made from thermoplastic starch (TPS) has low mechanical performance and high water solubility, which is incomparable with synthetic films. In this work, Aloe vera (AV) gel and plasticized soluble potato starch were utilised to improve the mechanical stability and water solubility of TPS. Dried starch was mixed with glycerol and different AV gel concentrations (0% to 50%). The TPS + 50% AV gel (30 g TPS + 15 g AV gel) showed the best improvement compared to TPS alone. When compared to similar TPS films with AV gel added, this film is stronger and dissolves better in water. Mechanical qualities improved the tensile strength and Young's modulus of the TPS film, with 1.03 MPa to 9.14 MPa and 51.92 MPa to 769.00 MPa, respectively. This was supported by the improvement of TPS water solubility from 57.44% to 46.6% and also by the increase in decomposition temperature of the TPS. This promises better heat resistance. The crystallinity percentage increase to 24.26% suggested that the formation of hydrogen bonding between TPS and AV gel enhanced crosslinking in the polymeric structure. By adding AV gel, the TPS polymeric structure is improved and can be used as a biodegradable food-packaging film.
Collapse
|
12
|
Choque-Quispe D, Choque-Quispe Y, Ligarda-Samanez CA, Peralta-Guevara DE, Solano-Reynoso AM, Ramos-Pacheco BS, Taipe-Pardo F, Martínez-Huamán EL, Aguirre Landa JP, Agreda Cerna HW, Loayza-Céspedes JC, Zamalloa-Puma MM, Álvarez-López GJ, Zamalloa-Puma A, Moscoso-Moscoso E, Quispe-Quispe Y. Effect of the Addition of Corn Husk Cellulose Nanocrystals in the Development of a Novel Edible Film. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3421. [PMID: 36234547 PMCID: PMC9565820 DOI: 10.3390/nano12193421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.
Collapse
Affiliation(s)
- David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Tecnológica de los Andes, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Fredy Taipe-Pardo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Edgar L. Martínez-Huamán
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - John Peter Aguirre Landa
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henrry W. Agreda Cerna
- Department of Business Administration, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Julio C. Loayza-Céspedes
- Departamento de Ingeniería Agropecuaria, Universidad Nacional de San Antonio Abad del Cusco, Andahuaylas 03701, Peru
| | | | | | - Alan Zamalloa-Puma
- Department of Physics, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Elibet Moscoso-Moscoso
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yadyra Quispe-Quispe
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| |
Collapse
|
13
|
Bashash M, Varidi M, Varshosaz J. Composite Hydrogel-Embedded Sucrose Stearate Niosomes: Unique Curcumin Delivery System. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02857-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Vonnie JM, Jing Ting B, Rovina K, Erna KH, Felicia WXL, Nur ‘Aqilah NM, Abdul Wahab R. Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II). Polymers (Basel) 2022; 14:polym14122353. [PMID: 35745929 PMCID: PMC9227415 DOI: 10.3390/polym14122353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 12/27/2022] Open
Abstract
This study was performed to develop and characterize a bio-film composed of Aloe vera (Aloe barbadensis), green banana Saba (Musa acuminata x balbisiana), and curcumin for the detection of Fe2+ ions. Cross-linking interaction between banana starch-aloe vera gel and banana starch-curcumin enhanced l the sensing performance of the composite film towards divalent metal ions of Fe2+. The morphological structure of the Aloe vera-banana starch-curcumin composite revealed a smooth and compact surface without cracks and some heterogeneity when observed under Scanning Electron Microscopy (SEM). The thickness, density, color property, opacity, biodegradation, moisture content, water-solubility, water absorption, swelling degree, and water vapor permeability of bio-films were measured. The incorporation of aloe vera gel and curcumin particles onto the banana starch film has successfully improved the film properties. The formation of the curcumin-ferrum (II) complex has triggered the film to transform color from yellow to greenish-brown after interaction with Fe2+ ions that exhibit an accuracy of 101.11% within a swift reaction time. Good linearity (R2 = 0.9845) of response on colorimetric analysis was also obtained in Fe2+ ions concentration that ranges from 0 to 100 ppm, with a limit of detection and quantification found at 27.84 ppm and 92.81 ppm, respectively. In this context, the film was highly selective towards Fe2+ ions because no changes of color occur through naked eye observation when films interact with other metal ions, including Fe3+, Pb2+, Ni2+, Cd2+, and Cu2+. Thus, these findings encourage curcumin-based starch films as sensing materials to detect Fe2+ ions in the field of food and agriculture.
