1
|
Sharif S, Wunder C, Amendt J, Qamar A. Variations in cuticular hydrocarbons of Calliphora vicina (Diptera: Calliphoridae) empty puparia: Insights for estimating late postmortem intervals. Int J Legal Med 2024; 138:2717-2733. [PMID: 39103637 DOI: 10.1007/s00414-024-03296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
Necrophagous flies, particularly blowflies, serve as vital indicators in forensic entomology and ecological studies, contributing to minimum postmortem interval estimations and environmental monitoring. The study investigates variations in the predominant cuticular hydrocarbons (CHCs) viz. n-C25, n-C27, n-C28, and n-C29 of empty puparia of Calliphora vicina Robineau-Desvoidy, 1830, (Diptera: Calliphoridae) across diverse environmental conditions, including burial, above-ground and indoor settings, over 90 days. Notable trends include a significant decrease in n-C25 concentrations in buried and above-ground conditions over time, while n-C27 concentrations decline in buried and above-ground conditions but remain stable indoors. Burial conditions show significant declines in n-C27 and n-C29 concentrations over time, indicating environmental influences. Conversely, above-ground conditions exhibit uniform declines in all hydrocarbons. Indoor conditions remain relatively stable, with weak correlations between weathering time and CHC concentrations. Additionally, machine learning techniques, specifically Extreme Gradient Boosting (XGBoost), are employed for age estimation of empty puparia, yielding accurate predictions across different outdoor and indoor conditions. These findings highlight the subtle responses of CHC profiles to environmental stimuli, underscoring the importance of considering environmental factors in forensic entomology and ecological research. The study advances the understanding of insect remnant degradation processes and their forensic implications. Furthermore, integrating machine learning with entomological expertise offers standardized methodologies for age determination, enhancing the reliability of entomological evidence in legal contexts and paving the way for future research and development.
Collapse
Affiliation(s)
- Swaima Sharif
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Cora Wunder
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
- Institute of Legal Medicine, Johannes Gutenberg University Medical Center, Am Pulverturm 3, 55131, Mainz, Germany
| | - Jens Amendt
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Ayesha Qamar
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
2
|
Bertrand B, Clauzel T, Richardin P, Bécart A, Morbidelli P, Hédouin V, Marques C. Application and implications of radiocarbon dating in forensic case work: when medico-legal significance meets archaeological relevance. Forensic Sci Res 2024; 9:owae046. [PMID: 39435462 PMCID: PMC11491528 DOI: 10.1093/fsr/owae046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/12/2024] [Indexed: 10/23/2024] Open
Abstract
The estimation of the postmortem interval for skeletal remains is a crucial aspect of forensic anthropology. This paper illustrates the importance of radiocarbon analysis for establishing medico-legal significance and supporting forensic identification, through the analysis of three case studies for which the years of both birth and death were investigated. In Audresselles, Northern France, a partial skull was discovered with no contextual information or identity. Radiocarbon dating yielded an average calibrated calendar age of 4232 BCE (92.5% probability), indicating significant archaeological value but no forensic relevance. In the second case, skeletal remains were found in the flooded underground of a historical fort at Wimereux, Northern France, also with no identity. Radiocarbon dating based on the bomb-pulse curve indicated a calibrated date of death in 1962 CE (37.3% probability) or 1974-1975 CE (58.1% probability), both surpassing the French statute of limitations. Lastly, a skeleton with a suspected identity was discovered near Valenciennes, Northern France, and various biological tissues underwent radiocarbon dating. A bone sample suggested a calibrated date of death of 1998-2002 CE (84.6% probability), differing from a hair sample (2013-2018 CE, 83.3% probability) because of the slower bone tissue remodeling process. DNA analysis confirmed the person's identity, reported missing a decade prior to the discovery of the remains, following the alignment of the radiocarbon results with the individual's year of birth based on dental tissues and year of death. These case studies reveal that traditional radiocarbon dating and bomb-pulse dating are essential tools for estimating the postmortem interval, providing mutual benefits for archaeologists, forensic anthropologists, and the criminal justice system. Key points Traditional radiocarbon dating and bomb-pulse dating are essential tools to establish the archaeological relevance or medico-legal significance of human skeletal remains.Bomb-pulse dating enables assessment of an individual's years of birth and death.Bomb-pulse dating helps to narrow down the pool of candidates for identification.Radiocarbon analysis provides mutual benefits for archaeologists, forensic anthropologists, and the criminal justice system.
Collapse
Affiliation(s)
- Benoit Bertrand
- Univ. Lille, CHU Lille, ULR 7367—UTML&A—Unité de Taphonomie Médico-Légale et Anatomie, Lille, France
- Muséum National d'Histoire Naturelle, Département Homme et Environnement, UMR 7194—HNHP, Institut de Paléontologie Humaine, Panhard, Paris, France
| | - Thibault Clauzel
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Orme des Merisiers, Gif-sur-Yvette Cedex, France
| | - Pascale Richardin
- Centre de Recherche et de Restauration Des Musées de France (C2RMF), Palais du Louvre, FRANCE/CNRS-UMR8068 Technologie et Ethnologie des Mondes PréhistoriqueS (TEMPS), Université Paris-Nanterre, Paris, France
| | - Anne Bécart
- Univ. Lille, CHU Lille, ULR 7367—UTML&A—Unité de Taphonomie Médico-Légale et Anatomie, Lille, France
| | - Philippe Morbidelli
- Univ. Lille, CHU Lille, ULR 7367—UTML&A—Unité de Taphonomie Médico-Légale et Anatomie, Lille, France
| | - Valery Hédouin
- Univ. Lille, CHU Lille, ULR 7367—UTML&A—Unité de Taphonomie Médico-Légale et Anatomie, Lille, France
| | - Carina Marques
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra Ed. São Bento, Calçada Martim de Freitas, Coimbra, Portugal
- Department of Anthropology and School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, University Dr, Edinburg, TX, USA
| |
Collapse
|
3
|
Pupilli F, Tavoni M, Marsan O, Drouet C, Tampieri A, Sprio S. Tuning Mg Doping and Features of Bone-like Apatite Nanoparticles Obtained via Hydrothermal Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16557-16570. [PMID: 39056438 DOI: 10.1021/acs.langmuir.4c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Nanocrystalline apatites have been intensively studied for decades, not only for their well-known mimesis of bone apatite but also for applicative purposes, whether as biomaterials for skeletal repair or more recently for a variety of nanomedical applications enabled by their peculiar surface characteristics. Particularly, ion-doped apatites are of great interest because the incorporation of foreign ions in the composition of apatite (nano)crystals alters the bulk and surface properties, modifying their ability to interact with the external environment. This is clearly seen in the physiology of bone tissue, whose mineral phase, a low crystallinity apatitic phase, can dynamically exchange ions with cells, thus driving bone metabolism. Taking bone mineral as a model, the present work describes the development of Mg-doped hydroxyapatite nanoparticles, exploiting hydrothermal synthesis to achieve extents of Mg2+ doping hardly achieved before and using citrate to develop stable apatite colloidal dispersions. Morphological and physicochemical analyses, associated with in-depth investigation of ions populating the apatitic lattice and the nonapatitic surface layer, concurred to demonstrate the cooperative presence of Mg2+ and citrate ions, affecting the dynamic ion retention/release mechanisms. Achieving high Mg2+ doping rates and understanding how Mg doping translates into surface activation of apatite-based nanoparticles is expected to foster the design of novel smart and tunable devices, to adsorb and release ionic species and cargo molecules, with potential innovations in the biomedical field or even beyond, as in catalysis or for environmental remediation.
