1
|
Childebayeva A, Zavala EI. Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience 2023; 26:108066. [PMID: 37927550 PMCID: PMC10622734 DOI: 10.1016/j.isci.2023.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements. However, most have been centered around wet laboratory methods (sampling, DNA extraction, library preparation, etc.). In this review, we focus on the computational side of the analytical workflow. We discuss limitations and considerations to consider when working with degraded DNA. We hope this review provides a framework to researchers new to computational workflows for how to think about analyzing highly degraded DNA and prompts an increase of collaboration between the forensic genetics and aDNA fields.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Elena I. Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
2
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Yin J, Yamba F, Zheng C, Zhou S, Smith SJ, Wang L, Li H, Xia Z, Xiao N. Molecular Detection of Insecticide Resistance Mutations in Anopheles gambiae from Sierra Leone Using Multiplex SNaPshot and Sequencing. Front Cell Infect Microbiol 2021; 11:666469. [PMID: 34490134 PMCID: PMC8416995 DOI: 10.3389/fcimb.2021.666469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vector control interventions including long-lasting insecticidal nets and indoor residual spraying are important for malaria control and elimination. And effectiveness of these interventions depends entirely on the high level of susceptibility of malaria vectors to insecticides. However, the insecticide resistance in majority of mosquito vector species across African countries is a serious threat to the success of vector control efforts with the extensive use of insecticides, while no data on insecticide resistance was reported from Sierra Leone in the past decade. In the present study, the polymerase chain reaction was applied for the identification of species of 757 dry adult female Anopheles gambiae mosquitoes reared from larvae collected from four districts in Sierra Leone during May and June 2018. And the mutations of kdr, rdl, ace-1 genes in An. gambiae were detected using SNaPshot and sequencing. As a result, one sample from Western Area Rural district belonged to Anopheles melas, and 748 An. gambiae were identified. Furthermore, the rdl mutations, kdr west mutations and ace-1 mutation were found. The overall frequency was 35.7%, 0.3%, 97.6% and 4.5% in A296G rdl, A296S rdl, kdrW and ace-1, respectively. The frequencies of A296G rdl mutation (P < 0.001), kdrW mutation (P = 0.001) and ace-1 mutation (P < 0.001) were unevenly distributed in four districts, respectively, while no statistical significance was found in A296S rdl mutation (P = 0.868). In addition, multiple resistance patterns were also found. In conclusion, multiple mutations involved in insecticide resistance in An. gambiae populations in Sierra Leone were detected in the kdrW, A296G rdl and ace-1 alleles in the present study. It is necessary to monitor vector susceptibility levels to insecticides used in this country, and update the insecticide resistance monitoring and management strategy.
Collapse
Affiliation(s)
- Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Frederick Yamba
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Canjun Zheng
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Samuel Juana Smith
- National Malaria Control Program, Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Lili Wang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongmei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| |
Collapse
|
4
|
Liu J, Cheng X, Liu F, Hao T, Wang J, Guo J, Li J, Liu Z, Li W, Shi J, Zhang X, Li J, Yan J, Zhang G. Identification of coding region SNPs from specific and sensitive mRNA biomarkers for the deconvolution of the semen donor in a body fluid mixture. Forensic Sci Int Genet 2021; 52:102483. [PMID: 33610949 DOI: 10.1016/j.fsigen.2021.102483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
mRNA markers provide a very promising method for the identification of human body fluids or tissues in the context of forensic investigations. Previous studies have shown that different body fluids can be distinguished from each other according to their specific mRNA biomarkers. In this study, we evaluated eight semen-specific mRNA markers (KLK3, NKX3-1, CKB, KLK2, PRAC1, SEMG1, TGM4, and SORD) that encompass 12 coding single nucleotide polymorphisms (cSNPs) to identify the semen contributor in a mixed stain. Five highly specific and sensitive mRNA markers for blood, menstrual blood, saliva, vaginal secretions, and skin were also incorporated into the PCR system as body fluid-positive controls. Reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR and SNaPshot mini-sequencing assays were established for the identification of semen-specific mRNA. The amplicon size ranged from 133 to 337 bp. The semen-specific system was examined against blood, menstrual blood, saliva, vaginal secretions, and skin swabs. The eight mRNA biomarkers were semen-specific and could be successfully typed in laboratory-generated mixtures composed of different body fluids supplemented with 1 ng of semen cDNA. This system possessed a high sensitivity that ranged from 1:10-1:100 for detecting trace amounts of semen in semen-containing body fluid mixtures. Additionally, our results demonstrated that the cSNPs polymorphisms included in the mRNA markers were concordant with genomic DNA (gDNA). Despite the presence of other body fluids, the system exhibited high sensitivity and specificity to the semen in the mixture. In future studies, we will add other cSNPs from the semen-specific genes using massively parallel sequencing to further improve our system.
Collapse
Affiliation(s)
- Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiaojuan Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Ting Hao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangling Guo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jintao Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Wenyan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jie Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiuying Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jing Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
5
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
The MASTiFF panel-a versatile multiple-allele SNP test for forensics. Int J Legal Med 2019; 134:441-450. [PMID: 31863187 DOI: 10.1007/s00414-019-02233-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
Forensic identification tests often need recourse to markers that can successfully type highly degraded DNA, and binary single nucleotide polymorphisms (SNPs) have become the variants of choice for such analyses because of their short amplified fragment lengths. The two main drawbacks of SNPs are their reduced power of discrimination per marker compared with mainstream forensic STRs and an inability to robustly detect mixed DNA-particularly using capillary electrophoresis genotyping systems such as SNaPshot™, where the dye signals are much more imbalanced than those of STR profiles. This study compiled a compact set of multiple-allele SNPs consisting of loci that had three or four nucleotide variants at the same site in order to address the lack of mixture detection capability with binary SNP tests, as well as improving levels of polymorphism per SNP by transitioning to a maximum of six or ten genotypes per locus. We report the development and optimisation of a SNaPshot-based forensic test comprising 27 tri-allelic and 2 tetra-allelic SNPs, which we named MASTiFF: a multiple-allele SNP test for forensics. Assessments of the MASTiFF panel's levels of discrimination power in the five main population groups indicate random match probabilities ranging from 10-15 down to 10-20-improving the levels possible from an equivalent number of binary SNPs. The SNaPshot test was able to detect simple mixtures successfully with more than two alleles observed in 30% of SNPs. From allele frequency data, it is estimated that more than two alleles will be present in at least one MASTiFF SNP in 99.8% of two-person mixtures, making this panel an ideal supplementary test when SNPs are chosen for the analysis of degraded forensic DNA.
Collapse
|
7
|
Mitochondrial DNA screening by melting curve analysis using peptide nucleic acid probes. Forensic Sci Int Genet 2019; 45:102228. [PMID: 31911363 DOI: 10.1016/j.fsigen.2019.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
Analysis of single nucleotide polymorphisms (SNPs) in mitochondrial (mt)DNA hypervariable regions (HV) 1/2 is valuable in forensic investigations. We developed a method for mtDNA screening of the HV1 and HV2 regions by melting curve analysis, using peptide nucleic acid (PNA) probes. This method focuses on melting peak patterns obtained by thermal dissociation of PNA/DNA duplexes in amplified mtDNA products. Five PNA probe sets were designed to detect 25 SNPs in the two HV regions. We also detected non-target SNPs based on unexpected melting temperature (Tm) shifts. In fact, 62 SNPs (42 SNPs in HV1 and 20 in HV2) were identified, including the 25 target SNPs. Using this method, 46 melting peak patterns, including 8 pattern groups, were obtained in 60 unrelated individuals. The peak patterns were compared to 55 haplotypes identified by Sanger sequencing. The results obtained from analysis of target mtDNA SNPs were entirely consistent with those obtained by Sanger sequencing. Screening the HV1 and HV2 regions of mtDNA by this method may help minimize unnecessary recourse to full sequence analysis, allows to rapidly exclude samples that do not match evidence and reference samples, and may reduce turnaround times and analysis costs. Overall, this method may be effective and helpful in forensic investigations.
