1
|
Roy S, Kapoor R, Mathur P. Revisiting Changes in Growth, Physiology and Stress Responses of Plants under the Effect of Enhanced CO2 and Temperature. PLANT & CELL PHYSIOLOGY 2024; 65:4-19. [PMID: 37935412 DOI: 10.1093/pcp/pcad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Climate change has universally affected the whole ecosystem in a unified manner and is known to have improbable effects on agricultural productivity and food security. Carbon dioxide (CO2) and temperature are the major environmental factors that have been shown to increase sharply during the last century and are directly responsible for affecting plant growth and development. A number of previous investigations have deliberated the positive effects of elevated CO2 on plant growth and development of various C3 crops, while detrimental effects of enhanced temperature on different crop plants like rice, wheat, maize and legumes are generally observed. A combined effect of elevated CO2 and temperature has yet to be studied in great detail; therefore, this review attempts to delineate the interactive effects of enhanced CO2 and temperature on plant growth, development, physiological and molecular responses. Elevated CO2 maintains leaf photosynthesis rate, respiration, transpiration and stomatal conductance in the presence of elevated temperature and sustains plant growth and productivity in the presence of both these environmental factors. Concomitantly, their interaction also affects the nutritional quality of seeds and leads to alterations in the composition of secondary metabolites. Elevated CO2 and temperature modulate phytohormone concentration in plants, and due to this fact, both environmental factors have substantial effects on abiotic and biotic stresses. Elevated CO2 and temperature have been shown to have mitigating effects on plants in the presence of other abiotic stress agents like drought and salinity, while no such pattern has been observed in the presence of biotic stress agents. This review focuses on the interactive effects of enhanced CO2 and temperature on different plants and is the first of its kind to deliver their combined responses in such detail.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal 734013, India
| |
Collapse
|
2
|
Wang T, Zhang P, Molinos JG, Xie J, Zhang H, Wang H, Xu X, Wang K, Feng M, Cheng H, Zhang M, Xu J. Interactions between climate warming, herbicides, and eutrophication in the aquatic food web. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118753. [PMID: 37625285 DOI: 10.1016/j.jenvman.2023.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Understanding the interactive effects of multiple environmental stressors on biological communities is crucial for effective environmental management and biodiversity conservation. Here, we present the results of an outdoor mesocosm experiment examining how an aquatic food web responds to the individual and combined effects of climate warming, heat waves, nutrient enrichment, and herbicide exposure. To assess ecosystem functioning, we examined energy flow, using stable isotope analysis integrated with the bioenergetics food web approach to quantify energy fluxes among trophic levels. Our results revealed that the combined effects of these stressors altered the pattern of energy fluxes within the food web. Under warming conditions, there was an increase in energy flux from producers and primary consumers to secondary consumers. However, we did not observe a significant increase in energy flux in primary consumers, potentially due to enhanced top-down control. Nutrient enrichment increased energy flux from producers to higher trophic levels while simultaneously decreasing detrital energy flux. Herbicide exposure did not significantly affect herbivory energy flux but did reduce detritivory energy flux, particularly from detritus to primary consumers. The interactive effects we observed were primarily antagonistic or additive, although we also detected reversed and synergistic effects. The responses to multiple stressors varied across different energy flow pathways, leading to an asymmetric response. Furthermore, our results also revealed significant differences in the effects of constant warming and heat waves, either alone or in combination with water pollution. The asymmetric response of energy flow pathways and the prevalence of antagonistic effects present significant challenges for ecosystem restoration. Together, our findings provide novel and clear evidence of the complex mechanisms by which the coexistence of stressors can differently affect the pathways of energy flux across trophic levels in aquatic ecosystems. Regulatory strategies for ecosystems should comprehensively consider responses at multi-trophic levels using a network perspective, especially in the face of combinations of global and local stressors.
Collapse
Affiliation(s)
- Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | | | - Jiayi Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China.