Collapse
Affiliation(s)
- Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Olivier Marsan
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 Allee Emile Monso, Toulouse Cedex 4 31030, France
| | - Christophe Drouet
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
- CIRIMAT, CNRS, Université de Toulouse, Ensiacet, 4 Allee Emile Monso, Toulouse Cedex 4 31030, France
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramic Materials-National Research Council of Italy (ISSMC-CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
4
|
Galassi FM, Lorkiewicz W, Filipiak J, Nikodem A, Żądzińska E. Age- and sex-related changes in vertebral trabecular bone architecture in Neolithic and Mediaeval populations from Poland. Sci Rep 2024; 14:9977. [PMID: 38693297 PMCID: PMC11063184 DOI: 10.1038/s41598-024-59946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brześć Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.
Collapse
Affiliation(s)
- Francesco Maria Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Filipiak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Elżbieta Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Biological Anthropology and Comparative Anatomy Research Unit, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
5
|
Schmidt VM, Zelger P, Wöss C, Fodor M, Hautz T, Schneeberger S, Huck CW, Arora R, Brunner A, Zelger B, Schirmer M, Pallua JD. Handheld hyperspectral imaging as a tool for the post-mortem interval estimation of human skeletal remains. Heliyon 2024; 10:e25844. [PMID: 38375262 PMCID: PMC10875450 DOI: 10.1016/j.heliyon.2024.e25844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
In forensic medicine, estimating human skeletal remains' post-mortem interval (PMI) can be challenging. Following death, bones undergo a series of chemical and physical transformations due to their interactions with the surrounding environment. Post-mortem changes have been assessed using various methods, but estimating the PMI of skeletal remains could still be improved. We propose a new methodology with handheld hyperspectral imaging (HSI) system based on the first results from 104 human skeletal remains with PMIs ranging between 1 day and 2000 years. To differentiate between forensic and archaeological bone material, the Convolutional Neural Network analyzed 65.000 distinct diagnostic spectra: the classification accuracy was 0.58, 0.62, 0.73, 0.81, and 0.98 for PMIs of 0 week-2 weeks, 2 weeks-6 months, 6 months-1 year, 1 year-10 years, and >100 years, respectively. In conclusion, HSI can be used in forensic medicine to distinguish bone materials >100 years old from those <10 years old with an accuracy of 98%. The model has adequate predictive performance, and handheld HSI could serve as a novel approach to objectively and accurately determine the PMI of human skeletal remains.
Collapse
Affiliation(s)
- Verena-Maria Schmidt
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Claudia Wöss
- Institute of Forensic Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Margot Fodor
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Wolfgang Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Woess C, Huck CW, Badzoka J, Kappacher C, Arora R, Lindtner RA, Zelger P, Schirmer M, Rabl W, Pallua J. Raman spectroscopy for postmortem interval estimation of human skeletal remains: A scoping review. JOURNAL OF BIOPHOTONICS 2023; 16:e202300189. [PMID: 37494000 DOI: 10.1002/jbio.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
Estimating postmortem intervals (PMI) is crucial in forensic investigations, providing insights into criminal cases and determining the time of death. PMI estimation relies on expert experience and a combination of thanatological data and environmental factors but is prone to errors. The lack of reliable methods for assessing PMI in bones and soft tissues necessitates a better understanding of bone decomposition. Several research groups have shown promise in PMI estimation in skeletal remains but lack valid data for forensic cases. Current methods are costly, time-consuming, and unreliable for PMIs over 5 years. Raman spectroscopy (RS) can potentially estimate PMI by studying chemical modifications in bones and teeth correlated with burial time. This review summarizes RS applications, highlighting its potential as an innovative, nondestructive, and fast technique for PMI estimation in forensic medicine.
Collapse
Affiliation(s)
- C Woess
- Institute of Forensic Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - J Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - C Kappacher
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - R Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - R A Lindtner
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - M Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Innsbruck, Austria
| | - W Rabl
- Institute of Forensic Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Pallua
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Franceschetti L, Amadasi A, Bugelli V, Bolsi G, Tsokos M. Estimation of Late Postmortem Interval: Where Do We Stand? A Literature Review. BIOLOGY 2023; 12:783. [PMID: 37372068 PMCID: PMC10295266 DOI: 10.3390/biology12060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Estimating time since death can be challenging for forensic experts, and is one of the most challenging activities concerning the forensic world. Various methods have been assessed to calculate the postmortem interval on dead bodies in different stages of decomposition and are currently widely used. Nowadays, the only well-recognized dating technique is carbon-14 radioisotope measurement, whereas other methods have been tested throughout the years involving different disciplines with different and sometimes not univocal results. Today, there is no precise and secure method to precisely determine time since death, and late postmortem interval estimation remains one of the most debated topics in forensic pathology. Many proposed methods have shown promising results, and it is desirable that with further studies some of them might become acknowledged techniques to resolve such a difficult and important challenge. The present review aims at presenting studies about the different techniques that have been tested in order to find a valuable method for estimating time since death for skeletal remains. By providing a comprehensive overview, the purpose of this work is to offer readers new perspectives on postmortem interval estimation and to improve current practice in the management of skeletal remains and decomposed bodies.