Collapse
|
8
|
Pereira V, Longobardi A, Børsting C. Sequencing of mitochondrial genomes using the Precision ID mtDNA Whole Genome Panel. Electrophoresis 2018; 39:2766-2775. [DOI: 10.1002/elps.201800088] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Antonio Longobardi
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
9
|
A 1204-single nucleotide polymorphism and insertion–deletion polymorphism panel for massively parallel sequencing analysis of DNA mixtures. Forensic Sci Int Genet 2018; 32:94-101. [DOI: 10.1016/j.fsigen.2017.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
|
10
|
Thongngam P, Leewattanapasuk W, Bhoopat T, Sangthong P. Single nucleotide polymorphisms minisequencing in hypervariable regions for screening of Thais. Gene 2017; 627:538-542. [PMID: 28694208 DOI: 10.1016/j.gene.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
Mitochondrial DNA (mtDNA) analysis has displayed an important role and been considered as a powerful tool in various fields of forensic science applications. Nowadays, single nucleotide polymorphisms (SNPs) on mtDNA have become additional DNA markers when conventional STR typing practically fails. mtDNA sequencing of polymerase chain reaction (PCR) products from the hypervariable region I (HVRI) and II (HVRII) is the standard method of mtDNA analysis. However, mtDNA sequencing is rather expensive, time consuming and technically complex. This study aims to develop the SNPs minisequencing for screening of Thai populations. For this purpose, sixteen SNPs that possess high discriminating power in hypervariable regions were selected. The DNA samples were obtained from 100 buccal swab samples of Thai healthy individuals. All DNA samples were extracted and were subsequently amplified by single duplex PCR technique. The duplex PCR products were genotyped by SNPs minisequencing. Based on 16 SNPs, a total of 63 haplotypes were observed of which 46 haplotypes were unique. The haplotype diversity, discriminating power and random match probability were calculated to be 0.9830, 0.9732 and 0.0268, respectively. The SNPs at 150, 199, 489, 16129, 16189, 16223, and 16304 were highly polymorphic in the studied population. Our results suggested that the SNPs minisequencing can be an alternative method of SNPs genotyping. This method can be used for an exclusion of a large number of mismatch samples and as a presumptive test prior to do confirmatory mtDNA sequencing.
Collapse
Affiliation(s)
- Punlop Thongngam
- Interdisciplinary Program in Forensic Science, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Worraanong Leewattanapasuk
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Tanin Bhoopat
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Padchanee Sangthong
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
12
|
Valverde-Villegas JM, de Medeiros RM, Almeida SEM, Chies JAB. Immunogenetic profiling of 23 SNPs of cytokine and chemokine receptor genes through a minisequencing technique: Design, development and validation. Int J Immunogenet 2017; 44:135-144. [PMID: 28374494 DOI: 10.1111/iji.12314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
The minisequencing technique offers accuracy and robustness to genotyping of polymorphic DNA variants, being an excellent option for the identification and analyses of prognostic/susceptibility markers in human diseases. Two multiplex minisequencing assays were designed and standardized to screen 23 candidate SNPs in cytokine, chemokine receptor and ligand genes previously associated with susceptibility to cancer and autoimmune disorders as well as to infectious diseases outcome. The SNPs were displayed in two separate panels (panel 1-IL2 rs2069762, TNFα rs1800629, rs361525; IL4 rs2243250; IL6 rs1800795; IL10 rs1800896, rs1800872; IL17A rs8193036, rs2275913 and panel 2-CCR3 rs309125, CCR4 rs6770096, rs2228428; CCR6 rs968334; CCR8 rs2853699; CXCR3 rs34334103, rs2280964;CXCR6 rs223435, rs2234358; CCL20 rs13034664, rs6749704; CCL22 rs4359426; CXCL10/IP-10 rs3921, rs56061981). A total of 305 DNA samples from healthy individuals were genotyped by minisequencing. To validate the minisequencing technique and to encompass the majority of the potential genotypes for all 23 SNPs, 20 of these samples were genotyped by Sanger sequencing. The results of both techniques were 100% in agreement. The technique of minisequencing showed high accuracy and robustness, avoiding the need for high quantities of DNA template samples. It was easily to be conducted in bulk samples derived from a highly admixed human population, being therefore an excellent option for immunogenetic studies.
Collapse
Affiliation(s)
- J M Valverde-Villegas
- Post Graduation Program in Genetic and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R M de Medeiros
- Post Graduation Program in Genetic and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Technological and Scientific Development Center - CDCT, State Foundation in Production and Health Research - FEPPS, Porto Alegre, RS, Brazil
| | - S E M Almeida
- Post Graduation Program in Genetic and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Technological and Scientific Development Center - CDCT, State Foundation in Production and Health Research - FEPPS, Porto Alegre, RS, Brazil
| | - J A B Chies
- Post Graduation Program in Genetic and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review. Int J Legal Med 2016; 131:21-37. [DOI: 10.1007/s00414-016-1490-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
14
|
Marrero P, Abu-Amero KK, Larruga JM, Cabrera VM. Carriers of human mitochondrial DNA macrohaplogroup M colonized India from southeastern Asia. BMC Evol Biol 2016; 16:246. [PMID: 27832758 PMCID: PMC5105315 DOI: 10.1186/s12862-016-0816-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
Background From a mtDNA dominant perspective, the exit from Africa of modern humans to colonize Eurasia occurred once, around 60 kya, following a southern coastal route across Arabia and India to reach Australia short after. These pioneers carried with them the currently dominant Eurasian lineages M and N. Based also on mtDNA phylogenetic and phylogeographic grounds, some authors have proposed the coeval existence of a northern route across the Levant that brought mtDNA macrohaplogroup N to Australia. To contrast both hypothesis, here we reanalyzed the phylogeography and respective ages of mtDNA haplogroups belonging to macrohaplogroup M in different regions of Eurasia and Australasia. Results The macrohaplogroup M has a historical implantation in West Eurasia, including the Arabian Peninsula. Founder ages of M lineages in India are significantly younger than those in East Asia, Southeast Asia and Near Oceania. Moreover, there is a significant positive correlation between the age of the M haplogroups and its longitudinal geographical distribution. These results point to a colonization of the Indian subcontinent by modern humans carrying M lineages from the east instead the west side. Conclusions The existence of a northern route, previously proposed for the mtDNA macrohaplogroup N, is confirmed here for the macrohaplogroup M. Both mtDNA macrolineages seem to have differentiated in South East Asia from ancestral L3 lineages. Taking this genetic evidence and those reported by other disciplines we have constructed a new and more conciliatory model to explain the history of modern humans out of Africa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0816-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Marrero
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
15
|
Kakuda T, Shojo H, Tanaka M, Nambiar P, Minaguchi K, Umetsu K, Adachi N. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs. PLoS One 2016; 11:e0158463. [PMID: 27355212 PMCID: PMC4927117 DOI: 10.1371/journal.pone.0158463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.
