1
|
Caballero-Moreno L, Luna A, Legaz I. Lipidomes in Cadaveric Decomposition and Determination of the Postmortem Interval: A Systematic Review. Int J Mol Sci 2024; 25:984. [PMID: 38256058 PMCID: PMC10816357 DOI: 10.3390/ijms25020984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Lipids are a large group of natural compounds, together with proteins and carbohydrates, and are essential for various processes in the body. After death, the organism's tissues undergo a series of reactions that generate changes in some molecules, including lipids. This means that determining the lipid change profile can be beneficial in estimating the postmortem interval (PMI). These changes can also help determine burial sites and advance the localization of graves. The aim was to explore and analyze the decomposition process of corpses, focusing on the transformation of lipids, especially triglycerides (TGs) and fatty acids (FAs), and the possible application of these compounds as markers to estimate PMI and detect burial sites. A systematic review of 24 scientific articles from the last 23 years (2000-2023) was conducted. The results show that membrane glycerophospholipids (such as phosphatidylcholine and phosphatidylglycerol, among others) are the most studied, and the most promising results are obtained, with decreasing patterns as PMI varies. Fatty acids (FAs) are also identified as potential biomarkers owing to the variations in their postmortem concentration. An increase in saturated fatty acids (SFAs), such as stearic acid and palmitic acid, and a decrease in unsaturated fatty acids (UFAs), such as oleic acid and linoleic acid, were observed. The importance of intrinsic and extrinsic factors in decomposition is also observed. Finally, as for the burial sites, the presence of fatty acids and some sterols in burial areas of animal and human remains can be verified. In conclusion, glycerophospholipids and fatty acids are good markers for estimating PMI. It has been observed that there are still no equations for estimating the PMI that can be applied to forensic practice, as intrinsic and extrinsic factors are seen to play a vital role in the decomposition process. As for determining burial sites, the importance of soil and textile samples has been demonstrated, showing a direct relationship between saturated fatty acids, hydroxy fatty acids, and some sterols with decomposing remains.
Collapse
Affiliation(s)
| | | | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), El Palmar, 30120 Murcia, Spain; (L.C.-M.); (A.L.)
| |
Collapse
|
2
|
S D Corrêa H, Alessandri I, Verzeletti A. Assessing the usefulness of Raman spectroscopy and lipid analysis of decomposed human bones in forensic genetics and molecular taphonomy. Forensic Sci Int 2024; 354:111881. [PMID: 38000148 DOI: 10.1016/j.forsciint.2023.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/18/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Bones are among the structures most likely to be recovered after death. However, the low quantity of preserved DNA and complex processing from sample to DNA profile make forensic DNA analysis of bones a challenging task. Raman spectroscopy and gas chromatography-mass spectrometry (GC/MS), have the potential to be useful as screening tools for DNA analysis and in decomposition studies. The objective of this research was to assess the usefulness of such molecular investigations. Femur samples collected from 50 decomposing human bodies were subjected to Raman spectroscopy and GC/MS. Assessment of nuclear DNA quantity and short tandem repeat (STR) genotyping efficiency were also performed. Raman parameters (crystallinity, carbonate-to-phosphate ratio, mineral-to-matrix ratio) and detected lipids were recorded. Background fluorescence proved problematic for Raman analysis of forensic bones. Regardless, it was not associated with less preserved DNA or less detected STR alleles. Fatty acids, hydrocarbons, and five types of fatty acid methyl esters (FAMEs) were detected. The main phosphate peak position in Raman spectra was significantly correlated with preserved DNA (p = 0.03713), while significantly more STR alleles were detected in bones containing methyl hexadecenoate (p = 0.04236). Detection of FAMEs in the bone matrix suggests a reaction between methanol produced by bacteria and free fatty acids, which are not associated with the level of preservation of endogenous DNA. The techniques assessed have shown to be useful in molecular taphonomy studies and forensic genetics.