Collapse
Affiliation(s)
- Lorenzo Franceschetti
- Istituto di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Luigi Mangiagalli 37, 20133 Milan, Italy;
| | - Alberto Amadasi
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Turmstr. 21 (Haus M), 10559 Berlin, Germany
| | - Valentina Bugelli
- South-East Tuscany Local Health Unit, Department of Legal Medicine, via Cimabue 109, 58100 Grosseto, Italy;
| | - Giulia Bolsi
- Istituto di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Luigi Mangiagalli 37, 20133 Milan, Italy;
| | - Michael Tsokos
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Turmstr. 21 (Haus M), 10559 Berlin, Germany
| |
Collapse
|
8
|
Schmidt VM, Zelger P, Woess C, Pallua AK, Arora R, Degenhart G, Brunner A, Zelger B, Schirmer M, Rabl W, Pallua JD. Application of Micro-Computed Tomography for the Estimation of the Post-Mortem Interval of Human Skeletal Remains. BIOLOGY 2022; 11:biology11081105. [PMID: 35892961 PMCID: PMC9331256 DOI: 10.3390/biology11081105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022]
Abstract
It is challenging to estimate the post-mortem interval (PMI) of skeletal remains within a forensic context. As a result of their interactions with the environment, bones undergo several chemical and physical changes after death. So far, multiple methods have been used to follow up on post-mortem changes. There is, however, no definitive way to estimate the PMI of skeletal remains. This research aimed to propose a methodology capable of estimating the PMI using micro-computed tomography measurements of 104 human skeletal remains with PMIs between one day and 2000 years. The present study indicates that micro-computed tomography could be considered an objective and precise method of PMI evaluation in forensic medicine. The measured parameters show a significant difference regarding the PMI for Cort Porosity p < 0.001, BV/TV p > 0.001, Mean1 p > 0.001 and Mean2 p > 0.005. Using a machine learning approach, the neural network showed an accuracy of 99% for distinguishing between samples with a PMI of less than 100 years and archaeological samples.
Collapse
Affiliation(s)
- Verena-Maria Schmidt
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; (V.-M.S.); (C.W.); (W.R.)
| | - Philipp Zelger
- University Clinic for Hearing, Voice and Speech Disorders, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Claudia Woess
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; (V.-M.S.); (C.W.); (W.R.)
| | - Anton K. Pallua
- Former Institute for Computed Tomography-Neuro CT, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Rohit Arora
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Gerald Degenhart
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Andrea Brunner
- Institute of Pathology, Neuropathology, Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria; (A.B.); (B.Z.)
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria; (A.B.); (B.Z.)
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| | - Walter Rabl
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria; (V.-M.S.); (C.W.); (W.R.)
| | - Johannes D. Pallua
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|
9
|
Post-Mortem Interval of Human Skeletal Remains Estimated with Handheld NIR Spectrometry. BIOLOGY 2022; 11:biology11071020. [PMID: 36101401 PMCID: PMC9312135 DOI: 10.3390/biology11071020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Estimating the post-mortem interval (PMI) of human skeletal remains is a critical issue of forensic analysis, with important limitations such as sample preparation and practicability. In this work, NIR spectroscopy (NIRONE® Sensor X; Spectral Engines, 61449, Germany) was applied to estimate the PMI of 104 human bone samples between 1 day and 2000 years. Reflectance data were repeatedly collected from eight independent spectrometers between 1950 and 1550 nm with a spectral resolution of 14 nm and a step size of 2 nm, each from the external and internal bone. An Artificial Neural Network was used to analyze the 66,560 distinct diagnostic spectra, and clearly distinguished between forensic and archaeological bone material: the classification accuracies for PMIs of 0−2 weeks, 2 weeks−6 months, 6 months−1 year, 1 year−10 years, and >100 years were 0.90, 0.94, 0.94, 0.93, and 1.00, respectively. PMI of archaeological bones could be determined with an accuracy of 100%, demonstrating the adequate predictive performance of the model. Applying a handheld NIR spectrometer to estimate the PMI of human skeletal remains is rapid and extends the repertoire of forensic analyses as a distinct, novel approach.
Collapse
|
10
|
Ortiz-Herrero L, Uribe B, Armas LH, Alonso ML, Sarmiento A, Irurita J, Alonso RM, Maguregui MI, Etxeberria F, Bartolomé L. Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics. Forensic Sci Int 2021; 329:111087. [PMID: 34736052 DOI: 10.1016/j.forsciint.2021.111087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
An important demand exists in the field of forensic analysis to objectively determine the post-mortem interval (PMI) when human skeletal remains are discovered. It is widely known that bones undergo different chemical and physical processes after death, mainly due to their interaction with the environment in which they are found, although it is not known exactly what these processes consist of. Multiple techniques have been used so far to follow up these and other post-mortem changes and thus establish the time elapsed since the individual's death, but they present important drawbacks in terms of reliability and accuracy. The aim of this research was to propose an analytical methodology capable of determining the PMI by using non-destructive Raman spectroscopy measurements of human skeletal remains. The recorded Raman spectra provided valuable and potentially useful information from which a multivariate study was performed by means of orthogonal partial least squares regression (OPLSR) in order to correlate the PMI with the detected spectral modifications. A collection of 53 real human skeletal remains with known PMI (15 years ≤ PMI ≤ 87 years) was analysed and used for building and validating the OPLS model. The PMI of 10 out of 14 validation samples could be determined with an accuracy error of less than 30%, demonstrating the adequate predictive performance of the OPLS model even in spite of the large inter-individual variability it handled. This opens up the possibility of applying the OPLS model in combination with non-destructive techniques to the determination of the PMI of human skeletal remains that have been buried in conditions similar or equal to those of cemetery niches and in a geographic location with a Mediterranean climate, which is an important achievement for forensic medicine and anthropology.