Collapse
Affiliation(s)
- Tsuneo Kakuda
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi 409–3898, Japan
| | - Hideki Shojo
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi 409–3898, Japan
| | - Mayumi Tanaka
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi 409–3898, Japan
| | - Phrabhakaran Nambiar
- Department of General Dental Practice and Oral & Maxillofacial Imaging, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kiyoshi Minaguchi
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Kanagawa 259–1193, Japan
| | - Kazuo Umetsu
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990–2331, Japan
| | - Noboru Adachi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi 409–3898, Japan
- * E-mail:
| |
Collapse
|
16
|
Núñez C, Baeta M, Cardoso S, Palencia-Madrid L, García-Romero N, Llanos A, M. de Pancorbo M. Mitochondrial DNA Reveals the Trace of the Ancient Settlers of a Violently Devastated Late Bronze and Iron Ages Village. PLoS One 2016; 11:e0155342. [PMID: 27176817 PMCID: PMC4866787 DOI: 10.1371/journal.pone.0155342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/27/2016] [Indexed: 11/19/2022] Open
Abstract
La Hoya (Alava, Basque Country) was one of the most important villages of the Late Bronze and Iron Ages of the north of the Iberian Peninsula, until it was violently devastated around the 4th century and abandoned in the 3rd century B.C. Archaeological evidences suggest that descendants from La Hoya placed their new settlement in a nearby hill, which gave rise to the current village of Laguardia. In this study, we have traced the genetic imprints of the extinct inhabitants of La Hoya through the analysis of maternal lineages. In particular, we have analyzed the mitochondrial DNA (mtDNA) control region of 41 human remains recovered from the archaeological site for comparison with a sample of 51 individuals from the geographically close present-day population of Laguardia, as well as 56 individuals of the general population of the province of Alava, where the archaeological site and Laguardia village are located. MtDNA haplotypes were successfully obtained in 25 out of 41 ancient samples, and 14 different haplotypes were identified. The major mtDNA subhaplogroups observed in La Hoya were H1, H3, J1 and U5, which show a distinctive frequency pattern in the autochthonous populations of the north of the Iberian Peninsula. Approximate Bayesian Computation analysis was performed to test the most likely model for the local demographic history. The results did not sustain a genealogical continuity between Laguardia and La Hoya at the haplotype level, although factors such as sampling effects, recent admixture events, and genetic bottlenecks need to be considered. Likewise, the highly similar subhaplogroup composition detected between La Hoya and Laguardia and Alava populations do not allow us to reject a maternal genetic continuity in the human groups of the area since at least the Iron Age to present times. Broader analyses, based on a larger collection of samples and genetic markers, would be required to study fine-scale population events in these human groups.
Collapse
Affiliation(s)
- Carolina Núñez
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Cardoso
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Noemí García-Romero
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Marian M. de Pancorbo
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
- * E-mail:
| |
Collapse
|
17
|
Kim SC, Lee SH, Lee JW, Kim TH, Choi BH. Identification of Single Nucleotide Polymorphism Marker and Association Analysis of Marbling Score in Fas Gene of Hanwoo. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:23-8. [PMID: 26732324 PMCID: PMC4698685 DOI: 10.5713/ajas.14.0812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/02/2014] [Accepted: 06/15/2015] [Indexed: 11/27/2022]
Abstract
The Fas (APO-1, TNFRSF6) gene known as a member of the tumor necrosis factor receptor superfamily was selected for DNA marker development in Korean cattle. It is a cell membrane protein and mediates programmed cell death (apoptosis). We discovered single nucleotide polymorphisms (SNPs) within Fas gene in order to develop novel DNA markers related to economical traits at the genomic level. The sequences of whole exon and 1 kb range of both front and back of the gene were determined by direct-sequencing methods using 24 cattle. A total of 55 SNPs were discovered and we selected 31 common polymorphic sites considering their allele frequencies, haplotype-tagging status and linkage disequilibrium (LD) for genotyping in larger-scale subjects. The SNPs were confirmed genotype through the SNaPshot method (n = 274) and were examined for a possible genetic association between Fas polymorphisms and marbling score. So, the SNPs that were identified significant are g.30256G>C, g.31474C>A, g.31940A>G, and g.32982G>A. These results suggest that SNPs of Fas gene were associated with intramuscular fat content of meat quality traits in Korean cattle.
Collapse
Affiliation(s)
- Seung-Chang Kim
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Seung-Hwan Lee
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Ji-Woong Lee
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Hun Kim
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Bong-Hwan Choi
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
18
|
Hu CT, Yan JW, Chen F, Zhang QX, Wang HD, Yin CY, Fan HT, Hu LL, Shen CM, Meng HT, Zhang YD, Wang H, Zhu BF. Genetic analysis of 15 mtDNA SNP loci in Chinese Yi ethnic group using SNaPshot minisequencing. Gene 2016; 576:105-8. [DOI: 10.1016/j.gene.2015.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 08/08/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
|
19
|
Baeta M, Núñez C, Cardoso S, Palencia-Madrid L, Herrasti L, Etxeberria F, de Pancorbo MM. Digging up the recent Spanish memory: genetic identification of human remains from mass graves of the Spanish Civil War and posterior dictatorship. Forensic Sci Int Genet 2015; 19:272-279. [DOI: 10.1016/j.fsigen.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/20/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022]
|
20
|
Fregel R, Cabrera V, Larruga JM, Abu-Amero KK, González AM. Carriers of Mitochondrial DNA Macrohaplogroup N Lineages Reached Australia around 50,000 Years Ago following a Northern Asian Route. PLoS One 2015; 10:e0129839. [PMID: 26053380 PMCID: PMC4460043 DOI: 10.1371/journal.pone.0129839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Background The modern human colonization of Eurasia and Australia is mostly explained by a single-out-of-Africa exit following a southern coastal route throughout Arabia and India. However, dispersal across the Levant would better explain the introgression with Neanderthals, and more than one exit would fit better with the different ancient genomic components discovered in indigenous Australians and in ancient Europeans. The existence of an additional Northern route used by modern humans to reach Australia was previously deduced from the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and new multidisciplinary information that add more support to this northern route. Methods MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences were screened to establish their respective geographic ranges. Results The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia with coalescence ages deep enough to support population continuity in the region since the out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in India nor N(xR) branches with coalescence ages as deep as those found in Australia. These patterns are at odds with the supposition that Australian colonizers harboring N(xR) lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eurasia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with the southernmost geographical range have all more recent radiations than the Australians. Conclusions Apart from a single migration event via a southern route, phylogeny and phylogeography of N(xR) lineages support that people carrying mtDNA N lineages could have reach Australia following a northern route through Asia. Data from other disciplines also support this scenario.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
- * E-mail:
| | - Vicente Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jose M. Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Khaled K. Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ana M. González
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
21
|
Messina F, Finocchio A, Rolfo MF, De Angelis F, Rapone C, Coletta M, Martínez-Labarga C, Biondi G, Berti A, Rickards O. Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Am J Hum Biol 2015; 27:508-19. [PMID: 25728801 DOI: 10.1002/ajhb.22677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/20/2014] [Accepted: 12/20/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Analysis of human genetic variation in mountain communities can shed light on the peopling of mountainous regions, perhaps revealing whether the remote geographic location spared them from outside invasion and preserved their gene pool from admixture. In this study, we created a model to assess genetic traces of historical events by reconstructing the paternal and maternal genetic history of seven small mountain villages in inland valleys of Central Italy. METHODS The communities were selected for their geographic isolation, attested biodemographic stability, and documented history prior to the Roman conquest. We studied the genetic structure by analyzing two hypervariable segments (HVS-I and HVS-II) of the mtDNA D-loop and several informative single nucleotide polymorphisms (SNPs) of the mtDNA coding region in 346 individuals, in addition to 17 short tandem repeats (STRs) and Y-chromosome SNPs in 237 male individuals. RESULTS For both uniparental markers, most of the haplogroups originated in Western Europe while some Near Eastern haplogroups were identified at low frequencies. However, there was an evident genetic similarity between the Central Italian samples and Near Eastern populations mainly in the male genetic pool. CONCLUSIONS The samples highlight an overall European genetic pattern both for mtDNA and Y chromosome. Notwithstanding this scenario, Y chromosome haplogroup Q, a common paternal lineage in Central/Western Asia but almost Europe-wide absent, was found, suggesting that Central Italy could have hosted a settlement from Anatolia that might be supported by cultural, topographic and genetic evidence.