Collapse
Affiliation(s)
- Heitor S D Corrêa
- Institute of Legal Medicine, Department of Medico-surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy; Forensic DNA Laboratory, Politec/MT, Cuiabá, Brazil.
| | - Ivano Alessandri
- INSTM and Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Andrea Verzeletti
- Institute of Legal Medicine, Department of Medico-surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Brockbals L, Garrett-Rickman S, Fu S, Ueland M, McNevin D, Padula MP. Estimating the time of human decomposition based on skeletal muscle biopsy samples utilizing an untargeted LC-MS/MS-based proteomics approach. Anal Bioanal Chem 2023; 415:5487-5498. [PMID: 37423904 PMCID: PMC10444689 DOI: 10.1007/s00216-023-04822-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Accurate estimation of the postmortem interval (PMI) is crucial in forensic medico-legal investigations to understand case circumstances (e.g. narrowing down list of missing persons or include/exclude suspects). Due to the complex decomposition chemistry, estimation of PMI remains challenging and currently often relies on the subjective visual assessment of gross morphological/taphonomic changes of a body during decomposition or entomological data. The aim of the current study was to investigate the human decomposition process up to 3 months after death and propose novel time-dependent biomarkers (peptide ratios) for the estimation of decomposition time. An untargeted liquid chromatography tandem mass spectrometry-based bottom-up proteomics workflow (ion mobility separated) was utilized to analyse skeletal muscle, collected repeatedly from nine body donors decomposing in an open eucalypt woodland environment in Australia. Additionally, general analytical considerations for large-scale proteomics studies for PMI determination are raised and discussed. Multiple peptide ratios (human origin) were successfully proposed (subgroups < 200 accumulated degree days (ADD), < 655 ADD and < 1535 ADD) as a first step towards generalised, objective biochemical estimation of decomposition time. Furthermore, peptide ratios for donor-specific intrinsic factors (sex and body mass) were found. Search of peptide data against a bacterial database did not yield any results most likely due to the low abundance of bacterial proteins within the collected human biopsy samples. For comprehensive time-dependent modelling, increased donor number would be necessary along with targeted confirmation of proposed peptides. Overall, the presented results provide valuable information that aid in the understanding and estimation of the human decomposition processes.
Collapse
Affiliation(s)
- Lana Brockbals
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Samara Garrett-Rickman
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Shanlin Fu
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew P Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
4
|
Potential of direct immersion solid-phase microextraction to characterize dissolved volatile organic compounds released by submerged decaying rat cadavers. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Collins S, Stuart B, Ueland M. The use of lipids from textiles as soft-tissue biomarkers of human decomposition. Forensic Sci Int 2023; 343:111547. [PMID: 36608407 DOI: 10.1016/j.forsciint.2022.111547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
The ability to determine the post-mortem interval (PMI) in complex death investigations involving human remains, is a vital task faced by law enforcement. Establishing the PMI in a case can significantly aid in the reconstruction of forensically relevant events surrounding that death. However, due to the complexities surrounding the decomposition of human remains, the determination of the PMI still remains a challenge in some cases. Thus, the identification of biomarkers of human decomposition are an emerging, and essential, area of research. Previous studies have also demonstrated great success in the use of textiles as a host to indirectly capture decomposition by-products. This study reports the successful adaptation and optimisation of an analytical chemical workflow for the targeted analysis of lipids from textiles associated with decomposing human remains using gas-chromatography (GC) coupled with tandem mass spectrometry (MS/MS). This study discusses novel information regarding the complex challenges of matrix effects observed with decomposition samples. In addition, the first lipid profiles obtained from textiles associated with two decomposing human donors from the Australian Facility for Taphonomic Experimental Research (AFTER) using GC-MS/MS are presented.