Collapse
Affiliation(s)
- L Ortiz-Herrero
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - B Uribe
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - L Hidalgo Armas
- Advances Research Facilities (SGIker), Martina Casiano Technology Platform, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - M L Alonso
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - A Sarmiento
- Advances Research Facilities (SGIker), Coupled Multispectroscopy Singular Laboratory (Raman-LASPEA), Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - J Irurita
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Av. de la Investigación 11, 18016 Granada, Spain.
| | - R M Alonso
- Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - M I Maguregui
- Painting Department, Faculty of Fine Arts, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| | - F Etxeberria
- Department of Physical Anthropology, Aranzadi Science Society, Zorroagagaina 11, 20014 Donostia, Gipuzkoa, Spain; Department of Legal and Forensic Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Paseo Dr. J. Beguiristain 105, 20014 Donostia, Gipuzkoa, Spain.
| | - L Bartolomé
- Advances Research Facilities (SGIker), Martina Casiano Technology Platform, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain.
| |
Collapse
|
11
|
Dumitrescu CR, Neacsu IA, Surdu VA, Nicoara AI, Iordache F, Trusca R, Ciocan LT, Ficai A, Andronescu E. Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2289. [PMID: 34578603 PMCID: PMC8469747 DOI: 10.3390/nano11092289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powder was the microwave-assisted hydrothermal technique, starting from annealed egg-shells as the precursor for lime and di-base ammonium phosphate as the phosphate precursor. The powders were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), X-ray fluorescence spectroscopy (XRF), and cytotoxicity assay in contact with amniotic fluid stem cell (AFSC) cultures. Compositional and structural similarities or differences between the powder synthesized from egg-shells (HA1) and the two commercial xenograft powders-Bio-Oss®, totally deproteinized cortical bovine bone, and Gen-Os®, partially deproteinized porcine bone-were revealed. The HA1 specimen presented a single mineral phase as polycrystalline apatite with a high crystallinity (Xc 0.92), a crystallite size of 43.73 nm, preferential growth under the c axes (002) direction, where it mineralizes in bone, a nano-rod particle morphology, and average lengths up to 77.29 nm and diameters up to 21.74 nm. The surface of the HA1 nanoparticles and internal mesopores (mean size of 3.3 ± 1.6 nm), acquired from high-pressure hydrothermal maturation, along with the precursor's nature, could be responsible for the improved biocompatibility, biomolecule adhesion, and osteoconductive abilities in bone substitute applications. The cytotoxicity assay showed a better AFSC cell viability for HA1 powder than the commercial xenografts did, similar oxidative stress to the control sample, and improved results compared with Gen-Os. The presented preliminary biocompatibility results are promising for bone tissue regeneration applications of HA1, and the study will continue with further tests on osteoblast differentiation and mineralization.
Collapse
Affiliation(s)
- Cristina Rodica Dumitrescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.R.D.); (V.A.S.); (A.I.N.); (A.F.); (E.A.)
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.R.D.); (V.A.S.); (A.I.N.); (A.F.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.R.D.); (V.A.S.); (A.I.N.); (A.F.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Adrian Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.R.D.); (V.A.S.); (A.I.N.); (A.F.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Florin Iordache
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agronomic Science and Veterinary Medicine, 011464 Bucharest, Romania;
| | - Roxana Trusca
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Lucian Toma Ciocan
- Prosthetics Technology and Dental Materials Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.R.D.); (V.A.S.); (A.I.N.); (A.F.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (C.R.D.); (V.A.S.); (A.I.N.); (A.F.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
12
|
Yu K, Wu H, Shen C, Li H, Wei X, Liu R, Cai W, Wang G, Sun Q, Wang Z. Identification of antemortem and postmortem fractures in a complex environment by FTIR spectroscopy based on a rabbit tibial fracture self-control model. Int J Legal Med 2021; 135:2385-2394. [PMID: 34173849 DOI: 10.1007/s00414-021-02633-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
The identification of antemortem and postmortem fractures is a critical and challenging task for forensic researchers. Based on our preliminary studies, we explored whether the combination of Fourier transform infrared spectroscopy (FTIR) and chemometrics can identify antemortem and postmortem fractures in complex environments. The impacts of the four environments on the bone spectrum were analyzed by principal component analysis (PCA). It was found that the bone degradation rate in the submerged and ground surface (GS) environments was higher than that in the buried and constant temperature and moisture (CTM) environments. Additionally, the bone degradation rate in buried environment higher than that in the CTM environment. The average spectrum, PCA and partial least squares discriminant analysis (PLS-DA) results all revealed that there were significant differences between the antemortem fracture and the remaining three groups in a complex environment. Compared with the antemortem fracture, the antemortem fracture control (AFC) and postmortem fracture control (PFC) tended to be more similar to the postmortem fracture. According to the loading plot, amide I and amide II were the main components that contributed to the identification of the antemortem fracture, AFC, postmortem fracture, and PFC. Finally, we established a differential model for the antemortem and postmortem fractures (an accuracy of 96.9%), and a differentiation model for the antemortem fracture, AFC, postmortem fracture, and PFC (an accuracy of 87.5%). In conclusion, FTIR spectroscopy is a reliable tool for the identification of antemortem and postmortem fractures in complex environments.