Collapse
Affiliation(s)
- Francesco Messina
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Andrea Finocchio
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Mario Federico Rolfo
- Department of Historical, Philosophical and Social Sciences, Cultural and Territory Heritage, University of Rome 'Tor Vergata', Via Columbia n. 1, 00173, Rome, Italy
| | - Flavio De Angelis
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cesare Rapone
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Martina Coletta
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cristina Martínez-Labarga
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Gianfranco Biondi
- Department of Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, L'Aquila, Italy
| | - Andrea Berti
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Olga Rickards
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| |
Collapse
|
22
|
Söchtig J, Álvarez-Iglesias V, Mosquera-Miguel A, Gelabert-Besada M, Gómez-Carballa A, Salas A. Genomic insights on the ethno-history of the Maya and the 'Ladinos' from Guatemala. BMC Genomics 2015; 16:131. [PMID: 25887241 PMCID: PMC4422311 DOI: 10.1186/s12864-015-1339-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Guatemala is a multiethnic and multilingual country located in Central America. The main population groups separate ‘Ladinos’ (mixed Native American-African-Spanish), and Native indigenous people of Maya descent. Among the present-day Guatemalan Maya, there are more than 20 different ethnic groups separated by different languages and cultures. Genetic variation of these communities still remains largely unexplored. The principal aim of this study is to explore the genetic variability of the Maya and ‘Ladinos’ from Guatemala by means of uniparental and ancestry informative markers (AIMs). Results Analyses of uniparental genetic markers indicate that Maya have a dominant Native American ancestry (mitochondrial DNA [mtDNA]: 100%; Y-chromosome: 94%). ‘Ladino’, however, show a clear gender-bias as indicated by the large European ancestry observed in the Y-chromosome (75%) compared to the mtDNA (0%). Autosomal polymorphisms (AIMs) also mirror this marked gender-bias: (i) Native American ancestry: 92% for the Maya vs. 55% for the ‘Ladino’, and (ii) European ancestry: 8% for the Maya vs. 41% for the ‘Ladino’. In addition, the impact of the Trans-Atlantic slave trade on the present-day Guatemalan population is very low (and only occurs in the ‘Ladino’; mtDNA: 9%; AIMs: 4%), in part mirroring the fact that Guatemala has a predominant orientation to the Pacific Ocean instead of a Caribbean one. Sequencing of entire Guatemalan mitogenomes has led to improved Native American phylogeny via the addition of new haplogroups that are mainly observed in Mesoamerica and/or the North of South America. Conclusions The data reveal the existence of a fluid gene flow in the Mesoamerican area and a predominant unidirectional flow towards South America, most likely occurring during the Pre-Classic (1800 BC-200 AD) and the Classic (200–1000 AD) Eras of the Mesoamerican chronology, coinciding with development of the most distinctive and advanced Mesoamerican civilization, the Maya. Phylogenetic features of mtDNA data also suggest a demographic scenario that is compatible with moderate local endogamy and isolation in the Maya combined with episodes of gene exchange between ethnic groups, suggesting an ethno-genesis in the Guatemalan Maya that is recent and supported on a cultural rather than a biological basis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1339-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jens Söchtig
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Miguel Gelabert-Besada
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| |
Collapse
|
23
|
Marques SL, Goios A, Rocha AM, Prata MJ, Amorim A, Gusmão L, Alves C, Alvarez L. Portuguese mitochondrial DNA genetic diversity-An update and a phylogenetic revision. Forensic Sci Int Genet 2014; 15:27-32. [PMID: 25457629 DOI: 10.1016/j.fsigen.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
In recent years a large amount of mitochondrial population data for forensic purposes has been produced. Current efforts are focused at increasing the number of studied populations while generating updated genetic information of forensic quality. However, complete mitochondrial control region sequences are still scarce for most populations and even more so for complete mitochondrial genomes. In the case of Portugal, previous population genetics studies have already revealed the general portrait of HVS-I and HVS-II mitochondrial diversity, becoming now important to update and expand the mitochondrial region analysed. Accordingly, a total of 292 complete control region sequences from continental Portugal were obtained, under a stringent experimental design to ensure the quality of data through double sequencing of each target region. Furthermore, H-specific coding region SNPs were examined to detail haplogroup classification and complete mitogenomes were obtained for all sequences belonging to haplogroups U4 and U5. In general, a typical Western European haplogroup composition was found in mainland Portugal, associated to high level of mitochondrial genetic diversity. Within the country, no signs of substructure were detected. The typing of extra coding region SNPs has provided the refinement or confirmation of the previous classification obtained with EMMA tool in 96% of the cases. Finally, it was also possible to enlarge haplogroup U phylogeny with 28 new U4 and U5 mitogenomes.
Collapse
Affiliation(s)
- Sofia L Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Goios
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Ana M Rocha
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cíntia Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Luis Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
24
|
Daniel R, Santos C, Phillips C, Fondevila M, van Oorschot RAH, Carracedo A, Lareu MV, McNevin D. A SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Sci Int Genet 2014; 14:50-60. [PMID: 25282603 DOI: 10.1016/j.fsigen.2014.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 02/03/2023]
Abstract
Forensic phenotyping can provide useful intelligence regarding the biogeographical ancestry (BGA) and externally visible characteristics (EVCs) of the donor of an evidentiary sample. Currently, single nucleotide polymorphism (SNP) based inference of BGA and EVCs is performed most commonly using SNaPshot(®), a single base extension (SBE) assay. However, a single SNaPshot multiplex PCR is limited to 30-40 SNPs. Next generation sequencing (NGS) offers the potential to genotype hundreds to thousands of SNPs from multiple samples in a single experimental run. The PCR multiplexes from five SNaPshot assays (SNPforID 52plex, SNPforID 34plex, Eurasiaplex, IrisPlex and an unpublished BGA assay) were applied to three different DNA template amounts (0.1, 0.2 and 0.3 ng) in three samples (9947A and 007 control DNAs and a male donor). The pooled PCR amplicons containing 136 unique SNPs were sequenced using Life Technologies' Ion Torrent™ PGM system. Approximately 72 Mb of sequence was generated from two 10 Mb Ion 314™ v1 chips. Accurate genotypes were readily obtained from all three template amounts. Of a total of 408 genotypes, 395 (97%) were fully concordant with SNaPshot across all three template amounts. Of those genotypes discordant with SNaPshot, six Ion Torrent sequences (1.5%) were fully concordant with Sanger sequencing across the three template amounts. Seven SNPs (1.7%) were either discordant between template amounts or discordant with Sanger sequencing. Sequence coverage observed in the negative control, and, allele coverage variation for heterozygous genotypes highlights the need to establish a threshold for background levels of sequence output and heterozygous balance. This preliminary study of the Ion Torrent PGM system has demonstrated considerable potential for use in forensic DNA analyses as a low to medium throughput NGS platform using established SNaPshot assays.
