1
|
Milc K, Oerther T, Dijksman JA, van Duynhoven JPM, Terenzi C. Capillary Flow-MRI: Quantifying Micron-Scale Cooperativity in Complex Dispersions. Anal Chem 2023; 95:15162-15170. [PMID: 37796921 PMCID: PMC10585662 DOI: 10.1021/acs.analchem.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Strongly confined flow of particulate fluids is encountered in applications ranging from three-dimensional (3D) printing to the spreading of foods and cosmetics into thin layers. When flowing in constrictions with gap sizes, w, within 102 times the mean size of particles or aggregates, d, structured fluids experience enhanced bulk velocities and inhomogeneous viscosities, as a result of so-called cooperative, or nonlocal, particle interactions. Correctly predicting cooperative flow for a wide range of complex fluids requires high-resolution flow imaging modalities applicable in situ to even optically opaque fluids. To this goal, we here developed a pressure-driven high-field magnetic resonance imaging (MRI) velocimetry platform, comprising a pressure controller connected to a capillary. Wall properties and diameter could be modified respectively as hydrophobic/hydrophilic, or within w ∼ 100-540 μm. By achieving a high spatial resolution of 9 μm, flow cooperativity length scales, ξ, down to 15 μm in Carbopol with d ∼ 2 μm could be quantified by means of established physical models with an accuracy of 13%. The same approach was adopted for a heterogeneous fat crystal dispersion (FCD) with d and ξ values up to an order of magnitude higher than those for Carbopol. We found that for strongly confined flow of Carbopol in the 100 μm capillary, ξ is independent of flow conditions. For the FCD, ξ increases with gap size and applied pressures over 0.25-1 bar. In both samples, nonlocal interactions span domains up to about 5-8 particles but, at the highest confinement degree explored, ∼8% for FCD, domains of only ∼2 particles contribute to cooperative flow. The developed flow-MRI platform is easily scalable to ultrahigh field MRI conditions for chemically resolved velocimetric measurements of, e.g., complex fluids with anisotropic particles undergoing alignment. Future potential applications of the platform encompass imaging extrusion under confinement during the 3D printing of complex dispersions or in in vitro vascular and perfusion studies.
Collapse
Affiliation(s)
- Klaudia
W. Milc
- Laboratory
of Biophysics, Wageningen University, 6708 WE Wageningen, The Netherlands
| | | | - Joshua A. Dijksman
- Physical
Chemistry and Soft Matter, Wageningen University, 6708 WE Wageningen, The Netherlands
- Van
der Waals-Zeeman Institute, University of
Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John P. M. van Duynhoven
- Laboratory
of Biophysics, Wageningen University, 6708 WE Wageningen, The Netherlands
- Unilever
Foods Innovation Centre Hive, 6708 WH Wageningen, The Netherlands
| | - Camilla Terenzi
- Laboratory
of Biophysics, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Lu Y, Kokje T, Schutyser MA, Zhang L. The effect of colloid milling on the microstructure and functional properties of asparagus dietary fibre concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Li J, Zhang F, Zhong Y, Zhao Y, Gao P, Tian F, Zhang X, Zhou R, Cullen PJ. Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review. Polymers (Basel) 2022; 14:polym14194025. [PMID: 36235973 PMCID: PMC9572456 DOI: 10.3390/polym14194025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Cellulose is the most abundant biopolymer on Earth, which is synthesized by plants, bacteria, and animals, with source-dependent properties. Cellulose containing β-1,4-linked D-glucoses further assembles into hierarchical structures in microfibrils, which can be processed to nanocellulose with length or width in the nanoscale after a variety of pretreatments including enzymatic hydrolysis, TEMPO-oxidation, and carboxymethylation. Nanocellulose can be mainly categorized into cellulose nanocrystal (CNC) produced by acid hydrolysis, cellulose nanofibrils (CNF) prepared by refining, homogenization, microfluidization, sonification, ball milling, and the aqueous counter collision (ACC) method, and bacterial cellulose (BC) biosynthesized by the Acetobacter species. Due to nontoxicity, good biodegradability and biocompatibility, high aspect ratio, low thermal expansion coefficient, excellent mechanical strength, and unique optical properties, nanocellulose is utilized to develop various cellulose nanocomposites through solution casting, Layer-by-Layer (LBL) assembly, extrusion, coating, gel-forming, spray drying, electrostatic spinning, adsorption, nanoemulsion, and other techniques, and has been widely used as food packaging material with excellent barrier and mechanical properties, antibacterial activity, and stimuli-responsive performance to improve the food quality and shelf life. Under the driving force of the increasing green food packaging market, nanocellulose production has gradually developed from lab-scale to pilot- or even industrial-scale, mainly in Europe, Africa, and Asia, though developing cost-effective preparation techniques and precisely tuning the physicochemical properties are key to the commercialization. We expect this review to summarise the recent literature in the nanocellulose-based food packaging field and provide the readers with the state-of-the-art of this research area.
Collapse
Affiliation(s)
- Jingwen Li
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feifan Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaqi Zhong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Correspondence: (Y.Z.); (X.Z.)
| | - Pingping Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fang Tian
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianhui Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (X.Z.)
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|