Collapse
Affiliation(s)
- Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chen Shen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Huiyu Li
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ruina Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wumin Cai
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
13
|
XRD and ATR-FTIR techniques for integrity assessment of gamma radiation sterilized cortical bone pretreated by antioxidants. Cell Tissue Bank 2020; 22:305-321. [PMID: 33165827 DOI: 10.1007/s10561-020-09879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Terminal sterilization of bone allograft by gamma radiation is required to reduce the risk of infection. Free radical scavengers could be utilized to minimize the deteriorating effects of gamma radiation on bone allograft mechanical properties. The objective of this research is to assess the changes in structural and chemical composition induced by hydroxytyrosol (HT) and alpha lipoic acid (ALA) free radical scavengers in gamma sterilized cortical bone. Bovine femurs specimens were soaked in different concentrations of HT and ALA for 7 and 3 days respectively before irradiation with 35 KGy gamma radiation. The attenuated total reflection-Fourier transform infrared spectroscopy and the X-ray diffraction techniques were utilized to analyze the changes in chemical composition induced by irradiation in the presence of free radical scavengers. A significant increase in the proportion of amide I and amide II to phosphate was noticed in the irradiated group, while in the pretreated groups with ALA and HT this effect was minimized. In addition, gamma radiation reduced the mature to immature cross links while ALA and HT alleviated this reduction. No significant changes were noticed in the mineral crystallinity or crystal size. Bone chemical structure has been changed due to gamma irradiation and these changes are mainly relevant to amide I, amide II proportions and collagen crosslinks. The deteriorating effects of gamma sterilization dose (35 kGy) on chemical structure of bone allograft can be alleviated by using (HT) and (ALA) free radical scavengers before irradiation.
Collapse
|
14
|
Yu K, Wang G, Cai W, Wu D, Wei X, Zhang K, Liu R, Sun Q, Wang Z. Identification of antemortem, perimortem and postmortem fractures by FTIR spectroscopy based on a rabbit tibial fracture model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118535. [PMID: 32502812 DOI: 10.1016/j.saa.2020.118535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The identification of antemortem, perimortem and postmortem fractures is very important for forensic pathologists and anthropologists. However, traditional methods are subjective, time-consuming, and have low accuracy, which do not fundamentally solve the problem. In this study, we utilized Fourier transform infrared (FTIR) spectroscopy and chemometrics to identify antemortem, perimortem and postmortem fractures in a rabbit tibial fracture model. Based on the results of the principal component analysis (PCA), changes in the ante-perimortem fracture repair process are mainly associated with protein variations, while postmortem fractures are more likely to result in lipid changes during degradation. Then, a partial least squares discriminant analysis (PLS-DA) was performed to assess the classification ability of the training and predictive datasets, with classification accuracies of 88.9% and 86.7%, respectively. According to the latent variable 1 (LV1) loading plot, amide I and amide II (proteins) are mostly classified as ante-perimortem and postmortem fractures. In conclusion, FTIR spectroscopy is a reliable tool to identify antemortem, perimortem and postmortem fractures. FTIR has the advantages of rapid, objective and strong discrimination. and shows great potential for analyzing forensic cases under actual natural conditions.
Collapse
Affiliation(s)
- Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wumin Cai
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Di Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruina Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Bayarı SH, Özdemir K, Sen EH, Araujo-Andrade C, Erdal YS. Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118311. [PMID: 32330809 DOI: 10.1016/j.saa.2020.118311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Examining diagenetic parameters such as the organic carbonate contents and the crystallinity of bone apatite quantify the post-mortem alteration of bone. Burial conditions are one of the factors that can influence the diagenesis process. We studied the changes to the organic and mineral components and crystallinity of human bone remains from five Medieval sites in Turkey: Hakemi Use, Komana, İznik, Oluz Höyük and Tasmasor using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and principal component analysis (PCA). Analysis of spectral band ratios related to organic and mineral components of bone demonstrated differences in the molecular content in the skeletal remains from the five sites. In order to examine the degree of carbonation of a phosphate matrix, curve-fitting procedures were applied to the carbonate band. We found that the infrared crystallinity index appears to not be sensitive to carbonate content at room temperature for the bone remains studied here. The recrystallization process in bone remains behaved differently among the archaeological sites. The results demonstrate that the burial environments differently affect the organic and mineral components of archaeological bone remains.
Collapse
Affiliation(s)
- Sevgi Haman Bayarı
- Hacettepe University, Department of Physics Eng., 06800 Beytepe-Ankara, Turkey.
| | - Kameray Özdemir
- Hacettepe University, Department of Anthropology, 06800 Beytepe-Ankara, Turkey
| | - Elif Hilal Sen
- Hacettepe University, Department of Physics Eng., 06800 Beytepe-Ankara, Turkey
| | | | - Yılmaz Selim Erdal
- Hacettepe University, Department of Anthropology, 06800 Beytepe-Ankara, Turkey; Hacettepe University Skeletal Biology Lab (Husbio_l), 06800 Ankara, Turkey
| |
Collapse
|
16
|
Pedrosa M, Curate F, Batista de Carvalho LAE, Marques MPM, Ferreira MT. Beyond metrics and morphology: the potential of FTIR-ATR and chemometrics to estimate age-at-death in human bone. Int J Legal Med 2020; 134:1905-1914. [DOI: 10.1007/s00414-020-02310-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023]
|
17
|
Tampieri A, Ruffini A, Ballardini A, Montesi M, Panseri S, Salamanna F, Fini M, Sprio S. Heterogeneous chemistry in the 3-D state: an original approach to generate bioactive, mechanically-competent bone scaffolds. Biomater Sci 2019; 7:307-321. [PMID: 30468436 DOI: 10.1039/c8bm01145a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present work investigates heterogeneous gas-solid reactions involved in the biomorphic transformation of natural wood into large 3-D hydroxyapatite (HA) scaffolds recapitulating physico-chemical, morphological and mechanical features typical of natural bone. In particular, we found that the use of a reactive CO2/H2O gas mixture, under supercritical conditions at high pressure, permits to control heterogeneous CaO-CO2 reactions throughout the whole bulk and to direct the nucleation-growth of CaCO3 at a relatively low temperature, thus obtaining a highly reactive 3-D precursor enabling the formation of a large biomorphic HA scaffold preserving fine nanostructure by a hydrothermal process. To the best of our knowledge, the application of heterogeneous chemical reactions in the 3-D state is an original way to generate large HA scaffolds maintaining bio-relevant ionic substitutions, with specific regard to Mg2+, Sr2+ and CO32- ions, conferring a superior ability to guide cell fate. We hypothesize that the original nanostructure of the final 3-D HA scaffold, not achievable by the classic sintering procedure, and the multi-scale hierarchical organization inherited by the original template, account for its high compression strength with damage-tolerant mechanical behaviour. The ability of the new scaffold to induce bone regeneration is attested by the overexpression of genes, early and late markers of the osteogenic differentiation pathway, and by the in vivo osteoinductivity. We hypothesize that the unique association of bioactive chemical composition, nanostructure and multi-scale hierarchy can synergistically act as instructing signals for cells to generate new bone tissue with organized 3-D architecture. These results point to its great applicative potential for the regeneration of large bone defects, which is a still unmet clinical need.