Collapse
Affiliation(s)
- Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (B.J.T.); (K.H.E.); (W.X.L.F.); (N.M.N.‘A.)
| | - Bong Jing Ting
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (B.J.T.); (K.H.E.); (W.X.L.F.); (N.M.N.‘A.)
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (B.J.T.); (K.H.E.); (W.X.L.F.); (N.M.N.‘A.)
- Correspondence: ; Tel.: +0060-88-320000 (ext. 8713); Fax: +0060-88-320993
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (B.J.T.); (K.H.E.); (W.X.L.F.); (N.M.N.‘A.)
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (B.J.T.); (K.H.E.); (W.X.L.F.); (N.M.N.‘A.)
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (B.J.T.); (K.H.E.); (W.X.L.F.); (N.M.N.‘A.)
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
15
|
Tambawala H, Batra S, Shirapure Y, More AP. Curcumin- A Bio-based Precursor for Smart and Active Food Packaging Systems: A Review. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:2177-2208. [DOI: 10.1007/s10924-022-02372-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/04/2025]
|
16
|
Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
de Freitas ADSM, da Silva APB, Montagna LS, Nogueira IA, Carvalho NK, de Faria VS, Dos Santos NB, Lemes AP. Thermoplastic starch nanocomposites: sources, production and applications - a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:900-945. [PMID: 34962857 DOI: 10.1080/09205063.2021.2021351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of materials based on thermoplastic starch (TPS) is an excellent alternative to replace or reduce the use of petroleum-derived polymers. The abundance, renewable origin, biodegradability, biocompatibility, and low cost of starch are among the advantages related to the application of TPS compared to other thermoplastic biopolymers. However, through the literature review, it was possible to observe the need to improve some properties, to allow TPS to replace commonly used polyolefins. The studies reviewed achieved these modifications were achieved by using plasticizers, adjusting processing conditions, and incorporating fillers. In this sense, the addition of nanofillers proved to be the main modification strategy due to the large number of available nanofillers and the low charge concentration required for such improvement. The improvement can be seen in thermal, mechanical, electrical, optical, magnetic, antimicrobial, barrier, biocompatibility, cytotoxicity, solubility, and swelling properties. These modification strategies, the reviewed studies described the development of a wide range of materials. These are products with great potential for targeting different applications. Thus, this review addresses a wide range of essential aspects in developing of this type of nanocomposite. Covering from starch sources, processing routes, characterization methods, the properties of the obtained nanocomposites, to the various applications. Therefore, this review will provide an overview for everyone interested in working with TPS nanocomposites. Through a comprehensive review of the subject, which in most studies is done in a way directed to a specific area of study.
Collapse
Affiliation(s)
| | - Ana Paula Bernardo da Silva
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Larissa Stieven Montagna
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Iury Araújo Nogueira
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nathan Kevin Carvalho
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Vitor Siqueira de Faria
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Natali Bomfim Dos Santos
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Ana Paula Lemes
- Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
18
|
Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022; 23:4101. [PMID: 35456918 PMCID: PMC9030380 DOI: 10.3390/ijms23084101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advancements in treating bacterial infections, antibiotic resistance (AR) is still an emerging issue. However, polymeric nanocarriers have offered unconventional solutions owing to their capability of exposing more functional groups, high encapsulation efficiency (EE) and having sustained delivery. Natural polymeric nanomaterials (NMs) are contemplated one of the most powerful strategies in drug delivery (DD) in terms of their safety, biodegradability with almost no side effects. Every nanostructure is tailored to enhance the system functionality. For example, cost-effective copper NPs could be generated in situ in cellulose sheets, demonstrating powerful antibacterial prospects for food safety sector. Dendrimers also have the capacity for peptide encapsulation, protecting them from proteolytic digestion for prolonged half life span. On the other hand, the demerits of naturally sourced polymers still stand against their capacities in DD. Hence, Post-synthetic modification of natural polymers could play a provital role in yielding new hybrids while retaining their biodegradability, which could be suitable for building novel super structures for DD platforms. This is the first review presenting the contribution of natural polymers in the fabrication of eight polymeric NMs including particulate nanodelivery and nanofabrics with antibacterial and antibiofilm prospects, referring to modified polymer derivatives to explore their full potential for obtaining sustainable DD products.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| |
Collapse
|
19
|