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Mingjun Feng
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Haowu Cheng
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Min Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
| |
Collapse
|
3
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Pepi A, Hayes T, Lyberger K. Thermal asymmetries influence effects of warming on stage and size-dependent predator–prey interactions. THEOR ECOL-NETH 2023. [DOI: 10.1007/s12080-023-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Walzer A, Nachman G, Spangl B, Stijak M, Tscholl T. Trans- and Within-Generational Developmental Plasticity May Benefit the Prey but Not Its Predator during Heat Waves. BIOLOGY 2022; 11:1123. [PMID: 36009751 PMCID: PMC9404866 DOI: 10.3390/biology11081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Theoretically, parents can adjust vital offspring traits to the irregular and rapid occurrence of heat waves via developmental plasticity. However, the direction and strength of such trait modifications are often species-specific. Here, we investigated within-generational plasticity (WGP) and trans-generational plasticity (TGP) effects induced by heat waves during the offspring development of the predator Phytoseiulus persimilis and its herbivorous prey, the spider mite Tetranychus urticae, to assess plastic developmental modifications. Single offspring individuals with different parental thermal origin (reared under mild or extreme heat waves) of both species were exposed to mild or extreme heat waves until adulthood, and food consumption, age and size at maturity were recorded. The offspring traits were influenced by within-generational plasticity (WGP), trans-generational plasticity (TGP), non-plastic trans-generational effects (TGE) and/or their interactions. When exposed to extreme heat waves, both species speeded up development (exclusively WGP), consumed more (due to the fact of WGP but also to TGP in prey females and to non-plastic TGE in predator males), and predator females got smaller (non-plastic TGE and WGP), whereas prey males and females were equally sized irrespective of their origin, because TGE, WGP and TGP acted in opposite directions. The body sizes of predator males were insensitive to parental and offspring heat wave conditions. Species comparisons indicated stronger reductions in the developmental time and reduced female predator-prey body size ratios in favor of the prey under extreme heat waves. Further investigations are needed to evaluate, whether trait modifications result in lowered suppression success of the predator on its prey under heat waves or not.
Collapse
Affiliation(s)
- Andreas Walzer
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Plant Protection, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; (A.W.); (M.S.)
| | - Gösta Nachman
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark;
| | - Bernhard Spangl
- University of Natural Resources and Life Sciences, Vienna, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria;
| | - Miroslava Stijak
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Plant Protection, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; (A.W.); (M.S.)
| | - Thomas Tscholl
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Plant Protection, Gregor-Mendel-Straße 33, 1180 Vienna, Austria; (A.W.); (M.S.)
| |
Collapse
|
6
|
Hammerschlag N, McDonnell LH, Rider MJ, Street GM, Hazen EL, Natanson LJ, McCandless CT, Boudreau MR, Gallagher AJ, Pinsky ML, Kirtman B. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). GLOBAL CHANGE BIOLOGY 2022; 28:1990-2005. [PMID: 35023247 PMCID: PMC9305416 DOI: 10.1111/gcb.16045] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 12/12/2021] [Indexed: 05/07/2023]
Abstract
Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Laura H. McDonnell
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Mitchell J. Rider
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | - Elliott L. Hazen
- Environmental Research DivisionNOAA Southwest Fisheries Science CenterMontereyCaliforniaUSA
| | - Lisa J. Natanson
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Camilla T. McCandless
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Melanie R. Boudreau
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Ben Kirtman
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
7
|
Refocusing multiple stressor research around the targets and scales of ecological impacts. Nat Ecol Evol 2021; 5:1478-1489. [PMID: 34556829 DOI: 10.1038/s41559-021-01547-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Ecological communities face a variety of environmental and anthropogenic stressors acting simultaneously. Stressor impacts can combine additively or can interact, causing synergistic or antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and experiments only consider the effect of a small number of non-interacting stressors at one or few scales of ecological organization. This is concerning because it could lead to significant underestimations or overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their source rather than by the mechanisms and ecological scales at which they act (the target). Here, we argue, first, that a more nuanced classification of stressors by target and ecological scale can generate valuable new insights and hypotheses about stressor interactions. Second, that the predictability of multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the distribution of stressor effects across targets and ecological scales. Third, that a variety of existing mechanistic and statistical modelling tools can play an important role in our framework and advance multiple stressor research.
Collapse
|
8
|
Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. J Chem Ecol 2021; 47:889-906. [PMID: 34415498 PMCID: PMC8613123 DOI: 10.1007/s10886-021-01303-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/28/2022]
Abstract
How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.