Collapse
Affiliation(s)
- Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pallua JD, Brunner A, Zelger B, Stalder R, Unterberger SH, Schirmer M, Tappert MC. Clinical infrared microscopic imaging: An overview. Pathol Res Pract 2018; 214:1532-1538. [PMID: 30220435 DOI: 10.1016/j.prp.2018.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 11/16/2022]
Abstract
New developments in Mid-infrared microscopic imaging instrumentation and data analysis have turned this method into a conventional technique. This imaging method offers a global analysis of samples, with a resolution close to the cellular level enabling the acquisition of local molecular expression profiles. It is possible to get chemo-morphological information about the tissue status, which represents an essential benefit for future analytical interpretation of pathological changes of tissue. In this review, we give an overview of Mid-infrared microscopic imaging and its applications in clinical research.
Collapse
Affiliation(s)
- J D Pallua
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria; Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria.
| | - A Brunner
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - B Zelger
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - R Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - S H Unterberger
- Material-Technology, Leopold-Franzens University Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
| | - M Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - M C Tappert
- Hyperspectral Intelligence Inc., Box 851, V0N 1V0, Gibsons, Canada
| |
Collapse
|
19
|
Chikhani M, Wuhrer R, Green H. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy. J Forensic Sci 2018; 63:1809-1812. [DOI: 10.1111/1556-4029.13782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Madelen Chikhani
- School of Science and Health; Western Sydney University; Building M15 Richmond NSW Australia 2753
| | - Richard Wuhrer
- Advanced Materials Characterisation Facility; Western Sydney University; Building Eha Victoria Road Rydalmere NSW Australia 2116
| | - Hayley Green
- School of Science and Health; Western Sydney University; Building 24 Campbelltown NSW Australia 2560
| |
Collapse
|
20
|
Wang Q, Li W, Liu R, Zhang K, Zhang H, Fan S, Wang Z. Human and non-human bone identification using FTIR spectroscopy. Int J Legal Med 2018; 133:269-276. [PMID: 29549421 DOI: 10.1007/s00414-018-1822-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Human and non-human identification of unknown skeletal remains is of great importance in forensic and anthropologic contexts. However, the traditional morphological methods for bone species identification are subjective or time-consuming. Here, we utilized Fourier transform infrared (FTIR) spectroscopy and chemometric methods to determinate the spectral variances between human and non-human (i.e., pig, goat, and cow) bones. To simulate real forensic situations as much as possible, fresh, boiled, and decomposed bones were included in this study. Principal component analysis (PCA) results illustrated pig bones were more sensitive to the environmental and external factors than other species studied in this work. Thus, pig bone might not be a suitable proxy for human bone in the study of postmortem changes. More importantly, score plots of PCA results showed clear separation with a slight overlap between the human and non-human fresh bones, but it failed to distinguish the boiled and decomposed bones. Then, partial least squares discriminant analysis (PLS-DA) was employed, and both internal and external validations were conducted to assess its classification ability, which resulted in 99.72 and 99.53% accuracy, respectively. According to the loading plots of PCA and PLS-DA, the spectral diversity was mainly due to the inorganic portion (i.e., carbonates and phosphates), which can remain relatively stable under various conditions. As such, our results illustrate that FTIR spectroscopy could serve as a reliable tool to assist in bone species determination and also has great potential in real forensic cases with natural conditions.
Collapse
Affiliation(s)
- Qi Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Public Security Technology, Railway Police College, Zhengzhou, Henan, China
| | - Ruina Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haohui Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanliang Fan
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. Forensic Sci Int 2017; 281:113-120. [DOI: 10.1016/j.forsciint.2017.10.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/16/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023]
|
22
|
New hydroxyapatite nanophases with enhanced osteogenic and anti-bacterial activity. J Biomed Mater Res A 2017; 106:521-530. [DOI: 10.1002/jbm.a.36249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/04/2023]
|
23
|
Creagh D, Cameron A. Estimating the Post-Mortem Interval of skeletonized remains: The use of Infrared spectroscopy and Raman spectro-microscopy. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Amadasi A, Cappella A, Cattaneo C, Cofrancesco P, Cucca L, Merli D, Milanese C, Pinto A, Profumo A, Scarpulla V, Sguazza E. Determination of the post mortem interval in skeletal remains by the comparative use of different physico-chemical methods: Are they reliable as an alternative to 14C? HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:213-221. [DOI: 10.1016/j.jchb.2017.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2017] [Indexed: 11/26/2022]
|
25
|
Woess C, Unterberger SH, Roider C, Ritsch-Marte M, Pemberger N, Cemper-Kiesslich J, Hatzer-Grubwieser P, Parson W, Pallua JD. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains. PLoS One 2017; 12:e0174552. [PMID: 28334006 PMCID: PMC5363948 DOI: 10.1371/journal.pone.0174552] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/11/2017] [Indexed: 11/18/2022] Open
Abstract
Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time. Cluster-analyses of data from Raman microscopic imaging reconstructed histo-anatomical features in comparison to the light microscopic image and finally, by application of principal component analyses (PCA), it was possible to see a clear distinction between forensic and archaeological bone samples. Hence, the spectral characterization of inorganic and organic compounds by the afore mentioned techniques, followed by analyses such as multivariate imaging analysis (MIAs) and principal component analyses (PCA), appear to be suitable for the post mortem interval (PMI) estimation of human skeletal remains.