Chavan P, Sinhmar A, Sharma S, Dufresne A, Thory R, Kaur M, Sandhu KS, Nehra M, Nain V. Nanocomposite Starch Films: A New Approach for Biodegradable Packaging Materials. STARCH-STARKE 2022. [DOI: 10.1002/star.202100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Somesh Sharma
- School of Bioengineering and Food Technology Shoolini University of Biotechnology and, Management Sciences Solan India
| | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2 Grenoble F‐38000 France
| | - Rahul Thory
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Manju Nehra
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Vikash Nain
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| |
Collapse
|
20
|
Ma Y, Zhao H, Ma Q, Cheng D, Zhang Y, Wang W, Wang J, Sun J. Development of chitosan/potato peel polyphenols nanoparticles driven extended-release antioxidant films based on potato starch. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Sanchez LT, Pinzon MI, Villa CC. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chem 2022; 371:131121. [PMID: 34555709 DOI: 10.1016/j.foodchem.2021.131121] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/29/2021] [Accepted: 09/10/2021] [Indexed: 11/04/2022]
Abstract
Active packaging that can be used to release active molecules food products during storage has been a central part in food science research over the last decades. This paper presents the development of an active film made from banana starch incorporated with curcumin-loaded orange oil nanoemulsion. Results showed that inclusion of the curcumin-loaded nanoemulsions reduced water vapor permeability, given the hydrophobic nature of curcumin. Likewise, elongation at break was also increased due to the plasticizing effect of the nanoemulsion. Finally, this paper reports the release profiles of curcumin from the active film into different food simulants. Results showed that curcumin release is diffusion driven in both aqueous and non-aqueous food simulants, however it seems that while the complete nanoemulsion droplets are released in the aqueous simulant, in non-aqueous simulant only curcumin molecules are released.
Collapse
Affiliation(s)
- Leidy T Sanchez
- Programa de Ingenieria de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia
| | - Magda I Pinzon
- Programa de Ingenieria de Alimentos, Facultad de Ciencias Agroindustriales, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia
| | - Cristian C Villa
- Programa de Quimica, Facultad de Ciencias Basicas y Tecnologias, Universidad del Quindio. Carrera 15 Calle 12 N, Armenia, Quindio. Colombia.
| |
Collapse
|
22
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
23
|
Roy S, Priyadarshi R, Ezati P, Rhim JW. Curcumin and its uses in active and smart food packaging applications - a comprehensive review. Food Chem 2021; 375:131885. [PMID: 34953241 DOI: 10.1016/j.foodchem.2021.131885] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Active and intelligent food packaging is an innovative technology to prevent food contamination and ensure food quality and safety. Active packaging protects the food from microbial contamination, while smart or intelligent packaging enables monitoring the freshness of the food or quality change in real-time. Curcumin, one of the most well-known natural colorants, has received a lot of attention for its excellent functional properties and ability to change color with changes in pH. Curcumin, the golden component of turmeric, a spice widely used in food since ancient times, is a cost-effective and abundant biomaterial with various biological properties such as antioxidant, antibacterial, antiviral, antitumor, and anti-inflammatory. Recently, active packaging or intelligent packaging systems have been actively developed using the functional properties of curcumin. In this review, we briefly reviewed curcumin's basic biological functions and discussed comprehensive and recent progress in using curcumin in various polymer-based active and smart food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
24
|
Abstract
Edible coatings, including green polymers are used frequently in the food industry to improve and preserve the quality of foods. Green polymers are defined as biodegradable polymers from biomass resources or synthetic routes and microbial origin that are formed by mono- or multilayer structures. They are used to improve the technological properties without compromising the food quality, even with the purpose of inhibiting lipid oxidation or reducing metmyoglobin formation in fresh meat, thereby contributing to the final sensory attributes of the food and meat products. Green polymers can also serve as nutrient-delivery carriers in meat and meat products. This review focuses on various types of bio-based biodegradable polymers and their preparation techniques and applications in meat preservation as a part of active and smart packaging. It also outlines the impact of biodegradable polymer films or coatings reinforced with fillers, either natural or synthesized, via the green route in enhancing the physicochemical, mechanical, antimicrobial, and antioxidant properties for extending shelf-life. The interaction of the package with meat contact surfaces and the advanced polymer composite sensors for meat toxicity detection are further considered and discussed. In addition, this review addresses the research gaps and challenges of the current packaging systems, including coatings where green polymers are used. Coatings from renewable resources are seen as an emerging technology that is worthy of further investigation toward sustainable packaging of food and meat products.