Collapse
Affiliation(s)
- R Daniel
- Office of the Chief Forensic Scientist, Forensic Services Department, Victoria Police, Australia.
| | - C Santos
- Forensic Genetics Unit, Institute of Forensic Science "Luis Concheiro", University of Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Science "Luis Concheiro", University of Santiago de Compostela, Spain
| | - M Fondevila
- Forensic Genetics Unit, Institute of Forensic Science "Luis Concheiro", University of Santiago de Compostela, Spain
| | - R A H van Oorschot
- Office of the Chief Forensic Scientist, Forensic Services Department, Victoria Police, Australia
| | - A Carracedo
- Forensic Genetics Unit, Institute of Forensic Science "Luis Concheiro", University of Santiago de Compostela, Spain; CIBERER, Genomic Medicine Group, University of Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Science "Luis Concheiro", University of Santiago de Compostela, Spain
| | - D McNevin
- National Centre for Forensic Studies, University of Canberra, Australia
| |
Collapse
|
25
|
Multiplex primer-extension assay for identification of Yersinia species. Mol Biol Rep 2014; 41:6329-33. [PMID: 24985982 DOI: 10.1007/s11033-014-3555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
A multiplex primer-extension reaction (PER) assay, was specifically designed for the identification of ten Yersinia species. The assay, directed towards the tufA (elongation factor Tu) gene, was tested on a total of 42 samples representing Yersinia species and non-Yersinia species. The primers used in the preliminary PCR, designed in highly conserved regions upstream and downstream of the diagnosis sites, successfully amplified a 587 bp fragment. The diagnosis sites were simultaneously interrogated using a multiplex PER and the results were confirmed by fragment sequencing. The proposed test provides an appropriate tool to monitor the presence of Yersinia spp. in food samples and to evaluate the potential hazard for consumers.
Collapse
|
26
|
An ancient Mediterranean melting pot: investigating the uniparental genetic structure and population history of sicily and southern Italy. PLoS One 2014; 9:e96074. [PMID: 24788788 PMCID: PMC4005757 DOI: 10.1371/journal.pone.0096074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
Due to their strategic geographic location between three different continents, Sicily and Southern Italy have long represented a major Mediterranean crossroad where different peoples and cultures came together over time. However, its multi-layered history of migration pathways and cultural exchanges, has made the reconstruction of its genetic history and population structure extremely controversial and widely debated. To address this debate, we surveyed the genetic variability of 326 accurately selected individuals from 8 different provinces of Sicily and Southern Italy, through a comprehensive evaluation of both Y-chromosome and mtDNA genomes. The main goal was to investigate the structuring of maternal and paternal genetic pools within Sicily and Southern Italy, and to examine their degrees of interaction with other Mediterranean populations. Our findings show high levels of within-population variability, coupled with the lack of significant genetic sub-structures both within Sicily, as well as between Sicily and Southern Italy. When Sicilian and Southern Italian populations were contextualized within the Euro-Mediterranean genetic space, we observed different historical dynamics for maternal and paternal inheritances. Y-chromosome results highlight a significant genetic differentiation between the North-Western and South-Eastern part of the Mediterranean, the Italian Peninsula occupying an intermediate position therein. In particular, Sicily and Southern Italy reveal a shared paternal genetic background with the Balkan Peninsula and the time estimates of main Y-chromosome lineages signal paternal genetic traces of Neolithic and post-Neolithic migration events. On the contrary, despite showing some correspondence with its paternal counterpart, mtDNA reveals a substantially homogeneous genetic landscape, which may reflect older population events or different demographic dynamics between males and females. Overall, both uniparental genetic structures and TMRCA estimates confirm the role of Sicily and Southern Italy as an ancient Mediterranean melting pot for genes and cultures.
Collapse
|
27
|
Coutinho A, Valverde G, Fehren-Schmitz L, Cooper A, Barreto Romero MI, Espinoza IF, Llamas B, Haak W. AmericaPlex26: a SNaPshot multiplex system for genotyping the main human mitochondrial founder lineages of the Americas. PLoS One 2014; 9:e93292. [PMID: 24671218 PMCID: PMC3966882 DOI: 10.1371/journal.pone.0093292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Phylogeographic studies have described a reduced genetic diversity in Native American populations, indicative of one or more bottleneck events during the peopling and prehistory of the Americas. Classical sequencing approaches targeting the mitochondrial diversity have reported the presence of five major haplogroups, namely A, B, C, D and X, whereas the advent of complete mitochondrial genome sequencing has recently refined the number of founder lineages within the given diversity to 15 sub-haplogroups. We developed and optimized a SNaPshot assay to study the mitochondrial diversity in pre-Columbian Native American populations by simultaneous typing of 26 single nucleotide polymorphisms (SNPs) characterising Native American sub-haplogroups. Our assay proved to be highly sensitive with respect to starting concentrations of target DNA and could be applied successfully to a range of ancient human skeletal material from South America from various time periods. The AmericaPlex26 is a powerful assay with enhanced phylogenetic resolution that allows time- and cost-efficient mitochondrial DNA sub-typing from valuable ancient specimens. It can be applied in addition or alternative to standard sequencing of the D-loop region in forensics, ancestry testing, and population studies, or where full-resolution mitochondrial genome sequencing is not feasible.
Collapse
Affiliation(s)
- Alexandra Coutinho
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Guido Valverde
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lars Fehren-Schmitz
- Historical Anthropology and Human Ecology, Johann-Friedrich-Blumenbach Department of Zoology and Anthropology, University Goettingen, Goettingen, Germany
- Department of Anthropology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wolfgang Haak
- Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
28
|
Chaitanya L, van Oven M, Weiler N, Harteveld J, Wirken L, Sijen T, de Knijff P, Kayser M. Developmental validation of mitochondrial DNA genotyping assays for adept matrilineal inference of biogeographic ancestry at a continental level. Forensic Sci Int Genet 2014; 11:39-51. [PMID: 24631695 DOI: 10.1016/j.fsigen.2014.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) can be used for matrilineal biogeographic ancestry prediction and can thus provide investigative leads towards identifying unknown suspects, when conventional autosomal short tandem repeat (STR) profiling fails to provide a match. Recently, six multiplex genotyping assays targeting 62 ancestry-informative mitochondrial single nucleotide polymorphisms (mt-SNPs) were developed. This hierarchical system of assays allows detection of the major haplogroups present in Africa, America, Western Eurasia, Eastern Eurasia, Australia and Oceania, thus revealing the broad geographic region of matrilineal origin of a DNA donor. Here, we provide a forensic developmental validation study of five multiplex assays targeting all the 62 ancestry-informative mt-SNPs following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. We demonstrate that the assays are highly sensitive; being able to produce full profiles at input DNA amounts of as little as 1pg. The assays were shown to be highly robust and efficient in providing information from degraded samples and from simulated casework samples of different substrates such as blood, semen, hair, saliva and trace DNA samples. Reproducible results were successfully achieved from concordance testing across three independent laboratories depicting the ease and reliability of these assays. Overall, our results demonstrate the suitability of these five mt-SNP assays for application to forensic casework and other purposes aiming to establish an individual's matrilineal genetic ancestry. With this validated tool, it is now possible to determine the matrilineal biogeographic origin of unknown individuals on the level of continental resolution from forensic DNA samples to provide investigative leads in criminal and missing person cases where autosomal STR profiling is uninformative.