Collapse
Affiliation(s)
- Claudia Woess
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Clemens Roider
- Division for Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Ritsch-Marte
- Division for Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadin Pemberger
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold Franzens University of Innsbruck, Innsbruck, Austria
| | - Jan Cemper-Kiesslich
- Interfaculty Department of Legal Medicine, University of Salzburg, Salzburg, Austria
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Dominikus Pallua
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Capasso L, D’Anastasio R, Guarnieri S, Viciano J, Mariggiò M. Bone natural autofluorescence and confocal laser scanning microscopy: Preliminary results of a novel useful tool to distinguish between forensic and ancient human skeletal remains. Forensic Sci Int 2017; 272:87-96. [DOI: 10.1016/j.forsciint.2017.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/26/2016] [Accepted: 01/15/2017] [Indexed: 10/20/2022]
|
27
|
Amadasi A, Camici A, Porta D, Cucca L, Merli D, Milanese C, Profumo A, Rassifi N, Cattaneo C. Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer? J Forensic Sci 2017; 62:1297-1303. [PMID: 28144942 DOI: 10.1111/1556-4029.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
Abstract
The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1-14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP-OES)/plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT-IR, ICP-OES, and EDX.
Collapse
Affiliation(s)
- Alberto Amadasi
- LABANOF, Laboratorio di Antropologia ed Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milano, Italy
| | - Arianna Camici
- LABANOF, Laboratorio di Antropologia ed Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milano, Italy
| | - Davide Porta
- LABANOF, Laboratorio di Antropologia ed Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milano, Italy
| | - Lucia Cucca
- Dipartimento di Chimica, Università di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniele Merli
- Dipartimento di Chimica, Università di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Chiara Milanese
- Dipartimento di Chimica, Università di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Antonella Profumo
- Dipartimento di Chimica, Università di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Nabila Rassifi
- Dipartimento di Chimica, Università di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratorio di Antropologia ed Odontologia Forense, Sezione di Medicina Legale, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milano, Italy
| |
Collapse
|
28
|
Lisowska-Gaczorek A, Kozieł S, Cienkosz-Stepańczak B, Mądrzyk K, Pawlyta J, Gronkiewicz S, Wołoszyn M, Szostek K. An analysis of the origin of an early medieval group of individuals from Gródek based on the analysis of stable oxygen isotopes. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2016; 67:313-27. [DOI: 10.1016/j.jchb.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
|
29
|
Vassalo AR, Cunha E, de Carvalho LAEB, Gonçalves D. Rather yield than break: assessing the influence of human bone collagen content on heat-induced warping through vibrational spectroscopy. Int J Legal Med 2016; 130:1647-1656. [DOI: 10.1007/s00414-016-1400-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 06/13/2016] [Indexed: 01/10/2023]
|
30
|
Szostek K, Haduch E, Stepańczak B, Kruk J, Szczepanek A, Pawlyta J, Głąb H, Milisauskas S. Isotopic composition and identification of the origins of individuals buried in a Neolithic collective grave at Bronocice (southern Poland). HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 65:115-30. [PMID: 24304615 DOI: 10.1016/j.jchb.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
The oxygen present in a human organism comes from numerous sources, but the major factor that causes variation in the isotopic composition of this element in a tissue is available drinking water. The isotopic ratio of oxygen in an organism's tissue, including that found in bones and teeth, reflects the isotopic oxygen composition typical for the area where a given individual developed and lived. Of particular interest with regard to this issue were a series of skeletons from the multiple grave discovered at the Funnel Beaker-Baden settlement at Bronocice (southern Poland). The question therefore arose whether the specimens buried in this grave were part of the local community. The oxygen isotope level was established using apatite isolated from bones or teeth. A femur and root dentine samples taken from permanent teeth were subjected to oxygen isotope analysis. The oxygen isotope level of the site was established on the basis of local water precipitation and measurements taken from the oxygen isotope concentration in apatite samples isolated from the bones of animals co-occurring with the studied human group. It has been found that the oxygen isotope levels in the bones and dentine of almost all the analysed specimens from the excavated site at Bronocice were within the established range for the area's environment, providing evidence for their local origin. Thus, it can be assumed that the analysed group inhabiting the macrosettlement at Bronocice during the Funnel Beaker phase of the Baden culture was most probably of local origin.
Collapse
Affiliation(s)
- K Szostek
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland.
| | - E Haduch
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - B Stepańczak
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - J Kruk
- Institute of Archaeology and Ethnology Polish Academy of Science, ul. Sławkowska 17, 31-016 Kraków, Poland
| | - A Szczepanek
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - J Pawlyta
- Department of Radioisotopes, Institute of Physics, Silesian University of Technology, Gliwice, Poland
| | - H Głąb
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - S Milisauskas
- Department of Anthropology, State University of New York at Buffalo, Buffalo 14261-0026, USA
| |
Collapse
|
31
|
Hoke N, Grigat A, Grupe G, Harbeck M. Reconsideration of bone postmortem interval estimation by UV-induced autofluorescence. Forensic Sci Int 2013; 228:176.e1-6. [DOI: 10.1016/j.forsciint.2013.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 07/11/2012] [Accepted: 03/10/2013] [Indexed: 10/27/2022]
|
32
|
Patonai Z, Maasz G, Avar P, Schmidt J, Lorand T, Bajnoczky I, Mark L. Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes. Int J Legal Med 2012; 127:529-33. [PMID: 23108457 DOI: 10.1007/s00414-012-0785-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/12/2012] [Indexed: 01/25/2023]
Abstract
The fast, high-throughput distinction between paleoanthropological remains and recent forensic/clinical bone samples is of vital importance in the field of medicolegal science. In this paper, a novel screening method has been described, using the crystallinity index (C.I.) and carbonate-phosphate index (C/P) as a means to distinguish between archeological and forensic anthropological skeletal findings. According to the Fourier transform infrared spectroscopy analyses, the archeological bone samples are characterized by a range of C.I. between 2.84 and 3.78 and by low C/P values of 0.10-0.33, while the C.I. and C/P ranges of forensic skeletal remains are 2.55-3.18 and 0.38-0.88, respectively. Significant (p < 0.05) changes were observed in C/P as well as C.I. values between the groups of forensic and archeological skeletal samples. The suggested dating method needs only a few milligramms of bone tissue; thus, it can be extremely useful for distiguishing ancient and recent bone fragments.