Collapse
|
25
|
Maniglia BC, La Fuente CIA, Siqueira LDV, Tadini CC. Carbohydrate Nanomaterials Addition to Starch‐Based Packaging: A Review about Fundamentals and Application. STARCH-STARKE 2021. [DOI: 10.1002/star.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bianca Chieregato Maniglia
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP) ‐ Universidade de São Paulo Ribeirão Preto SP 14040–900 Brazil
| | - Carla Ivonne Arias La Fuente
- Department of Agri‐food Industry Food and Nutrition (LAN), School of Agriculture Luiz de Queiroz (ESALQ) Universidade de São Paulo Piracicaba SP 13418–900 Brazil
| | - Larissa do Val Siqueira
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| | - Carmen Cecilia Tadini
- Department of Chemical Engineering, Escola Politécnica Universidade de São Paulo Main Campus São Paulo SP 05508‐010 Brazil
- Food Research Center (FoRC/NAPAN) Universidade de São Paulo SP Brazil
| |
Collapse
|
26
|
Chaudhary V, Thakur N, Kajla P, Thakur S, Punia S. Application of Encapsulation Technology in Edible Films: Carrier of Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.734921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutraceuticals, functional foods, immunity boosters, microcapsules, nanoemulsions, edible packaging, and safe food are the new progressive terms, adopted to describe the food industry. Also, the rising awareness among the consumers regarding these has created an opportunity for the food manufacturers and scientists worldwide to use food as a delivery vehicle. Packaging performs a very imminent role in the food supply chain as well as it is a consequential part of the process of food manufacturing. Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc. and other consumable constituents extracted from various non-conventional sources like microorganisms are used alone or imbibed together. These edible packaging are indispensable and are meant to be consumed with the food. This shift in paradigm from traditional food packaging to edible, environment friendly, delivery vehicles for bioactive compounds have opened new avenues for the packaging industry. Bioactive compounds imbibed in food systems are gradually degenerated, or may change their properties due to internal or external factors like oxidation reactions, or they may react with each other thus reducing their bioavailability and ultimately may result in unacceptable color or flavor. A combination of novel edible food-packaging material and innovative technologies can serve as an excellent medium to control the bioavailability of these compounds in food matrices. One promising technology for overcoming the aforesaid problems is encapsulation. It can be used as a method for entrapment of desirable flavors, probiotics, or other additives in order to apprehend the impediments of the conventional edible packaging. This review explains the concept of encapsulation by exploring various encapsulating materials and their potential role in augmenting the performance of edible coatings/films. The techniques, characteristics, applications, scope, and thrust areas for research in encapsulation are discussed in detail with focus on development of sustainable edible packaging.
Collapse
|
27
|
|
28
|
Henning FG, Ito VC, Demiate IM, Lacerda LG. Non-conventional starches for biodegradable films: A review focussing on characterisation and recent applications in food. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Alves MJDS, Chacon WDC, Gagliardi TR, Agudelo Henao AC, Monteiro AR, Ayala Valencia G. Food Applications of Starch Nanomaterials: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Jaízia dos Santos Alves
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Talita Ribeiro Gagliardi
- Department of Cell Biology, Embryology and Genetics Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Ana C. Agudelo Henao
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| |
Collapse
|
30
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|
31
|
Oluba OM, Osayame E, Shoyombo AO. Production and characterization of keratin-starch bio-composite film from chicken feather waste and turmeric starch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Mo X, Peng X, Liang X, Fang S, Xie H, Chen J, Meng Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Taweechat C, Wongsooka T, Rawdkuen S. Properties of Banana ( Cavendish spp.) Starch Film Incorporated with Banana Peel Extract and Its Application. Molecules 2021; 26:molecules26051406. [PMID: 33807750 PMCID: PMC7961874 DOI: 10.3390/molecules26051406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to develop an active banana starch film (BSF) incorporated with banana peel extract. We compared the film’s properties with commercial wrap film (polyvinyl chloride; PVC). Moreover, a comparison of the quality of minced pork wrapped during refrigerated storage (7 days at ±4 °C) was also performed. The BSF with different concentrations of banana peel extract (0, 1, 3, and 5 (%, w/v)) showed low mechanical properties (tensile strength (TS): 4.43–31.20 MPa and elongation at break (EAB): 9.66–15.63%) and water vapor permeability (3.74–11.0 × 10−10 g mm/sm2 Pa). The BSF showed low film solubility (26–41%), but excellent barrier properties to UV light. The BSF had a thickness range of 0.030–0.047 mm, and color attributes were: L* = 49.6–51.1, a* = 0.21–0.43, b* = 1.26–1.49. The BSF incorporated with banana peel extracts 5 (%, w/v) showed the highest radical scavenging activity (97.9%) and inhibitory activity of E. coli O157: H7. The BSF showed some properties comparable to the commercial PVC wrap film. Changes in qualities of minced pork were determined for 7 days during storage at ±4 °C. It was found that thiobarbituric acid reactive substances (TBARS) of the sample wrapped with the BSF decreased compared to that wrapped with the PVC. The successful inhibition of lipid oxidation in the minced pork was possible with the BSF. The BSF incorporated with banana peel extract could maintain the quality of minced pork in terms of oxidation retardation.