Collapse
Affiliation(s)
- Lakshmi Chaitanya
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, Zuid-Holland, The Netherlands
| | - Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, Zuid-Holland, The Netherlands
| | - Natalie Weiler
- Department of Human Biological Traces, Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands
| | - Joyce Harteveld
- Department of Human Biological Traces, Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands
| | - Laura Wirken
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden, University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Titia Sijen
- Department of Human Biological Traces, Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden, University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, Zuid-Holland, The Netherlands.
| |
Collapse
|
29
|
Huang CH, Chang MT, Huang L, Chua WS. Molecular discrimination and identification of Acetobacter genus based on the partial heat shock protein 60 gene (hsp60) sequences. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:213-218. [PMID: 23681743 DOI: 10.1002/jsfa.6231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND To identify the Acetobacter species using phenotypic and genotypic (16S rDNA sequence analysis) technique alone is inaccurate. The aim of this study was to use the hsp60 gene as a target for species discrimination in the genus Acetobacter, as well as to develop species-specific polymerase chain reaction and mini-sequencing methods for species identification and differentiation. RESULTS The average sequence similarity for the hsp60 gene (89.8%) among type strains was significantly less than that for the 16S rRNA gene (98.0%), and the most Acetobacter species could be clearly distinguished. In addition, a pair of species-specific primer was designed and used to specifically identify Acetobacter aceti, Acetobacter estunensis and Acetobacter oeni, but none of the other Acetobacter strains. Afterwards, two specific single-nucleotide polymorphism primers were designed and used to direct differentiate the strains belonging to the species A. aceti by mini-sequencing assay. CONCLUSION The phylogenetic relationships in the Acetobacter genus can be resolved by using hsp60 gene sequencing, and the species of A. aceti can be differentiated using novel species-specific PCR combined with the mini-sequencing technology.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Road, Hsinchu, 30062, Taiwan, ROC
| | | | | | | |
Collapse
|
30
|
Sagong B, Bae JW, Rhyu MR, Kim UK, Ye MK. Multiplex minisequencing screening for PTC genotype associated with bitter taste perception. Mol Biol Rep 2014; 41:1563-7. [PMID: 24413990 DOI: 10.1007/s11033-013-3002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 12/30/2013] [Indexed: 11/26/2022]
Abstract
Sensitivity to phenylthiocarbamide (PTC) has a bimodal distribution pattern and the genotype of the TAS2R38 gene, which is composed of combinations of three coding single nucleotide polymorphisms (SNPs), p.A49P (c.145G>C), p.V262A (c.785T>C) and p.I296 V (c.886A>G), determines the ability or inability to taste PTC. In this study, we developed a tool for genotyping of these SNPs in the TAS2R38 gene using SNaPshot minisequencing and investigated the accuracy of the tool in 100 subjects who were genotyped by Sanger sequencing. The minor allele frequencies of the three SNPs were 0.39, and these genotypes corresponded to those determined by direct sequencing. In conclusion, we successfully developed a precise and rapid genetic tool for analysis of PTC genotype associated with bitter taste perception.
Collapse
Affiliation(s)
- Borum Sagong
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Santos C, Fregel R, Cabrera VM, Álvarez L, Larruga JM, Ramos A, López MA, Pilar Aluja M, González AM. Mitochondrial DNA and Y-chromosome structure at the mediterranean and atlantic façades of the iberian peninsula. Am J Hum Biol 2013; 26:130-41. [DOI: 10.1002/ajhb.22497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 01/24/2023] Open
Affiliation(s)
- Cristina Santos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Rosa Fregel
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Vicente M. Cabrera
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Luis Álvarez
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- IPATIMUP; Institute of Molecular Pathology and Immunology of the University of Porto; 4200-465 Porto Portugal
| | - Jose M. Larruga
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Amanda Ramos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- Centre of Research in Natural Resources (CIRN), Department of Biology; University of the Azores; 9500-321 Ponta Delgada Portugal
- Molecular and Cellular Biology Institute (IBMC); University of Porto; 4150-180 Porto Portugal
| | - Miguel A. López
- Clinical Management and Biotechnology Unit; Torre Cárdena Hospital; 04008 Almería Spain
| | - María Pilar Aluja
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Ana M. González
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| |
Collapse
|
32
|
Yang L, Sun H, Chen D, Lu M, Wang J, Xu F, Hu L, Xiao J. Application of multiplex SNaPshot assay in measurement of PLAC4 RNA-SNP allelic ratio for noninvasive prenatal detection of trisomy 21. Prenat Diagn 2013; 34:139-44. [PMID: 24214739 DOI: 10.1002/pd.4271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/11/2013] [Accepted: 11/01/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Lan Yang
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| | - Haiyan Sun
- State Key Laboratory of Genetic Engineering; Fu Dan University; 200433 Shanghai China
| | - Daozhen Chen
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| | - Mudan Lu
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| | - Junfeng Wang
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| | - Fei Xu
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| | - Lingqing Hu
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| | - Jianpin Xiao
- Department of Prenatal Diagnosis Center; Wuxi Maternal and Child Health Hospital Affiliated Nanjing Medical University; 214002 Wuxi Jiangsu China
| |
Collapse
|
33
|
Templeton JEL, Brotherton PM, Llamas B, Soubrier J, Haak W, Cooper A, Austin JJ. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. INVESTIGATIVE GENETICS 2013; 4:26. [PMID: 24289217 PMCID: PMC3879034 DOI: 10.1186/2041-2223-4-26] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022]
Abstract
Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeremy J Austin
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
34
|
Zapico SC, Ubelaker DH. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences. Aging Dis 2013; 4:364-80. [PMID: 24307969 DOI: 10.14336/ad.2013.0400364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are "mitochondrial diseases", pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area.
Collapse
Affiliation(s)
- Sara C Zapico
- Smithsonian Institution, National Museum of Natural History, Department of Anthropology, Washington, DC 20560, USA
| | | |
Collapse
|
35
|
Martínez-Cortés G, Salazar-Flores J, Haro-Guerrero J, Rubi-Castellanos R, Velarde-Félix JS, Muñoz-Valle JF, López-Casamichana M, Carrillo-Tapia E, Canseco-Avila LM, Bravi CM, López-Armenta M, Rangel-Villalobos H. Maternal admixture and population structure in Mexican-Mestizos based on mtDNA haplogroups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:526-37. [PMID: 23754474 DOI: 10.1002/ajpa.22293] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
The maternal ancestry (mtDNA) has important applications in different research fields, such as evolution, epidemiology, identification, and human population history. This is particularly interesting in Mestizos, which constitute the main population in Mexico (∼93%) resulting from post-Columbian admixture between Spaniards, Amerindians, and African slaves, principally. Consequently, we conducted minisequencing analysis (SNaPshot) of 11 mitochondrial single-nucleotide polymorphisms in 742 Mestizos of 10 populations from different regions in Mexico. The predominant maternal ancestry was Native American (92.9%), including Haplogroups A, B, C, and D (47, 23.7, 15.9, and 6.2%, respectively). Conversely, European and African ancestries were less frequent (5.3 and 1.9%, respectively). The main characteristics of the maternal lineages observed in Mexican-Mestizos comprised the following: 1) contrasting geographic gradient of Haplogroups A and C; 2) increase of European lineages toward the Northwest; 3) low or absent, but homogeneous, African ancestry throughout the Mexican territory; 4) maternal lineages in Mestizos roughly represent the genetic makeup of the surrounding Amerindian groups, particularly toward the Southeast, but not in the North and West; 5) continuity over time of the geographic distribution of Amerindian lineages in Mayas; and 6) low but significant maternal population structure (FST = 2.8%; P = 0.0000). The average ancestry obtained from uniparental systems (mtDNA and Y-chromosome) in Mexican-Mestizos was correlated with previous ancestry estimates based on autosomal systems (genome-wide single-nucleotide polymorphisms and short tandem repeats). Finally, the comparison of paternal and maternal lineages provided additional information concerning the gender bias admixture, mating patterns, and population structure in Mestizos throughout the Mexican territory.