Collapse
Affiliation(s)
- Zoltan Patonai
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Str. 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Howes JM, Stuart BH, Thomas PS, Raja S, O'Brien C. An Investigation of Model Forensic Bone in Soil Environments Studied Using Infrared Spectroscopy. J Forensic Sci 2012; 57:1161-7. [DOI: 10.1111/j.1556-4029.2012.02236.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Johanna M. Howes
- Centre for Forensic Science; University of Technology, Sydney; PO Box 123 Broadway Sydney NSW 2007 Australia
| | - Barbara H. Stuart
- Centre for Forensic Science; University of Technology, Sydney; PO Box 123 Broadway Sydney NSW 2007 Australia
| | - Paul S. Thomas
- Centre for Forensic Science; University of Technology, Sydney; PO Box 123 Broadway Sydney NSW 2007 Australia
| | - Sophil Raja
- Centre for Forensic Science; University of Technology, Sydney; PO Box 123 Broadway Sydney NSW 2007 Australia
| | - Christopher O'Brien
- Forensic Science Institute; University of Central Oklahoma; 100 N University Drive Edmond OK 73034
| |
Collapse
|
34
|
Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem 2011; 401:2511-8. [DOI: 10.1007/s00216-011-5338-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 01/25/2023]
|
35
|
A novel statistical morphometry imaging method for differentiating long bone geometry: methodological development and application with adolescent idiopathic scoliosis (AIS) patients. Med Eng Phys 2011; 33:1103-7. [PMID: 21696991 DOI: 10.1016/j.medengphy.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/12/2011] [Accepted: 04/23/2011] [Indexed: 11/24/2022]
Abstract
Non-invasive quantification of bone shape is crucial in orthopaedic research. The primary objective of this study was to develop an automated statistical morphometry method for comparing the cross-sectional images of normal and diseased bones. The secondary objective involved demonstrating the effectiveness of the proposed method in distinguishing AIS patients from normal controls. This framework is composed of bone segmentation followed by measurements of maximum and minimum bone diameters, inter-group and intra-group statistical morphometry, and statistical analysis of bone thickness. The proposed framework was applied to detect bone morphological abnormality in adolescent idiopathic scoliosis (AIS) patients. The forearm bones in cross-sectional peripheral quantitative computed tomography (pQCT) images from 23 AIS patients and 16 normal controls were analyzed. The radius outer contour was found to be rounder and the radius cortical bone was thinner in AIS patients compared to normal controls.
Collapse
|
36
|
Hampson C, Louhelainen J, McColl S. An RNA expression method for aging forensic hair samples. J Forensic Sci 2011; 56:359-65. [PMID: 21281307 DOI: 10.1111/j.1556-4029.2010.01641.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A common limitation to most forensic trace evidence analysis is the ability to determine the time at which the evidence was deposited at the crime scene. This issue of timing is vitally important as it may not only reveal when the crime occurred, but could exclude potential suspects from the investigation. Using a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay, we monitored the relative expression ratio (RER) of two different RNA species (18S and β-actin) in hair samples that were aged naturally over a period of 3 months. No gender or age-of-donor biases were observed, and results were linear up to 60 days. After 60 days, the results were more variable and gave unreliable estimates of time since deposition. Overall, the results presented in this paper suggest that the age of hair samples containing follicular tags can be approximated using a second-order polynomial, although with limitations: Age = 3.31RER(2) - 2.85RER - 0.54 (R(2) = 0.98).
Collapse
Affiliation(s)
- Clint Hampson
- Department of Pharmacy and Biomolecular Science, Liverpool John Moores University, Max Perutz Building, Byrom Street, Liverpool, UK, L3 3AF.
| | | | | |
Collapse
|
37
|
Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 2009; 24:1565-71. [PMID: 19419303 PMCID: PMC2730929 DOI: 10.1359/jbmr.090414] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 01/31/2009] [Accepted: 04/21/2009] [Indexed: 01/22/2023]
Abstract
BMD does not entirely explain an individual's risk of fracture. The purpose of this study was to assess whether specific differences in spatially resolved bone composition also contribute to fracture risk. These differences were assessed using Fourier transform infrared spectroscopic imaging (FTIRI) and analyzed through multiple logistic regression. Models were constructed to determine whether FTIRI measured parameters describing mineral content, mineral crystal size and perfection, and collagen maturity were associated with fracture. Cortical and cancellous bone were independently evaluated in iliac crest biopsies from 54 women (32 with fractures, 22 without) who had significantly different spine but not hip BMDs and ranged in age from 30 to 83 yr. The parameters that were significantly associated with fracture in the model were cortical and cancellous collagen maturity (increased with increased fracture risk), cortical mineral/matrix ratio (higher with increased fracture risk), and cancellous crystallinity (increased with increased fracture risk). As expected, because of its correlation with cortical but not cancellous bone density, hip BMD was significantly associated with fracture risk in the cortical but not the cancellous model. This research suggests that additional parameters associated with fracture risk should be targeted for therapies for osteoporosis.
Collapse
Affiliation(s)
- Samuel Gourion-Arsiquaud
- These authors contributed equally to this study
- Hospital for Special Surgery, New York, New York, USA
| | - Dan Faibish
- These authors contributed equally to this study
- Hospital for Special Surgery, New York, New York, USA
| | | | | | | | | | - Elizabeth Shane
- Columbia University, New York Presbyterian Hospital, New York, New York, USA
| | | | | | - Adele L. Boskey
- Hospital for Special Surgery, New York, New York, USA
- Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|