Collapse
Affiliation(s)
- Sharni Collins
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Barbara Stuart
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| |
Collapse
|
6
|
Zhang K, Liu R, Tuo Y, Ma K, Zhang D, Wang Z, Huang P. Distinguishing Asphyxia from Sudden Cardiac Death as the Cause of Death from the Lung Tissues of Rats and Humans Using Fourier Transform Infrared Spectroscopy. ACS OMEGA 2022; 7:46859-46869. [PMID: 36570197 PMCID: PMC9773813 DOI: 10.1021/acsomega.2c05968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The ability to determine asphyxia as a cause of death is important in forensic practice and helps us to judge whether a case is criminal. However, in some cases where the deceased has underlying heart disease, death by asphyxia cannot be determined by traditional autopsy and morphological observation under a microscope because there are no specific morphological features for either asphyxia or sudden cardiac death (SCD). Here, Fourier transform infrared (FTIR) spectroscopy was employed to distinguish asphyxia from SCD. A total of 40 lung tissues (collected at 0 h and 24 h postmortem) from 20 rats (10 died from asphyxia and 10 died from SCD) and 16 human lung tissues from 16 real cases were used for spectral data acquisition. After data preprocessing, 2675 spectra from rat lung tissues and 1526 spectra from human lung tissues were obtained for subsequent analysis. First, we found that there were biochemical differences in the rat lung tissues between the two causes of death by principal component analysis and partial least-squares discriminant analysis (PLS-DA), which were related to alterations in lipids, proteins, and nucleic acids. In addition, a PLS-DA classification model can be built to distinguish asphyxia from SCD. Second, based on the spectral data obtained from lung tissues allowed to decompose for 24 h, we could still distinguish asphyxia from SCD even when decomposition occurred in animal models. Nine important spectral features that contributed to the discrimination in the animal experiment were selected and further analyzed. Third, 7 of the 9 differential spectral features were also found to be significantly different in human lung tissues from 16 real cases. A support vector machine model was finally built by using the seven variables to distinguish asphyxia from SCD in the human samples. Compared with the linear PLS-DA model, its accuracy was significantly improved to 0.798, and the correct rate of determining the cause of death was 100%. This study shows the application potential of FTIR spectroscopy for exploring the subtle biochemical differences resulting from different death processes and determining the cause of death even after decomposition.
Collapse
Affiliation(s)
- Kai Zhang
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ruina Liu
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ya Tuo
- Department
of Biochemistry and Physiology, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, People’s Republic of China
| | - Kaijun Ma
- Shanghai
Key Laboratory of Crime Scene Evidence, Institute of Criminal Science
and Technology, Shanghai Municipal Public
Security Bureau, Shanghai 200042, People’s Republic
of China
| | - Dongchuan Zhang
- Shanghai
Key Laboratory of Crime Scene Evidence, Institute of Criminal Science
and Technology, Shanghai Municipal Public
Security Bureau, Shanghai 200042, People’s Republic
of China
| | - Zhenyuan Wang
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ping Huang
- Shanghai
Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, People’s Republic of China
| |
Collapse
|
7
|
Seckiner D, Ebert L, Mallett X, Berry R, Green H, Franckenberg S, Berezowski T, Crebert I, Thali M, Sieberth T. A technical protocol for 3D observation and documentation of human decomposition. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2146189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Dilan Seckiner
- 3D Center Zurich, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Centre for Forensic Science, University of Technology, Sydney, Australia
| | - Lars Ebert
- 3D Center Zurich, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Xanthé Mallett
- Newcastle Law School, University of Newcastle, Australia
- Honorary Associate in the Faculty of Science, University of Technology Sydney, Sydney Australia
| | - Rachel Berry
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Hayley Green
- School of Science, Western Sydney University, Sydney, Australia
| | - Sabine Franckenberg
- 3D Center Zurich, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | | | | | - Michael Thali
- 3D Center Zurich, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Till Sieberth
- 3D Center Zurich, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Collins S, Maestrini L, Ueland M, Stuart B. A preliminary investigation to determine the suitability of pigs as human analogues for post-mortem lipid analysis. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
An in-field evaluation of rapid DNA instruments for disaster victim identification. Int J Legal Med 2021; 136:493-499. [PMID: 34816308 DOI: 10.1007/s00414-021-02748-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
In 2019 and 2020, disaster victim identification (DVI) simulations were conducted at the Australian Facility for Taphonomic Experimental Research. Whole and fragmented cadavers were positioned to replicate a building collapse scenario and left to decompose for up to 4 weeks. This study evaluated the utility of the ANDE™ 6C Rapid DNA System and the RapidHITTM ID System for DVI in the field and mortuary. Applying post-mortem nail and tissue biopsy samples showed promise, with the added benefit of minimally invasive collection procedures and limited preparation requirements. The preferred platform will depend on a number of factors, including its intended use and operating environment.
Collapse
|