Collapse
|
9
|
Moreno-Delafuente A, Viñuela E, Fereres A, Medina P, Trębicki P. Simultaneous Increase in CO 2 and Temperature Alters Wheat Growth and Aphid Performance Differently Depending on Virus Infection. INSECTS 2020; 11:E459. [PMID: 32707938 PMCID: PMC7469198 DOI: 10.3390/insects11080459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023]
Abstract
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO2) and temperature on the interactions among wheat (Triticum aestivum L.), Barley yellow dwarf virus species PAV (BYDV-PAV) and its vector, the bird cherry-oat aphid (Rhopalosiphum padi L.). Plant traits and aphid biological parameters were examined under two climate and atmospheric scenarios, current (ambient CO2 and temperature = 400 ppm and 20 °C), and future predicted (elevated CO2 and temperature = 800 ppm and 22 °C), on non-infected and BYDV-PAV-infected plants. Our results show that combined elevated CO2 and temperature increased plant growth, biomass, and carbon to nitrogen (C:N) ratio, which in turn significantly decreased aphid fecundity and development time. However, virus infection reduced chlorophyll content, biomass, wheat growth and C:N ratio, significantly increased R. padi fecundity and development time. Regardless of virus infection, aphid growth rates remained unchanged under simulated future conditions. Therefore, as R. padi is currently a principal pest in temperate cereal crops worldwide, mainly due to its role as a plant virus vector, it will likely continue to have significant economic importance. Furthermore, an earlier and more distinct virus symptomatology was highlighted under the future predicted scenario, with consequences on virus transmission, disease epidemiology and, thus, wheat yield and quality. These research findings emphasize the complexity of plant-vector-virus interactions expected under future climate and their implications for plant disease and pest incidence in food crops.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Elisa Viñuela
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Alberto Fereres
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo., 28006 Madrid, Spain;
| | - Pilar Medina
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Piotr Trębicki
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| |
Collapse
|
10
|
Clayman S, Seebacher F. Increased wave action promotes muscle performance but increasing temperatures cause a tenacity-endurance trade-off in intertidal snails ( Nerita atramentosa). CONSERVATION PHYSIOLOGY 2019; 7:coz039. [PMID: 31333844 PMCID: PMC6637719 DOI: 10.1093/conphys/coz039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Concurrent increases in wave action and sea surface temperatures increase the physical impact on intertidal organisms and affect their physiological capacity to respond to that impact. Our aim was to determine whether wave exposure altered muscle function in intertidal snails (Nerita atramentosa) and whether responses to wave action and temperature are plastic, leading to compensation for altered environmental conditions. We show that field snails from exposed shores had greater endurance and vertical tenacity than snails from matched protected shores (n = 5 pairs of shores). There were no differences in muscle metabolic capacities (strombine/lactate dehydrogenase, citrate synthase and cytochrome c oxidase activities) between shore types. Maximum stress (force/foot area) produced by isolated foot muscle did not differ between shore types, but foot muscle from snails on exposed shores had greater endurance. A laboratory experiment showed that vertical tenacity was greater in animals acclimated for 3 weeks to cool winter temperatures (15 C) compared to summer temperatures (25 C), but endurance was greater in snails acclimated to 25°C. Acclimation to water flow that mimicked wave action in the field increased vertical tenacity but decreased endurance. Our data show that increased wave action elicits a training effect on muscle, but that increasing sea surface temperature can cause a trade-off between tenacity and endurance. Ocean warming would negate the beneficial increase in tenacity that could render snails more resistant to acute impacts of wave action, while promoting longer term resistance to dislodgment by waves.