Collapse
Affiliation(s)
- Chanitda Taweechat
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; (C.T.); (T.W.)
| | - Tipapon Wongsooka
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; (C.T.); (T.W.)
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; (C.T.); (T.W.)
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: ; Tel.: +66-53-916-752
| |
Collapse
|
34
|
Bharti SK, Pathak V, Arya A, Alam T, Rajkumar V, Verma AK. Packaging potential of
Ipomoea batatas
and κ‐carrageenan biobased composite edible film: Its rheological, physicomechanical, barrier and optical characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sanjay Kumar Bharti
- Department of Livestock Products Technology College of Veterinary Science and Animal Husbandry DUVASU Mathura India
| | - Vikas Pathak
- Department of Livestock Products Technology College of Veterinary Science and Animal Husbandry DUVASU Mathura India
| | - Anita Arya
- Department of Livestock Products Technology College of Veterinary and Animal Sciences GBPUAT Pantnagar India
| | - Tanweer Alam
- Indian Institute of Packaging, an autonomous body under aegis of Ministry of Commerce and Industry Government of India Delhi India
| | - Vincentraju Rajkumar
- Goat Products Technology Laboratory Central Institute for Research on Goats Mathura India
| | - Arun Kumar Verma
- Goat Products Technology Laboratory Central Institute for Research on Goats Mathura India
| |
Collapse
|
35
|
Sarker A, Grift TE. Bioactive properties and potential applications of Aloe vera gel edible coating on fresh and minimally processed fruits and vegetables: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00802-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|
37
|
Nogueira GF, de Oliveira RA, Velasco JI, Fakhouri FM. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers (Basel) 2020; 12:E2518. [PMID: 33126759 PMCID: PMC7692086 DOI: 10.3390/polym12112518] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Plastic, usually derived from non-renewable sources, is among the most used materials in food packaging. Despite its barrier properties, plastic packaging has a recycling rate below the ideal and its accumulation in the environment leads to environmental issues. One of the solutions approached to minimize this impact is the development of food packaging materials made from polymers from renewable sources that, in addition to being biodegradable, can also be edible. Different biopolymers from agricultural renewable sources such as gelatin, whey protein, starch, chitosan, alginate and pectin, among other, have been analyzed for the development of biodegradable films. Moreover, these films can serve as vehicles for transporting bioactive compounds, extending their applicability as bioactive, edible, compostable and biodegradable films. Biopolymer films incorporated with plant-derived bioactive compounds have become an interesting area of research. The interaction between environment-friendly biopolymers and bioactive compounds improves functionality. In addition to interfering with thermal, mechanical and barrier properties of films, depending on the properties of the bioactive compounds, new characteristics are attributed to films, such as antimicrobial and antioxidant properties, color and innovative flavors. This review compiles information on agro-based biopolymers and plant-derived bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds from plant-derived into films and their influence on the functional properties of biopolymer films. Some limitations to be overcome for future advances are also briefly summarized. This review will benefit future prospects for exploring innovative methods of incorporating plant-derived bioactive compounds into films made from agricultural polymers.
Collapse
Affiliation(s)
| | | | - José Ignacio Velasco
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil
| |
Collapse
|
38
|
Novel visible light-responsive graphene oxide/Bi 2WO 6/starch composite membrane for efficient degradation of ethylene. Carbohydr Polym 2020; 246:116640. [PMID: 32747275 DOI: 10.1016/j.carbpol.2020.116640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Graphene oxide/Bi2WO6 (GBW) photocatalyst was synthesized using a hydrothermal and surface deposition method. GBW/starch composite films with different graphene oxide (GO) additions (0, 0.25, 0.5, 0.75, 1 %) were prepared using a casting method. The GBW photocatalyst and composite starch film were characterized using X-ray diffractometry, X-ray photoelectron spectroscopy, Ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, synchronous thermal analyzer, and the capacity of photocatalytic degradation of ethylene under visible light was evaluated. The results showed that GBW strengthens the mechanical properties, water vapor resistance and thermal stability of the composite film. Proper introduction of GO can refine lattice size, reduce bandgap and enhance visible light absorption. When the addition of GO was 0.5 %, GBW/starch composite film showed the strongest visible light degradation activity for ethylene, and the rate constant K' was 9.91 × 10-4 min-1, 4.4 times that of pure Bi2WO6. The composite film also had good recycling performance.
Collapse
|