Collapse
Affiliation(s)
- Gabriela Martínez-Cortés
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pijpe J, de Voogt A, van Oven M, Henneman P, van der Gaag KJ, Kayser M, de Knijff P. Indian Ocean crossroads: human genetic origin and population structure in the Maldives. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:58-67. [PMID: 23526367 PMCID: PMC3652038 DOI: 10.1002/ajpa.22256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/05/2013] [Indexed: 11/07/2022]
Abstract
The Maldives are an 850 km-long string of atolls located centrally in the northern Indian Ocean basin. Because of this geographic situation, the present-day Maldivian population has potential for uncovering genetic signatures of historic migration events in the region. We therefore studied autosomal DNA-, mitochondrial DNA-, and Y-chromosomal DNA markers in a representative sample of 141 unrelated Maldivians, with 119 from six major settlements. We found a total of 63 different mtDNA haplotypes that could be allocated to 29 mtDNA haplogroups, mostly within the M, R, and U clades. We found 66 different Y-STR haplotypes in 10 Y-chromosome haplogroups, predominantly H1, J2, L, R1a1a, and R2. Parental admixture analysis for mtDNA- and Y-haplogroup data indicates a strong genetic link between the Maldive Islands and mainland South Asia, and excludes significant gene flow from Southeast Asia. Paternal admixture from West Asia is detected, but cannot be distinguished from admixture from South Asia. Maternal admixture from West Asia is excluded. Within the Maldives, we find a subtle genetic substructure in all marker systems that is not directly related to geographic distance or linguistic dialect. We found reduced Y-STR diversity and reduced male-mediated gene flow between atolls, suggesting independent male founder effects for each atoll. Detected reduced female-mediated gene flow between atolls confirms a Maldives-specific history of matrilocality. In conclusion, our new genetic data agree with the commonly reported Maldivian ancestry in South Asia, but furthermore suggest multiple, independent immigration events and asymmetrical migration of females and males across the archipelago.
Collapse
Affiliation(s)
- Jeroen Pijpe
- Department of Human Genetics, Leiden University Medical Center, Postzone S5, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chemale G, Paneto GG, Menezes MAM, de Freitas JM, Jacques GS, Cicarelli RMB, Fagundes PR. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework. Forensic Sci Int Genet 2013; 7:353-8. [PMID: 23510586 DOI: 10.1016/j.fsigen.2013.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 01/18/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article.
Collapse
Affiliation(s)
- Gustavo Chemale
- Laboratório de Genética Forense, Instituto Nacional de Criminalística, Diretoria Técnico-Científica, Polícia Federal, Brasília, DF, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J, Benhamamouch S, González AM. Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape. PLoS One 2013; 8:e56775. [PMID: 23431392 PMCID: PMC3576335 DOI: 10.1371/journal.pone.0056775] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.
Collapse
Affiliation(s)
- Asmahan Bekada
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Rosa Fregel
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Vicente M. Cabrera
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José M. Larruga
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José Pestano
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Soraya Benhamamouch
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Ana M. González
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
39
|
Capocasa M, Battaggia C, Anagnostou P, Montinaro F, Boschi I, Ferri G, Alù M, Coia V, Crivellaro F, Bisol GD. Detecting genetic isolation in human populations: a study of European language minorities. PLoS One 2013; 8:e56371. [PMID: 23418562 PMCID: PMC3572090 DOI: 10.1371/journal.pone.0056371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/08/2013] [Indexed: 12/01/2022] Open
Abstract
The identification of isolation signatures is fundamental to better understand the genetic structure of human populations and to test the relations between cultural factors and genetic variation. However, with current approaches, it is not possible to distinguish between the consequences of long-term isolation and the effects of reduced sample size, selection and differential gene flow. To overcome these limitations, we have integrated the analysis of classical genetic diversity measures with a Bayesian method to estimate gene flow and have carried out simulations based on the coalescent. Combining these approaches, we first tested whether the relatively short history of cultural and geographical isolation of four “linguistic islands” of the Eastern Alps (Lessinia, Sauris, Sappada and Timau) had left detectable signatures in their genetic structure. We then compared our findings to previous studies of European population isolates. Finally, we explored the importance of demographic and cultural factors in shaping genetic diversity among the groups under study. A combination of small initial effective size and continued genetic isolation from surrounding populations seems to provide a coherent explanation for the diversity observed among Sauris, Sappada and Timau, which was found to be substantially greater than in other groups of European isolated populations. Simulations of micro-evolutionary scenarios indicate that ethnicity might have been important in increasing genetic diversity among these culturally related and spatially close populations.
Collapse
Affiliation(s)
- Marco Capocasa
- Dipartimento Biologia e Biotecnologie “Charles Darwin”, Università La Sapienza, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Cinzia Battaggia
- Dipartimento di Biologia Ambientale, Università “La Sapienza”, Rome, Italy
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università “La Sapienza”, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Francesco Montinaro
- Facolta di Medicina, Istituto di Medicina Legale, Università Cattolica, Rome, Italy
| | - Ilaria Boschi
- Facolta di Medicina, Istituto di Medicina Legale, Università Cattolica, Rome, Italy
| | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, Struttura Complessa di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Milena Alù
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, Struttura Complessa di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valentina Coia
- Dipartimento di Filosofia, Storia e Beni culturali, Universita degli Studi di Trento, Trento, Italy
| | - Federica Crivellaro
- Division of Biological Anthropology, Leverhulme Centre for Human Evolutionary Studies, Cambridge, United Kingdom
| | - Giovanni Destro Bisol
- Dipartimento di Biologia Ambientale, Università “La Sapienza”, Rome, Italy
- Dipartimento Biologia e Biotecnologie “Charles Darwin”, Università La Sapienza, Rome, Italy
- * E-mail:
| |
Collapse
|
40
|
Celec P, Tretinárová D, Minárik G, Ficek A, Szemes T, Lakatošová S, Schmidtová E, Turňa J, Kádaši Ľ, Ostatníková D. Genetic polymorphisms related to testosterone metabolism in intellectually gifted boys. PLoS One 2013; 8:e54751. [PMID: 23382957 PMCID: PMC3559825 DOI: 10.1371/journal.pone.0054751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022] Open
Abstract
Prepubertal testosterone levels are lower in intellectually gifted boys. The aim of this pilot study was to analyze potential genetic factors related to testosterone metabolism in control and gifted boys. Intellectually gifted (IQ>130; n = 95) and control (n = 67) boys were genotyped. Polymorphisms of interests were chosen in genes including androgen and estrogen receptors, 5-alpha reductase, aromatase and sex hormone binding globulin. Significant differences between control and gifted boys in genotype distributions were found for ESR2 (rs928554) and SHBG (rs1799941). A significantly lower number of CAG repeats in the AR gene were found in gifted boys. Our results support the role of genetic factors related to testosterone metabolism in intellectual giftedness. Increased androgen signaling might explain previous results of lower testosterone levels in intellectually gifted boys and add to the understanding of variability in cognitive abilities.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cardoso G, Vasconcelos I, Brandão A, Silva L, Azevedo D. Analysis of eight mtDNA coding region polymorphisms for characterization of the female lineages ancestry in Alagoas, Brazil. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2013. [DOI: 10.1016/j.fsigss.2013.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Brisighelli F, Álvarez-Iglesias V, Fondevila M, Blanco-Verea A, Carracedo Á, Pascali VL, Capelli C, Salas A. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage. PLoS One 2012; 7:e50794. [PMID: 23251386 PMCID: PMC3519480 DOI: 10.1371/journal.pone.0050794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.