Collapse
Affiliation(s)
- Samuel Clayman
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales, Australia
- Corresponding author: School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
11
|
Barton BT, Hodge ME, Speights CJ, Autrey AM, Lashley MA, Klink VP. Testing the AC/DC hypothesis: Rock and roll is noise pollution and weakens a trophic cascade. Ecol Evol 2018; 8:7649-7656. [PMID: 30151178 PMCID: PMC6106185 DOI: 10.1002/ece3.4273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/20/2018] [Accepted: 05/19/2018] [Indexed: 11/07/2022] Open
Abstract
Anthropogenic sound is increasingly considered a major environmental issue, but its effects are relatively unstudied. Organisms may be directly affected by anthropogenic sound in many ways, including interference with their ability to detect mates, predators, or food, and disturbances that directly affect one organism may in turn have indirect effects on others. Thus, to fully appreciate the net effect of anthropogenic sound, it may be important to consider both direct and indirect effects. We report here on a series of experiments to test the hypothesis that anthropogenic sound can generate cascading indirect effects within a community. We used a study system of lady beetles, soybean aphids, and soybean plants, which are a useful model for studying the direct and indirect effects of global change on food webs. For sound treatments, we used several types of music, as well as a mix of urban sounds (e.g., sirens, vehicles, and construction equipment), each at volumes comparable to a busy city street or farm tractor. In 18-hr feeding trials, rock music and urban sounds caused lady beetles to consume fewer aphids, but other types of music had no effect even at the same volume. We then tested the effect of rock music on the strength of trophic cascades in a 2-week experiment in plant growth chambers. When exposed to music by AC/DC, who articulated the null hypothesis that "rock and roll ain't noise pollution" in a song of the same name, lady beetles were less effective predators, resulting in higher aphid density and reduced final plant biomass relative to control (no music) treatments. While it is unclear what characteristics of sound generate these effects, our results reject the AC/DC hypothesis and demonstrate that altered interspecific interactions can transmit the indirect effects of anthropogenic noise through a community.
Collapse
Affiliation(s)
- Brandon T. Barton
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Mariah E. Hodge
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Cori J. Speights
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Anna M. Autrey
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| | - Marcus A. Lashley
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityMississippi StateMississippi
| | - Vincent P. Klink
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippi
| |
Collapse
|
12
|
Lahr EC, Dunn RR, Frank SD. Getting ahead of the curve: cities as surrogates for global change. Proc Biol Sci 2018; 285:20180643. [PMID: 30051830 PMCID: PMC6053926 DOI: 10.1098/rspb.2018.0643] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/14/2018] [Indexed: 12/20/2022] Open
Abstract
Urbanization represents an unintentional global experiment that can provide insights into how species will respond and interact under future global change scenarios. Cities produce many conditions that are predicted to occur widely in the future, such as warmer temperatures, higher carbon dioxide (CO2) concentrations and exacerbated droughts. In using cities as surrogates for global change, it is challenging to disentangle climate variables-such as temperature-from co-occurring or confounding urban variables-such as impervious surface-and then to understand the interactive effects of multiple climate variables on both individual species and species interactions. However, such interactions are also difficult to replicate experimentally, and thus the challenges of cities are also their unique advantage. Here, we review insights gained from cities, with a focus on plants and arthropods, and how urban findings agree or disagree with experimental predictions and historical data. We discuss the types of hypotheses that can be best tested in cities, caveats to urban research and how to further validate cities as surrogates for global change. Lastly, we summarize how to achieve the goal of using urban species responses to predict broader regional- and ecosystem-level patterns in the future.
Collapse
Affiliation(s)
- Eleanor C Lahr
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Steven D Frank
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Smith-Ramesh LM, Rosenblatt AE, Schmitz OJ. Multivariate Climate Change Can Favor Large Herbivore Body Size in Food Webs. Am Nat 2018. [DOI: 10.1086/695768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Barton BT. Beyond global warming: Putting the “climate” back into “climate change ecology”. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2017.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Speights CJ, Harmon JP, Barton BT. Contrasting the potential effects of daytime versus nighttime warming on insects. CURRENT OPINION IN INSECT SCIENCE 2017; 23:1-6. [PMID: 29129273 DOI: 10.1016/j.cois.2017.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Mean increases in temperatures associated with climate change are largely driven by increases in minimum (nighttime) temperatures; however, most climate change studies disproportionately increase maximum (daytime) temperatures. We review current literature to compare the potential effects of increasing daytime and nighttime temperatures on insects and their interactions within ecological communities. Although few studies have explicitly addressed the effects of nighttime warming, we draw from broader literature on how insects are affected by temperature to identify possible mechanisms that the timing (day or night) of warming may affect insects. Specifically, we discuss daily temperature variation, thermal performance curves, behaviour and activity patterns, nighttime recovery from hot days, and bottom-up effects mediated by plants. Although limited, the existing evidence suggests nighttime and daytime warming can have different effects, and thus we encourage scientists to use the most realistic warming treatments possible to truly understand how insects and their communities will be affected by climate change.
Collapse
Affiliation(s)
- Cori J Speights
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Jason P Harmon
- Department of Entomology, North Dakota State University, Fargo, ND 58108, United States
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|