Collapse
Affiliation(s)
- Francesca Brisighelli
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel Fondevila
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alejandro Blanco-Verea
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX-SERGAS), CIBER enfermedades raras, Santiago de Compostela, Galicia, Spain
| | - Vincenzo L. Pascali
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
43
|
Huang CH, Chang MT, Huang MC, Wang LT, Huang L, Lee FL. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2703-2708. [PMID: 22555934 DOI: 10.1002/jsfa.5692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/20/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. RESULTS The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. CONCLUSION The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
44
|
Lee HY, Yoon JA, Yang WI, Shin KJ. A one step multiplex PCR assay for rapid screening of East Asian mtDNA haplogroups on forensic samples. Leg Med (Tokyo) 2012; 15:50-4. [PMID: 22981178 DOI: 10.1016/j.legalmed.2012.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 10/27/2022]
Abstract
The mitochondrial DNA (mtDNA) haplogroup typing has become an essential tool to study human evolutionary history and to infer the matrilineal bio-geographic ancestry. In forensic field, the screening of mtDNA haplogroups by genotyping of mtDNA single nucleotide polymorphisms (SNPs) can help guarantee the quality of mtDNA sequence data as well as can reduce the need to sequence samples that do not match. Here, a multiplex mutagenically separated (MS) polymerase chain reaction (PCR) system was developed for simultaneous rapid detection of 14 coding region SNPs and one deletion motif representing common mtDNA haplogroups of East Asia. The multiplex MS PCR system we developed has the advantage of being a one step procedure that requires only a single PCR amplification with allele-specific primers and allowing straightforward designation of haplogroups along the branches of the phylogenetic tree. Therefore, it would be a simple, rapid, and reliable detection method useful for large-scale screening of mtDNA variations to determine East Asian mtDNA haplogroups.
Collapse
Affiliation(s)
- Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | | | | | | |
Collapse
|
45
|
Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics. Int J Legal Med 2012; 126:901-16. [PMID: 22940763 DOI: 10.1007/s00414-012-0762-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 08/06/2012] [Indexed: 12/11/2022]
Abstract
Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.
Collapse
|
46
|
Mosquera-Miguel A, Torrell H, Abasolo N, Arrojo M, Paz E, Ramos-Ríos R, Agra S, Páramo M, Brenlla J, Martínez S, Vilella E, Valero J, Gutiérrez-Zotes A, Martorell L, Costas J, Salas A. No evidence that major mtDNA European haplogroups confer risk to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:414-21. [PMID: 22467472 DOI: 10.1002/ajmg.b.32044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/01/2012] [Indexed: 12/12/2022]
Abstract
Previous studies suggest that genetic factors could be involved in mitochondrial dysfunction observed in schizophrenia (SZ), some of them claiming a role of mtDNA common variants (mtSNPs) and/or haplogroups (hgs) in developing this disorder. These studies, however, have mainly been undertaken on relatively small cohorts of patients and control individuals and most have not yet been replicated. To further analyze the role of mtSNPs in SZ risk, we have carried out the largest genotyping effort to date using two Spanish case-control samples comprising a total of 942 schizophrenic patients and 1,231 unrelated controls: 454 patients and 616 controls from Santiago de Compostela (Galicia) and 488 patients and 615 controls from Reus (Catalonia). A set of 25 mtSNPs representing main branches of the European mtDNA phylogeny were genotyped in the Galician cohort and a subset of 16 out of these 25 mtSNPs was genotyped in the Catalan cohort. These 16 common variants characterize the most common European branches of the mtDNA phylogeny. We did not observe any positive association of mtSNPs and hgs with SZ. We discuss several deficiencies of previous studies that might explain the false positive nature of previous findings, including the confounding effect of population sub-structure and deficient statistical methodologies. It is unlikely that mtSNPs defining the most common European mtDNA haplogroups are related to SZ.
Collapse
Affiliation(s)
- Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rogers SM, Payton M, Allen RW, Melcher U, Carver J, Fletcher J. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus. INVESTIGATIVE GENETICS 2012; 3:10. [PMID: 22594601 PMCID: PMC3488013 DOI: 10.1186/2041-2223-3-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 05/17/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. METHOD This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. RESULT Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. CONCLUSION The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. KEYWORDS single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit.
Collapse
Affiliation(s)
- Stephanie M Rogers
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mark Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert W Allen
- Department of Forensic Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jesse Carver
- Department of Forensic Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
48
|
Huang CH, Chang MT, Huang MC, Lee FL. Rapid identification of Lactobacillus plantarum group using the SNaPshot minisequencing assay. Syst Appl Microbiol 2012; 34:586-9. [PMID: 21641139 DOI: 10.1016/j.syapm.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
This study used SNaPshot minisequencing for species identification within the Lactobacillus plantarum group. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 35 strains of L. plantarum group species. The results showed that the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus fabifermentans. In conclusion, a rapid, accurate and cost-effective assay was successfully developed for species identification of the members of the L. plantarum group.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, P.O. Box 246, Hsinchu 30099, Taiwan, ROC
| | | | | | | |
Collapse
|
49
|
Evidence of high genetic variation among linguistically diverse populations on a micro-geographic scale: a case study of the Italian Alps. J Hum Genet 2012; 57:254-60. [PMID: 22418692 DOI: 10.1038/jhg.2012.14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although essential for the fine-scale reconstruction of genetic structure, only a few micro-geographic studies have been carried out in European populations. This study analyzes mitochondrial variation (651 bp of the hypervariable region plus 17 single-nucleotide polymorphisms) in 393 samples from nine populations from Trentino (Eastern Italian Alps), a small area characterized by a complex geography and high linguistic diversity. A high level of genetic variation, comparable to geographically dispersed European groups, was observed. We found a difference in the intensity of peopling processes between two longitudinal areas, as populations from the west-central part of the region show stronger signatures of expansion, whereas those from the eastern area are closer to the expectations of a stationary demographic state. This may be explained by geomorphological factors and is also supported by archeological data. Finally, our results reveal a striking difference in the way in which the two linguistically isolated populations are genetically related to the neighboring groups. The Ladin speakers were found to be genetically close to the Italian-speaking populations and differentiated from the other Dolomitic Ladins, whereas the German-speaking Cimbri behave as an outlier, showing signatures of founder effects and low growth rate.
Collapse
|
50
|
Montesino M, Prieto L. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains. Methods Mol Biol 2012; 830:267-281. [PMID: 22139667 DOI: 10.1007/978-1-61779-461-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.
Collapse
Affiliation(s)
- Marta Montesino
- Comisaría General de Policía Científica, Servicio de Analítica, Laboratorio de ADN, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Madrid, Spain.
| | | |
Collapse
|